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I offer here some background for Sections 2.5 and 2.6 of J. J. Sakurai,
Modern Quantum Mechanics.

1 Introduction

There is more than one way to understand quantum mechanics. In one way,
we study a certain partial differential equation, the one particle Schrödinger
equation. More generally, we have states

∣∣ψ(t)
〉

in a vector space with evo-
lution according to i(d/dt)

∣∣ψ(t)
〉

= H
∣∣ψ(t)

〉
. Here H is an operator on the

space of states. Possible measurements and symmetry operations are repre-
sented by other operators. In the simplest case, this formulation is the same
as the one particle Schrödinger equation. This is the Schrödinger picture
for quantum mechanics. There is an alternative way of looking at the same
physical content in which the states do not depend on time, but the operators
do. This is the Heisenberg picture.

There is another way of understanding quantum mechanics, invented by
Richard Feynman: the path integral formulation. In the simplest case, we
can consider Feynman’s formulation in the case of a single particle moving
in three dimensions. We still have operators and states, but the emphasis is
not on the operators and states and we do not use the Schrödinger equation
directly. Instead, we express the amplitude for the particle to get from one
place to another as an integral over all paths that it might have taken to
do that. This formulation is not wonderfully useful from the point of view
of calculation for non-relativistic quantum mechanics, but it does provide us
with some insights. In relativistic quantum field theory, the path integral
formulation is often the most useful way of expressing the theory. For a
certain class of problems, it is also directly useful for calculations.

1Copyright, 2011, D. E. Soper
2soper@uoregon.edu

1



2 Propagator for the Schrödinger equation

We consider the propagator

K(~xF, tF; ~x0, t0) =
〈
~xF

∣∣e−iH(tF−t0)
∣∣~x0

〉
. (1)

We take the hamiltonian to be

H =
1

2m
~p 2

op + V (~xop) . (2)

The subscripts “op” indicate that ~pop and ~xop are operators. (I often use
hats for this, but hats and vector signs do not live happily together.)

The propagator K(~xF, tF; ~x0, t0) gives the amplitude for a particle at po-
sition ~x0 at an initial time t0 to be found at position ~xF at a later time
tF. This definition is for tF > t0. For tF < t0, one usually defines K = 0.
If the particle was originally in a general state

∣∣ψ(t0)
〉
, with wave function〈

~x0

∣∣ψ(0)
〉
, then at time tF its wave function is

〈
~xF

∣∣ψ(tF)
〉

=

∫
d~x0 K(~xF, tF; ~x0, t0)

〈
~x0

∣∣ψ(t0)
〉
. (3)

Thus the propagator tells us quite generally how the particle propagates in
time.

We can find this exactly for a free particle. For convenience we can set
t0 = 0 and ~x0 = 0. Then if V = 0 a simple calculation gives

K(~x, t; 0, 0) =
1

[2πi]3/2

(m
t

)3/2

exp
(
i
m

2t
~x 2
)

. (4)

3 The path integral

We can derive the Feynman path integral in a simple and elegant fashion.
Divide the time interval into small increments of size ∆t. There are a very
large number N of time increments, with ∆t = (tF − t0)/N . We define
intermediate times ti for i = 1, . . . , N − 1 and we denote tN = tF, so ti =
ti−1 + ∆t for i = 1, . . . , N . We then have

K(~xF, tF; ~x0, t0) =
〈
~xF

∣∣e−iH∆t · · · e−iH∆te−iH∆t
∣∣~x0

〉
. (5)
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with N factors of exp(−iH∆t). Between each pair of factors exp(−iH∆t),
we introduce a complete sum over position eigenstates,

K(~xF, tF; ~x0, t0) =

∫
d~xN−1 · · ·

∫
d~x2

∫
d~x1

〈
~xF

∣∣e−iH∆t
∣∣~xN−1

〉
· · ·

×
〈
~x2

∣∣e−iH∆t
∣∣~x1

〉〈
~x1

∣∣e−iH∆t
∣∣~x0

〉 (6)

Physically, ~xi is going to represent where the particle is at time ti.
Now we approximate〈
~xi+1

∣∣e−iH∆t
∣∣~xi〉 ≈ 〈~xi+1

∣∣ exp

(
−i∆t

~p 2
op

2m

)
exp

(
− i∆t V (~xop)

)∣∣~xi〉 (7)

