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I offer here some background for Chapter 5 of J. J. Sakurai, Modern
Quantum Mechanics.

1 Notation

I try to follow the notation of Sakurai fairly closely. We are interested in the
eigenvalues of a hamiltonian of the form

H = H0 + λV . (1)

Here H0 is a hamiltonian for which we know the energy levels. When we
add an additional piece λV , the problem is too hard to solve exactly, so we
want to obtain an answer in powers of λ, considering that λV is a small
perturbation on H0. In the end, one may set λ → 1, but we keep it in the
derivation in order to keep track of how small contributions are.

The unperturbed problem, which we assume has been solved exactly, is
specified by

H0

∣∣n(0)
〉

= E(0)
n

∣∣n(0)
〉
. (2)

The perturbed problem that we wish to solve is

(H0 + λV )
∣∣n(λ)

〉
= [E(0)

n + ∆n(λ)]
∣∣n(λ)

〉
. (3)

We will be interested in one of the states
∣∣n(λ)

〉
and the corresponding eigen-

value E
(0)
n + ∆n(λ). Generally, we will use the index n for this state and

eigenvalue. Then other states can be labelled by indices k, l, etc.
We take the unperturbed eigenvectors to have the conventional normal-

ization 〈
m(0)

∣∣n(0)
〉

= δn,m . (4)
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For the perturbed eigenvectors, it is convenient to choose〈
n(0)
∣∣n(λ)

〉
= 1 . (5)

The states and the eigenvalues have an expansion in powers of λ, which
we write as ∣∣n(λ)

〉
=
∣∣n(0)

〉
+ λ
∣∣n(1)

〉
+ λ2

∣∣n(2)
〉

+ · · · ,
∆n(λ) = λ∆(1)

n + λ2∆(2)
n + · · · .

(6)

Note that the normalization condition (5) gives

1 =
〈
n(0)
∣∣n(0)

〉
+ λ
〈
n(0)
∣∣n(1)

〉
+ λ2

〈
n(0)
∣∣n(2)

〉
+ · · ·

= 1 + λ
〈
n(0)
∣∣n(1)

〉
+ λ2

〈
n(0)
∣∣n(2)

〉
+ · · ·

(7)

Therefore all of the higher order components of
∣∣n(λ)

〉
are orthogonal to∣∣n(0)

〉
,

0 =
〈
n(0)
∣∣n(1)

〉
=
〈
n(0)
∣∣n(2)

〉
= · · · . (8)

We let Pn be the projection onto states with unperturbed energy E
(0)
n ,

Pn =
∑
k

θ(E
(0)
k = E(0)

n )
∣∣k(0)〉〈k(0)∣∣ . (9)

We let Qn be the projection onto states with unperturbed energy different
from E

(0)
n ,

Qn =
∑
k

θ(E
(0)
k 6= E(0)

n )
∣∣k(0)〉〈k(0)∣∣ . (10)

Then
Pn +Qn = 1 . (11)

If the energy level E
(0)
n is non-degenerate, then Pn is the projection onto a

single state. However, it could be that the energy level E
(0)
n is degenerate.

Then Pn is the projection onto a subspace with more than one dimension of
the quantum state space. Sakurai uses φn for my Qn in the non-degenerate
case, but switches notation for the degenerate case.
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2 Non-degenerate case

Here we assume that Pn projects onto a single state,
∣∣n(0)

〉
. This case is

pretty straightforward. Arrange the equation in the form

[E(0)
n −H0]

∣∣n(λ)
〉

= [−∆n(λ) + λV ]
∣∣n(λ)

〉
. (12)

First, take the inner product of Eq. (12) with
〈
n(0)
∣∣ to get〈

n(0)
∣∣E(0)

n −H0

∣∣n(λ)
〉

=
〈
n(0)
∣∣[−∆n(λ) + λV ]

∣∣n(λ)
〉
. (13)

The left hand side vanishes. On the right hand side, we can use〈
n(0)
∣∣∆n(λ)

∣∣n(λ)
〉

= ∆n(λ) . (14)

This gives
∆n(λ) =

〈
n(0)
∣∣λV ∣∣n(λ)

〉
(15)

That is

∆(1)
n =

〈
n(0)
∣∣V ∣∣n(0)

〉
,

∆(2)
n =

〈
n(0)
∣∣V ∣∣n(1)

〉
,

∆(3)
n =

〈
n(0)
∣∣V ∣∣n(2)

〉
,

...