This is not exact because ~pop does not commute with ~xop. However, the error
is of order (∆t)2, which is small for ∆t → 0.3 After making this approxi-
mation, we can evaluate the matrix element without further approximation.
We insert an integral over momentum eigenstates, then complete the square
in the exponent. This gives〈

~xi+1

∣∣e−iH∆t
∣∣~xi〉 ≈ 〈~xi+1

∣∣ exp

(
−i∆t

~p 2
op

2m

) ∣∣~xi〉 exp
(
− i∆t V (~xi)

)
=

∫
d~p
〈
~xi+1

∣∣ exp

(
−i∆t

~p 2
op

2m

) ∣∣~p〉〈~p∣∣~xi〉e−i∆t V (~xi)

=

∫
d~p
〈
~xi+1

∣∣~p〉〈~p∣∣~xi〉 exp

(
−i∆t ~p

2

2m

)
e−i∆t V (~xi)

=

∫
d~p

(2π)3
exp(i~p · (~xi+1 − ~xi)) exp

(
−i∆t ~p

2

2m

)
× e−i∆t V (~xi)

=
( m

2πi∆t

)3/2

× exp

(
i∆t

[
m

2

(
~xi+1 − ~xi

∆t

)2

− V (~xi)

])
.

(8)

With this result, we have

K(~xF, tF; ~x0, t0) =

∫
~x(tN )=~xF
~x(t0)=~x0

D[x] exp(iS[x]) . (9)

3We could make the error smaller by putting exp(−i∆t V (~xop)/2) on the left and
exp(−i∆t V (~xop)/2) on the right, but that doesn’t change the formalism very much.
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Here ∫
~x(tN )=~xF
~x(t0)=~x0

D[x] · · · =
( m

2πi∆t

)3N/2
N−1∏
i=1

∫
d~xi · · · , (10)

where we understand that in the integrand we should set ~x(tN) and ~x(t0) as
indicated. Here also S[x] represents the classical action associated with the
path x:

S[x] =
N−1∑
i=0

∆t

{
1

2
m

(
xi+1 − xi

∆t

)2

− V (~xi)

}

≈
∫ tF

t0

dt

{
1

2
m

(
d~x(t)

dt

)2

− V (~x(t))

}
.

(11)

We use the discrete approximations shown to the integration over paths and
to the action, then take the limit ∆t → 0. At least that is what we should
do in principle. I do not address whether this process converges.

Thus with the path integral formulation, the propagator K(~xF, tF; ~x0, t0)
is an integral over all paths that get from ~x0 to ~xF in time tF − t0. The
integrand is exp(iS[x]), where x here denotes the path and S[x] is the classical
action for that path.

In classical mechanics, the action S[x] also appears. One considers all
possibilities for paths from from ~x0 to ~xF in time tF − t0. The path that
nature chooses is the one for which S[x] does not change if one makes a small
variation δx away from the classical path xcl.

We see that in quantum mechanics, all paths appear. The particle gets
from ~x0 to ~xF in time tF − t0 every way it can. The amplitude is the sum of
the amplitudes for each path x, weighted by exp(iS[x]). There can be con-
structive interference among paths and there can be destructive interference
among paths.

4 Method of stationary phase

Let us look at what seems to be a completely different subject, perform-
ing integrals by the method of stationary phase. Suppose that we want to
approximately evaluate an integral of the form

I =

∫
dφ exp(iνS(φ)) g(φ) . (12)
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Here φ is a D-dimensional vector with components φi and the integral means∫
dφ · · · =

∫ ∞
−∞

dφ1

∫ ∞
−∞

dφ2 · · ·
∫ ∞
−∞

dφD · · · . (13)

In the integrand, g is some well behaved function of φ. In the exponent of
the integrand S is some well behaved function of φ, which I assume is real for
real φ. The function S(φ) is multiplied by a parameter ν that we consider to
be large, ν →∞.

Suppose that at some point φ = φcl, the gradient of S vanishes,[
∂

∂φi
S(φ)

]
φ=φcl

= 0 (14)

This is a point of “stationary phase.” Suppose, for convenience, that there is
only one point of stationary phase. Otherwise, we should apply the method
to each such point and sum the results.

We recognize that contributions to the integral from regions of φ not
near φcl will decrease as ν increases because of the rapidly oscillating phase.
However, this cancellation is inhibited near the point of stationary phase.
Therefore, we expand about φ = φcl. We have

S(φ) = S(φcl) +
1

2

∑
i,j

∆φi∆φjDij + · · · , (15)

where
∆φi = φi − φcl,i (16)

and

Dij =

[
∂2S(φ)

∂φi∂φj

]
φ=φcl

(17)

This gives (after taking the factors that do not depend on ∆φ out of the
integral and changing the integration variables from φ to ∆φ),

I ∼ exp(iνS(φcl)) g(φcl)

∫
d∆φ exp

(
iν

1

2

∑
i,j

∆φiDij∆φj

)
. (18)

How can we perform this integral? We note that D is a real, symmetric
matrix. Therefore it has a complete set of real eigenvectors vn,∑

j

Dijvjn = λnv
i
n . (19)
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The eigenvectors can be chosen to be normalized and orthogonal (with a real
inner product), ∑

i

vimv
i
n = δmn . (20)

We can write
∆φi =

∑
n

anv
i
n . (21)

We change integration variables to the expansion coefficients an. For the
exponent, we have

iν
1

2

∑
i,j

∆φiDij∆φj = iν
1

2

∑
n,m

anam
∑
i,j

vimDijvjn

= iν
1

2

∑
n,m

anamλn
∑
i

vimv
i
n

= iν
1

2

∑
n,m

anamλnδmn

= iν
1

2

∑
n

λna
2
n .

(22)

For the integration, we have∏
i

d∆φi = det v
∏
n

dan . (23)

Here we have the determinant of the matrix v with matrix elements vin. This
matrix is an orthogonal matrix,

∑
i v

i
mv

i
n = δmn, so its determinant is 1.

Thus our integral is

I ∼ exp(iνS(φcl)) g(φcl)

∫
da exp

(
iν

1

2

∑
n

λna
2
n

)
. (24)

The integral is now a product of many one dimensional integrals,

I ∼ exp(iνS(φcl)) g(φcl)
∏
n

[∫
dan exp

(
iν

1

2
λna

2
n

)]
. (25)

We can perform each integral by changing variables to ξn,

an =

√
2i

λnν
ξn . (26)

6



This gives

I ∼ exp(iνS(φcl)) g(φcl)
∏
n

[√
2i

λnν

∫
dξn exp

(
−ξ2

n

)]
. (27)

That is

I ∼ exp(iνS(φcl)) g(φcl)
∏
n

[√
2πi

λnν

]
. (28)

We recognize that ∏
n

λn = detD . (29)

Thus

I ∼ exp(iνS(φcl)) g(φcl)
1√

detD

[√
2πi

ν

]D
. (30)

This is the leading result. You should verify for yourself that if you expand
g and the remaining exponential factor in powers of ∆φ, you will generate
corrections that modify the leading result by multiplying it by a power series
1 + c1/ν + c2/ν

2 + · · · . The essential point is that, inside the integral, δφ is
effectively of order 1/

√
ν.

Exercise 4.1 Consider the one dimensional integral

I =

∫ ∞
−∞

dφ exp(iνS(φ)) g(φ) , (31)

where
S(φ) = 1 + φ2 + φ4 (32)

and

g(φ) =
1

1 + φ4
. (33)

Use the method of stationary phase to evaluate I for large ν at the leading
order. Taking ν = 5, ν = 10, and ν = 20, compare to the exact integral eval-
uated by numerical integration. (If you use Mathematica for the numerical
integration, I suggest MaxRecursion → 20 to help it get a good answer with
an oscillatory integrand.)
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5 Classical approximation to the path inte-

gral

Consider our path integral for the propagator,

K(~xF, tF; ~x0, t0) =

∫
~x(tN )=~xF
~x(t0)=~x0

D[x] exp(iS[x]) . (34)

Let ~xcl(t) be the classical path with ~xcl(t0) = ~x0 and ~xcl(tF) = ~xF. Define

δ~x(t) = ~x(t)− ~xcl(t) . (35)

Then
δ~x(t0) = δ~x(tF) = 0 . (36)

We have

S[x] = S[xcl]

−
∫ tF

t0

dt

{
m
d2~xcl(t)

dt2
+ ~∇V (~xcl(t))

}
· δ~x(t)

+

∫ tF

t0

dt

{
1

2
m

(
dδ~x(t)

dt

)2

− 1

2
∂i∂jV (~xcl(t))) δx(t)iδx(t)j

}
+O((δx)3) .