(16)

This gives ∆
(1)
n immediately. For the higher order corrections to the energy,

we need the corrections to the state vector.
Next, project Eq. (12) with Qn to get

[E(0)
n −H0]Qn

∣∣n(λ)
〉

= Qn[−∆n(λ) + λV ]
∣∣n(λ)

〉
. (17)

That is

Qn

∣∣n(λ)
〉

=
Qn

E
(0)
n −H0

[−∆n(λ) + λV ]
∣∣n(λ)

〉
. (18)

Here
Qn

E
(0)
n −H0

=
∑
k

θ(E
(0)
k 6= E(0)

n )

∣∣k(0)〉〈k(0)∣∣
E

(0)
n − E(0)

k

. (19)

Only states that do not have a zero in the denominator contribute.
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Expand Eq. (18) perturbatively. On the left hand side, note that for
j ≥ 1,

Qn

∣∣n(j)
〉

=
∣∣n(j)

〉
−
∣∣n(0)

〉〈
n(0)
∣∣n(j)

〉
=
∣∣n(j)

〉
. (20)

We obtain

λ
∣∣n(1)

〉
+ λ2

∣∣n(2)
〉

+ · · · = Qn

E
(0)
n −H0

× [λ(−∆(1)
n + V )− λ2∆(2)

n + · · · ]
× [
∣∣n(0)

〉
+ λ
∣∣n(1)

〉
+ λ2

∣∣n(2)
〉

+ · · · ] .

(21)

That is (noting that Qn

∣∣n(0)
〉

= 0),

∣∣n(1)
〉

=
Qn

E
(0)
n −H0

V
∣∣n(0)

〉
,

∣∣n(2)
〉

=
Qn

E
(0)
n −H0

(V −∆(1)
n )
∣∣n(1)

〉
,

...

(22)

Now we can solve Eqs. (16) and (22) by iteratively substituting lower order
results into the higher order equations. This gives the first three contributions
to the energy:

∆(1)
n =

〈
n(0)
∣∣V ∣∣n(0)

〉
,

∆(2)
n =

〈
n(0)
∣∣V Qn

E
(0)
n −H0

V
∣∣n(0)

〉
,

∆(3)
n =

〈
n(0)
∣∣V Qn

E
(0)
n −H0

(V −∆(1)
n )

Qn

E
(0)
n −H0

V
∣∣n(0)

〉
.

(23)

One can continue this in a pretty much automatic way, although it gets
messier as one goes to higher orders. I think that in all but the most sophis-
ticated calculations, one would stop at second order.

3 Degenerate case

Let’s now allow for a degenerate state. This is more complicated, so we will
stop at second order.

4



We again start with

[E(0)
n −H0]

∣∣n(λ)
〉

= [−∆n(λ) + λV ]
∣∣n(λ)

〉
. (24)

We will first project both sides of this equation with Qn to get one set of
relations, then project both sides of this equation with Pn to get another set
of relations.

First, project with Qn,

Qn[E(0)
n −H0]

∣∣n(λ)
〉

= −∆n(λ)Qn

∣∣n(λ)
〉

+ λQnV Qn

∣∣n(λ)
〉

+ λQnV Pn

∣∣n(λ)
〉
.

(25)

That is

Qn

∣∣n(λ)
〉

= −∆n(λ)
Qn

E
(0)
n −H0

∣∣n(λ)
〉

+
Qn

E
(0)
n −H0

λV Qn

∣∣n(λ)
〉

+
Qn

E
(0)
n −H0

λV Pn

∣∣n(λ)
〉
.

(26)

We will need the first order part of this,

Qn

∣∣n(1)
〉

= −∆(1)
n

Qn

E
(0)
n −H0

∣∣n(0)
〉

+
Qn

E
(0)
n −H0

V Qn

∣∣n(0)
〉

+
Qn

E
(0)
n −H0

V Pn

∣∣n(0)
〉
.

(27)

The first two terms on the right hand side vanish because Qn

∣∣n(0)
〉

= 0. This
gives

Qn

∣∣n(1)
〉

=
Qn

E
(0)
n −H0

V
∣∣n(0)

〉
. (28)

We will use this result below.
Next, project Eq. (24) with Pn,

Pn[E(0)
n −H0]

∣∣n(λ)
〉

= Pn[−∆n(λ) + λV ]
∣∣n(λ)

〉
. (29)

The left hand side vanishes. Then (inserting 1 = Pn +Qn to the right of V )

∆n(λ)Pn

∣∣n(λ)
〉

= λPnV Pn

∣∣n(λ)
〉

+ λPnV Qn

∣∣n(λ)
〉
. (30)
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At first order, Eq. (30) is

∆(1)
n

∣∣n(0)
〉

= PnV Pn

∣∣n(0)
〉
. (31)

This is really straightforward in the non-degenerate case, when Pn projects
onto the single state

∣∣n(0)
〉
. Now, for the degenerate case, it is more subtle.

In fact, we know that Pn projects onto a subspace. But so far, we don’t
know what

∣∣n(0)
〉

is except that it is the limit of
∣∣n(λ)

〉
for λ → 0, where∣∣n(λ)

〉
is the state vector that we were hoping to find. Thus, we need to

find
∣∣n(0)

〉
. In fact, Eq. (31) is an eigenvalue equation for ∆

(1)
n and

∣∣n(0)
〉
.