(37)

The first term is the classical action. In the second term, I have integrated
by parts using δ~x(t0) = δ~x(tF) = 0. Then the second term vanishes because
~xcl(t) obeys the classical equation of motion. This is the principle of station-
ary action. Since the action is the phase, we are now applying the method
of stationary phase to the integral. In the third term, we can integrate by
parts also, so that

S[x] = S[xcl]

+

∫ tF

t0

dt δx(t)i
{
−1

2
mδij

d2

dt2
− 1

2
∂i∂jV (~xcl(t)))

}
δx(t)j

+O((δx)3) .

(38)

Define the operator

D =

{
−1

2
mδij

d2

dt2
− 1

2
∂i∂jV (~xcl(t)))

}
. (39)
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Taking over our previous results, we have the classical approximation to
our propagator

K(~xF, tF; ~x0, t0) ∼ N√
detD

exp(iS[xcl]) . (40)

HereN is a normalization factor coming from the definition of the integration
over paths. We should let ∆t be finite, so that we have a finite dimensional
integral. Then D us really a finite dimensional matrix. In principle, we are
supposed to calculate with ∆t finite and then take a limit ∆t→ 0.

We can note immediately that for the simple case of a free particle that
starts at ~x0 = 0 at time t0 = 0, the classical action is

S =

∫ t

0

dτ
m

2

~x 2

t2
=
m

2t
~x 2 . (41)

Thus the exponent in Eq. (40) matches the exponent in our exact solution
for K(~x, t; 0, 0) in Eq. (4).

Exercise 5.1 Another case for which it is pretty easy to evaluate the classical
action is the simple harmonic oscillator in one dimension, H = p2/(2m) +
(mω2/2)x2. The classical approximation for the propagator K(xF, tF;x0, 0),
should be exact: the action is a quadratic function of x so the order (δx)3

contributions to the action vanish. Take t0 = 0 and find S[xcl] for the path
that starts at x0 and reaches xF at time tF . Use this to calculate the ex-
ponential part of K(xF, tF;x0, 0). There is also a factor N /

√
detD that is

independent of x0 and xF and that multiplies the exponential. Don’t bother
to calculate this factor. Compare your answer to the exact result given in
Eq. (2.6.18) of Sakurai.

6 The action and the classical approximation

Let us try to derive this classical approximation another way. We seek an
approximate solution to the Schrödinger equation[

i
∂

∂t
+

1

2m
~∇2 − V (~x)

]
K(~x, t; ~x0, t0) = 0 . (42)
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The boundary condition is that K(~x, t; ~x0, t0) approaches δ(~x−~x0) at t→ t0.
Given the result (40), we may suspect that the classical action for classical

paths that go from ~x0 at time t0 to ~x at time t has something to do with
this. Let us call this function S(~x, t). That is

S(~x, t) =

∫ t

t0

dτ

[
m

2

(
d~xcl(τ)

dτ

)2

− V (~xcl(τ))

]
. (43)

Here ~xcl(τ) is the classical path, with

~xcl(t0) = ~x0 ,

~xcl(t) = ~x .
(44)

We need some properties of this function. First, consider a new classical
path xcl(τ) + δ~xcl(τ) that starts at ~x0 at time t0 but gets to some new place
~x+ δ~x at time t. we have

δS(~x, t) =

∫ t

t0

dτ

[
m
d~xcl(τ)

dτ
· dδ~xcl(τ)

dτ
− δ~xcl(τ) · ~∇V (~xcl(τ))

]
. (45)

This is

δS(~x, t) =

∫ t

t0

dτδ~xcl(τ)

[
−m d2~xcl(τ)

dτ 2
− ~∇V (~xcl(τ))

]
+mδ~x · d~xcl(t)

dt
. (46)

The first term vanishes because ~xcl(τ) obeys the equation of motion. The
second term remains because δ~xcl(τ) does not vanish at τ = t. We conclude
that

δS(~x, t) = δ~x · ~pcl(t) , (47)

where

~pcl(τ) = m
d~xcl(τ)

dτ
. (48)

Since this holds for any δ~x, we have

~∇S(~x, t) = ~pcl(t) . (49)

We also need ∂S(~x, t)/∂t. Consider keeping one path, xcl(τ), but ex-
tending the time to t + δt, so that the particle gets to a new place, ~x + δ~x.
Then

δ~x =
d~xcl(t)

dt
δt . (50)
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The action changes by

δS =

[
1

2m
~pcl(t)

2 − V (~xcl(t))

]
δt . (51)

On the other hand,

δS = ~∇S(~x, t) · δ~x+
∂S(~x, t)

∂t
δt

=

[
~pcl(t) ·

d~xcl(t)

dt
+
∂S(~x, t)

∂t

]
δt

(52)

Comparing these, we have

∂S(~x, t)

∂t
=

1

2m
~pcl(t)

2 − V (~xcl(t))− ~pcl(t) ·
d~xcl(t)

dt

= − 1

2m
~pcl(t)

2 − V (~xcl(t)) .

(53)

The right hand side is the negative of the energy E on the path. Thus

∂S(~x, t)

∂t
= − E . (54)

Now we can return to the Schrödinger equation. Let

K(~x, t; ~x0, t0) = exp[iA(~x, t)] . (55)

Then

−∂A
∂t
− 1

2m

(
~∇A
)2

+
i

2m
~∇2A− V (~x) = 0 . (56)

I propose that under certain circumstances (the “semiclassical approxima-

tion”), we can neglect ~∇2A. Let’s try it and then come back to see under
what conditions this is a good approximation. With the semiclassical ap-
proximation, we have

−∂A
∂t
− 1

2m

(
~∇A
)2

− V (~x) ≈ 0 . (57)

Let’s try A(~x, t) = S(~x, t). I claim that

−∂S
∂t
− 1

2m

(
~∇S
)2

− V (~x) = 0 . (58)

11



To see this, just use our previous results, giving

E − 1

2m
~pcl(t)

2 − V (~xcl(t)) = 0 . (59)

Since E is just the kinetic energy ~p 2/(2m) plus the potential energy V ,
Eq. (58) is indeed true.

In Eq. (59), we consider the path ~xcl(τ) that gets from ~x0 at time t0 to ~x
at time t. We then evaluate ~xcl(τ) and ~pcl(τ) at τ = t. The results depend
on ~x and t, so we could write this equation as

E(~x, t)− 1

2m
~p(~x, t)2 − V (~x) = 0 . (60)

Now, let’s look at the semiclassical approximation. Suppose that E, V ,
and ~p 2/(2m) are large. Then our wave function has closely spaced wiggles
in space and time. In particular, |~p| is big, or the quantum wavelength
λ = 1/|~p| is small. However, let’s suppose that V (~x) is slowly varying and
that |~x − ~x0| � λ, so that ~x is far from the singular point where all the
paths start. Let’s denote the distance characteristic of the variation of V or
|~x−~x0| by R. Then we consider the situation in which λ� R. The distance
characteristic of variation of p(~x, t) is controlled by classical mechanics, so it
should be R:

~∇ · ~p(~x, t) ∼ 1

R
|~p(~x, t)| . (61)

That is
~∇ · (~∇S) ∼ 1

R
|~∇S| , (62)

while

|~∇S| ∼ 1

λ
. (63)

Then since R� λ we have ~∇ · (~∇S) ∼ 1/(Rλ) while (~∇S)2 ∼ 1/λ2, so

~∇ · (~∇S)� (~∇S)2 , (64)

That is our approximation.
We see that the solution to the Schrödinger equation in the classical limit

is
K(~x, t; ~x0, t0) =

√
ρ(~x, t) exp[iS(~x, t)] . (65)

The classical action appears in the exponent. There is a normalization factor√
ρ in front. If ρ is real and if we call K(~x, t; ~x0, t0) = ψ(~x, t), then ρ = |ψ|2.

To find ρ, we need the next order approximation. We will return to that
question after we have learned a little more.
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7 More about the classical action

It is easy to interpret the classical action as an approximate quantum me-
chanical phase. We write, using ~pcl = md~x/dt,

S(~x, t) =

∫ t

t0

dt

{
1

2
m

(
d~xcl(t)

dt

)2

− V (~xcl(t))

}

=

∫ t

t0

dt

{
m

(
d~xcl(t)

dt

)2

− 1

2
m

(
d~xcl(t)

dt

)2

− V (~xcl(t))

}

=

∫ t

t0

dt
d~xcl(t)

dt
· ~pcl(t)−

∫ t

t0

dt E

=

∫ ~x

~x0

d~x · ~pcl(~x)− (t− t0)E .