The vector
∣∣n(0)

〉
is in the space PnH and PnV Pn is a linear operator in

this space. Thus we can solve the eigenvalue equation. (As a practical,
matter, this means that we choose a convenient basis for PnH and solve the
corresponding matrix equation.) Let us denote the eigenvalues of PnV Pn by
vl. The eigenvalue that we seek is one of them and the state we seek is one of
the eigenvectors. Which one is up to us; we have not said whether we wanted
the lowest eigenvalue or the next lowest or what. Note that if the eigenvalues
of PnV Pn are non-degenerate, we have no choice about what the eigenvectors
are; we just choose the one corresponding to the eigenvalue we want. But if
the eigenvalues are still degenerate, then at the present first order there is
an ambiguity, which may (or maybe not) be removed if we work to one more
order.

In the case that PnH is one dimensional, the eigenvector is already de-
termined. In this case,

∆(1)
n =

〈
n(0)
∣∣V ∣∣n(0)

〉
. (32)

This is true also when PnH has more than one dimension, but it does not
help determine

∣∣n(0)
〉
. Note that this is actually the same result that we

found for a non-degenerate level. We conclude that Eq. (31) specifies both

the possibilities for the eigenvalue ∆
(1)
n and the eigenvector

∣∣n(0)
〉
, possibly

with some ambiguity with respect to the eigenvector.
Now we turn to second order. At second order, Eq. (30) is

∆(2)
n

∣∣n(0)
〉

= (PnV Pn −∆(1)
n Pn)

∣∣n(1)
〉

+ PnV Qn

∣∣n(1)
〉
. (33)

This equation is supposed to tell us ∆
(2)
n . However, it is possible that we still

don’t know what
∣∣n(0)

〉
is. Recall that

∣∣n(0)
〉

is an eigenvector of PnV Pn in the
space PnH. But maybe the eigenvalue of PnV Pn that we chose to consider is
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degenerate. In that case
∣∣n(0)

〉
is only determined to lie in a certain subspace

of PnH. Let P
(1)
n be the projection onto this subspace.3 Our vector

∣∣n(0)
〉

is,
by assumption, in this subspace, so∣∣n(0)

〉
= P (1)

n

∣∣n(0)
〉
. (34)

The definition of P
(1)
n is that it projects onto the subspace (of PnH) of vectors∣∣ψ〉 such that

PnV Pn

∣∣ψ〉 = ∆(1)
n Pn

∣∣ψ〉 . (35)

Since P
(1)
n projects onto the space of solultions of Eq. (35), we have

(PnV Pn −∆(1)
n )P (1)

n = 0 . (36)

Equally well, we have the adjoint of this equation

P (1)
n (PnV Pn −∆(1)

n ) = 0 . (37)

We project Eq. (33) with P
(1)
n to get

∆(2)
n P (1)

n

∣∣n(0)
〉

= P (1)
n (PnV Pn −∆(1)

n )
∣∣n(1)

〉
+ P (1)

n V Qn

∣∣n(1)
〉
. (38)

Because of Eq. (37), this leaves4

∆(2)
n P (1)

n

∣∣n(0)
〉

= P (1)
n V Qn

∣∣n(1)
〉
. (39)

Substituting Eq. (28) for
∣∣n(1)

〉
into Eq. (39), we have

∆(2)
n P (1)

n

∣∣n(0)
〉

= P (1)
n V

Qn

E
(0)
n −H0

V P (1)
n

∣∣n(0)
〉
. (40)

This is an eigenvalue equation that determines both the eigenvalue ∆
(2)
n and

the eigenvector
∣∣n(0)

〉
in P

(1)
n H.

3My notation P
(1)
n is not supposed to indicate that P

(1)
n is a term in the expansion of

something called Pn(λ), but rather that it is the projection onto the subspace in which
our eigenvector is known to be living after we have used first order perturbation theory.

4Sakurai assumes that there is no further degeneracy after the first step, so that P
(1)
n H

is one dimensional. He displays a formula for Pn

∣∣n(1)〉 and then argues that we don’t need
the result.
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In the case that P
(1)
n H is one dimensional, the eigenvector is already

determined. In this case,

∆(2)
n =

〈
n(0)
∣∣V Qn

E
(0)
n −H0

V
∣∣n(0)

〉
. (41)

This is true also when P
(1)
n H has more than one dimension, but it does not

help determine
∣∣n(0)

〉
. Note that this is actually the same result that we

found for a non-degenerate level.
In the degenerate case, the difference is that we had to solve an eigenvalue

equation to find the unperturbed state
∣∣n(0)

〉
in the space of states that have

the same unperturbed energy. Maybe we even had to solve two eigenvalue
equations.

I suppose that second order is enough orders for degenerate perturbation
theory.
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