(66)

In the first term we integrate along the path in space that the particle takes,
with ~p being a vector pointing along the path whose magnitude is

|~pcl(~x)| =
√

2m(E − V (~x)) , (67)

where E is the classical energy for the path. We accumulate phase from
a factor exp(i~p · d~x) for each step along the path. In the second term, we
have the classical energy E times the total time needed to traverse the path,
corresponding to a factor exp(−iEdt) for each step of the path.

We can write this as

S(~x, t) = W (~x,E)− (t− t0)E . (68)

where

W (~x,E) =

∫ ~x

~x0

d~x · ~pcl(~x) . (69)

We consider this to be a function of the final position ~x and the energy E.
Let us find how W (~x,E) varies if we vary ~x and E:

δW (~x,E) = δS + Eδt+ (t− t0)δE

= [~p · δ~x− Eδt] + Eδt+ (t− t0)δE

= ~p · δ~x+ (t− t0)δE .

(70)
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Thus

~∇W (~x,E) = ~pcl(~x) ,

∂W (~x,E)

∂E
= (t− t0) .

(71)

We use W (~x,E) if we want to find an energy eigenfunction in the classical
limit. For instance, we can think of a wave function that represents waves
that start from a source at location ~x0. If we move ~x0 to somewhere far away
near the −z axis, then we would have waves that start as plane waves for
large negative z and then get bent by a potential V (~x) that is zero for large
|~x| but can bend the waves when they get to the region where the potential
acts. This corresponds to unbound quantum states.

We can also think of bound states, so that we want to find bound state
energy eigenvalues. Then our approximation is part of the WKB approxima-
tion described in Sakurai. However, for a bound state in one dimension, there
is a point where the particle runs out of kinetic energy and turns around.
At the turning point, pcl = 0. At that point, the semiclassical approxima-
tion is not working. Thus we need to use real quantum mechanics to match
wave functions in the classically allowed region and the classically forbidden
region.

To find an energy eigenstate, we want to solve[
− 1

2m
~∇2 + V (~x)− E

]
ψ(~x) = 0 . (72)

We put
ψ(~x) = exp[iA(~x)] . (73)

Then
1

2m

(
~∇A
)2

− i

2m
~∇2A+ V (~x)− E = 0 . (74)

We approximate this in the small wavelength limit as

1

2m

(
~∇A
)2

+ V (~x)− E ≈ 0 . (75)

We try the solution A(~x) = W (~x,E). Since ~∇W = ~pcl, we get

1

2m
~pcl(~x)2 + V (~x)− E = 0 . (76)
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Thus this ansatz solves our equation. We see that the solution to the
Schrödinger equation for an energy eigenfunction in the classical limit is

ψ(~x) =
√
ρ(~x,E) exp[iW (~x,E)] . (77)

The function W from Eq. (69) appears in the exponent. There is a normal-
iztion factor

√
ρ in front. If ρ is real, then ρ = |ψ|2. To find ρ, we need the

next order approximation.

8 The next order approximation

We have two semiclassical treatments. One considers quantum particles that
start at ~x0 at time t0 and reach position ~x at time t. These particles can
have any energy. The other treatment considers particles that have energy
E. They travel from ~x0 to ~x, but we do not ask how long it takes. In each
case, there is a normalization ρ such that |ψ|2 = ρ. Our treatment has not
been at the level of approximation that enables us to find ρ, but we can
analyze that now.

The constant energy case is easiest. Let

ψ(~x) = exp

(
iW (~x,E) +

1

2
log(ρ(~x,E))

)
. (78)

The Schrödinger equation (72) is equivalent to

− 1

2m

(
i~∇W +

1

2ρ
~∇ρ
)2

− 1

2m

(
i~∇2W +

1

2
~∇2 log ρ

)
+V (~x)−E = 0 . (79)

Counting ρ and ~∇W as being slowly varying, we can approximate this by

1

2m
(~∇W )2 − i

2m

1

ρ
~∇ρ · ~∇W − i

2m
~∇2W + V (~x)− E = 0 . (80)

With ~∇W = ~pcl(~x), this is

1

2m
~pcl(~x)2 − i

2m

1

ρ
~∇ρ · ~pcl(~x)− i

2m
~∇ · ~pcl(~x) + V (~x)− E = 0 . (81)

We have kept the “big” terms here and the first not-so-big terms. As we
have already arranged, the big terms cancel (E = p2/(2m) + V ) and we are
left with the not so big terms,

− i

2m

1

ρ(~x)
(~∇ρ(~x)) · ~pcl(~x)− i

2m
~∇ · ~pcl(~x) = 0 . (82)
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This is more understandable if we write

~pcl(~x) = m~vcl(~x) . (83)

Then
~vcl(~x) · ~∇ρ(~x) + ρ(~x)~∇ · ~vcl(~x) = 0 . (84)

Given ~vcl(~x), one could pretty easily solve this for ρ, at least numerically. To
see what the equation means, write it as

~∇ ·
[
ρ(~x)~vcl(~x)

]
= 0 . (85)

Imagine lots of particles. The particles at ~x have density ρ(~x) and move with
velocity ~vcl(~x). This equation says that the number of particles is conserved.
For example, if ~vcl(~x) always points in the same direction, then ρ is smallest
where vcl is biggest. If |~vcl| is constant, but all of the particles are moving
radially outward from the origin, then ρ ∝ 1/|~x|2.

Now let’s try the time dependent case. We write

ψ(~x) = exp

(
iS(~x, t) +

1

2
log(ρ(~x, t))

)
. (86)

The the Schrödinger equation (72) is equivalent to

0 = − ∂S

∂t
+

i

2ρ

∂ρ

∂t
+

1

2m

(
i~∇S +

1

2ρ
~∇ρ
)2

+
1

2m

(
i~∇2S +

1

2
~∇2 log ρ

)
− V (~x) .

(87)

Counting ρ and ~∇W as being slowly varying, we can approximate this by

0 = − ∂S

∂t
+

i

2ρ

∂ρ

∂t
− 1

2m

(
~∇S
)2

+
i

2mρ
~∇S · ~∇ρ

+
i

2m
~∇2S − V (~x) .

(88)

With ∂S/∂t = −E and ~∇S = ~pcl(~x), this is

0 = E +
i

2ρ

∂ρ

∂t
− 1

2m
~p 2

cl +
i

2mρ
~pcl · ~∇ρ+

i

2m
~∇ · ~pcl − V (~x) . (89)
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As we have already arranged, the big terms cancel (E = p2/(2m) + V ) and
we are left with the not-so-big terms,

0 =
i

2ρ

∂ρ

∂t
+

i

2mρ
~pcl · ~∇ρ+

i

2m
~∇ · ~pcl . (90)

This is more understandable if we write

~pcl(~x, t) = m~vcl(~x, t) . (91)

Then
∂ρ

∂t
+ ~vcl · ~∇ρ+ ρ~∇ · ~vcl = 0 . (92)

To see what the equation means, write it as

∂ρ(~x, t)

∂t
+ ~∇ ·

[
ρ(~x, t)~vcl(~x, t)

]
= 0 . (93)

This equation says that the number of particles is conserved. We need some
boundary conditions to actually solve for ρ. For example, for free particles
starting from ~x0 = 0 at time t0 = 0, we have ~v = ~x/t and, using Eq. (4),
ρ ∝ 1/t3. This does satisfy the conservation equation.

9 The path integral with a magnetic field

Our derivation of the path integral was for a hamiltonian −~∇2/(2m)+V . For
a particle in a time independent electric and magnetic field, the hamiltonian
is

H =
1

2m

(
−i~∇− q ~A(~x)

)2

+ qφ(~x) . (94)

Here q is the charge of the particle and φ and ~A are the scalar and vector
potentials

−~∇φ = ~E ,

~∇× ~A = ~B .
(95)

We can derive the Feynman path integral in this case also. As before, we
divide the time interval into a large number N of small increments of size
∆t. We then have

K(~xF, tF; ~x0, t0) =
〈
~xF

∣∣e−iH∆t · · · e−iH∆te−iH∆t
∣∣~x0

〉
. (96)
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with N factors of exp(−iH∆t). Between each pair of factors exp(−iH∆t),
we introduce a complete sum over position eigenstates,

K(~xF, tF; ~x0, t0) =

∫
d~xN−1 · · ·

∫
d~x2

∫
d~x1

〈
~xF

∣∣e−iH∆t
∣∣~xN−1

〉
· · ·

×
〈
~x2

∣∣e−iH∆t
∣∣~x1

〉〈
~x1

∣∣e−iH∆t
∣∣~x0

〉 (97)

Physically, ~xi is going to represent where the particle is at time ti.
Now we examine〈
~xi+1

∣∣e−iH∆t
∣∣~xi〉

=
〈
~xi+1

∣∣ exp

(
−i∆t

[
1

2m

(
~pop − q ~A(~xop)

)2

+ qφ(~xop)

]) ∣∣~xi〉 .
(98)

We need to approximate this. We set each instance of ~xop equal to a number
~x = (~xi+1 + ~xi)/2. This is not exact, but it is OK to first order in the small
quantity ∆t. Then〈

~xi+1

∣∣e−iH∆t
∣∣~xi〉

=
〈
~xi+1

∣∣ exp

(
−i∆t

[
1

2m

(
~pop − q ~A(~x)

)2

+ qφ(~x)

]) ∣∣~xi〉 .
(99)

After making this approximation, we can evaluate the matrix element
without further approximation. We insert an integral over momentum eigen-
states, giving〈

~xi+1

∣∣e−iH∆t
∣∣~xi〉

≈
∫
d~p
〈
~xi+1

∣∣~p〉 exp

(
−i∆t

[
1

2m

(
~p− q ~A(~x)

)2

+ qφ(~x)

]) 〈
~p
∣∣~xi〉

=
1

(2π)3

∫
d~p ei~p·(~xi+1−~xi) exp

(
−i∆t

[
1

2m

(
~p− q ~A(~x)

)2

+ qφ(~x)

])
=

1

(2π)3

∫
d~p exp

(
−i∆t

[
1

2m

(
~p− q ~A(~x)

)2

− ~v · ~p+ qφ(~x)

])
.

(100)

Here we have defined

~v =
~xi+1 − ~xi

∆t
. (101)
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We can complete the square in the exponent:

1

2m

(
~p− q ~A(~x)

)2

− ~v · ~p =
1

2m

(
~p−m~v − q ~A(~x)

)2

− 1

2
m~v2 − q ~v · ~A(~x) .

(102)

Then〈
~xi+1

∣∣e−iH∆t
∣∣~xi〉 ≈ exp

(
i∆t

[
1

2
m~v2 + q ~v · ~A(~x)− q φ(~x)

])
1

(2π)3

∫
d~k exp

(
−i∆t 1

2m
~k2

)
=
( m

2πi∆t

)3/2

exp

(
i∆t

[
1

2
m~v2 + q ~v · ~A(~x)− q φ(~x)

])
.

(103)

With this result, we have

K(~xF, tF; ~x0, t0) =

∫
~x(tN )=~xF
~x(t0)=~x0

D[x] exp(iS[x]) . (104)

Here ∫
~x(tN )=~xF
~x(t0)=~x0

D[x] · · · =
( m

2πi∆t

)3N/2
N−1∏
i=1

∫
d~xi · · · , (105)

where we understand that in the integrand we should set ~x(tN) and ~x(t0) as
indicated. Here S[x] represents the classical action associated with the path
x:

S[x] =

∫ tF

t0

dt

{
1

2
m

(
d~x(t)

dt

)2

+ q
d~x(t)

dt
· ~A(~x(t))− q φ(~x(t))

}
. (106)

This is the action for a smooth path. What we get from our derivation is a
discrete approximation to this, in which the integral over t is really as sum.

If you study classical mechanics with a charged particle moving in an
electric and magnetic field, then this S is the action that you use.

We can note something very interesting about this. In the term involving
~A we can write ∫

dt
d~x(t)

dt
· · · =

∫
d~x · · · . (107)
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Then

S[x] =

∫ tF

t0

dt

{
1

2
m

(
d~x(t)

dt

)2

− q φ(~x(t))

}
+ q

∫
d~x · ~A(~x) . (108)

The first term depends on how the motion of the particle along the path
depends on the time t, but the second term is more geometrical: it is the
line integral of ~A along the path that the particle traces out, but the time
dependence doesn’t matter. This is especially interesting when the particle
is moving in a region in which there is no magnetic field. Then in a classical
approximation, the classical path is determined by the electric field −~∇φ,
while the vector potential ~A does not affect the classical path. Nevertheless,
the quantum wave function accumulates a phase q

∫
d~x · ~A(~x). This is the

basis of the Aharonov-Bohm effect, which is described in Sakurai.
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