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I offer here some background for Chapter 7 of J. J. Sakurai, Modern
Quantum Mechanics.

1 The problem

We consider the evolution of a system under a hamiltonian

H(t) = H0 + VS(t) . (1)

Here H0 is simple enough that we can solve exactly for its eigenstates, while
VS(t) is a perturbing interaction with the form

VS(t) = V g(t) . (2)

We use the function g(t) as a device to turn the interaction off for large
positive times and large negative times. For times in a long interval about
t = 0 we take g(t) = 1. We define the effective time that the interaction is
on by

T =

∫
dt |g(t)|2 . (3)

We are interested in what happens in the limit T →∞.
We will use the interaction picture based on the unperturbed hamiltonian

H0. In this picture, the state of the system is time independent far in the
past and far in the future, when g(t) = 0. We suppose that the system starts
in a state

∣∣ψI

〉
far in the past and we seek the probability that it will be found

to be in a state
∣∣ψF

〉
far in the future. We take these states to be eigenstates

of H0:

H0

∣∣ψI

〉
= EI

∣∣ψI

〉
,

H0

∣∣ψF

〉
= EF

∣∣ψF

〉
.

(4)
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We consider two examples of this, scattering of a single nonrelativistic
particle from a potential and scattering involving absorption or emission of
photons from atoms.

1.1 Scattering from a potential

In this class of examples, we will consider scattering of a single, spinless par-
ticle from a fixed potential V (~x). This is the simplest example of scattering
theory.

For the fixed potential case, the hamiltonian is

H(t) = H0 + VS(t) . (5)

where

H0 =
~p 2

2m
(6)

and
VS(t) = V g(t) . (7)

Here V is an operator given by

V = V (~x) . (8)

where V (~x) is a function of the position operator ~x of the particle.
We use the interaction picture based on the unperturbed hamiltonian H0

and suppose that the system starts far in the past in a momentum eigenstate∣∣ψI

〉
=
∣∣~kI〉 , (9)

where ~kI is along the z-axis. We ask for the amplitude for the system to wind
up far in the future in a different momentum eigenstate∣∣ψF

〉
=
∣∣~kF〉 . (10)

Thus

EI =
~k 2
I

2m
,

EF =
~k 2
F

2m
.

(11)
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1.2 Scattering with photons

In our second example, an electron interacts with a force center and also
interacts with a photon. The electron together with the force center is then
an “atom” if the electron is in a bound state or an ionized atom if it is in an
unbound state. The hamiltonian is

H(t) = H0 + VS(t) . (12)

where

H0 =
~p 2

2m
+ V0(r) +Hγ (13)

where V0(r) is the binding potential. The simplest example is a hydrogen
atom, for which V0(r) = −e2/r. The last term is the hamiltonian for free
photons, with

Hγ

∣∣~k, λ〉 = ω(k)
∣∣~k, λ〉 . (14)

Here ω(k) = |~k| in our units with c = 1.
The perturbation is then

VS(t) = V g(t) . (15)

Here V is an operator given by

V =
e

m
~A(~x, 0) · ~p . (16)

The argument ~x of ~A(~x, t) is the position of the electron. We set the time to
0 in order to write the quantum field in the Schrödinger picture. Recall that
the matrix element of ~A(~x, 0) between the vacuum and a photon state is〈

0
∣∣ ~A(~x, 0)

∣∣~k, λ〉 =
1

2π
√
ω(k)

~ε(~k, λ) ei
~k·~x ,

〈
~k, λ

∣∣ ~A(~x, 0)
∣∣0〉 =

1

2π
√
ω(k)

~ε(~k, λ)∗ e−i
~k·~x .

(17)

2 First order perturbation theory

Now we are ready for perturbation theory. We will start with first order
perturbation theory. In the following section, we will switch to all order per-
turbation theory, which is a bit more complicated but also more interesting.
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The amplitude to find the system in state
∣∣ψF

〉
at a time t far in the

future is〈
ψF

∣∣U (1)
I (T ;∞,−∞)

∣∣ψI

〉
= − i

∫
dt
〈
ψF

∣∣VI(t)∣∣ψI

〉
= − i

〈
ψF

∣∣V ∣∣ψI

〉 ∫
dt ei(EF−EI)t g(t)

= − i
〈
ψF

∣∣V ∣∣ψI

〉
g̃(EF − EI) ,

(18)

The argument T here reminds us that we are using the function g(t), which
will eventually become just 1 in the limit T →∞. The function g̃(ω′) is the
Fourier transform of g(t),

g̃(ω) =

∫
dt eiωt g(t) ,

g(t) =

∫
dω

2π
e−iωt g̃(ω) .

(19)

The probability to find the system in state
∣∣ψF

〉
at a time t far in the future

is
|
〈
ψF

∣∣U (1)
I (T ;∞,−∞)

∣∣ψI

〉
|2 = |

〈
ψF

∣∣V ∣∣ψI

〉
|2 |g̃(EF − EI)|2 . (20)

Recall that g(t) is very flat as a function of time. It is almost 1 for a long
time. In particular, g(0) = 1. Since g(t) is very flat, g̃(ω′) as a function of
frequency is very sharply peaked near ω′ = 0. That is, for any function h(ω)
we will have∫

dω g̃(ω)h(ω) ∼ h(0)

∫
dω g̃(ω) = 2π h(0)g(0) = 2π h(0) . (21)

That is,
g̃(ω) ∼ 2πδ(ω) (22)

for T →∞. Thus in Eq. (18) we have

lim
T→∞

〈
ψF

∣∣U (1)
I (T ;∞,−∞)

∣∣ψI

〉
= 2πδ(EF − EI) (−i)

〈
ψF

∣∣V ∣∣ψI

〉
. (23)

If we simply square the amplitude to get a probability, we get the square of
a delta function, which doesn’t make much sense. However, in Eq. (20) we
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have ∫
dω |g̃(ω)|2h(ω) ∼ h(0)

∫
dω |g̃(ω)|2

= 2πh(0)

∫
dt |g̃(t)|2

= 2πh(0)T .

(24)

That is
|g̃(ω)|2 ∼ 2πδ(ω)T , (25)

Thus

lim
T→∞

1

T

∣∣〈ψF

∣∣U (1)
I (T ;∞,−∞)

∣∣ψI

〉∣∣2 = 2πδ(EF − EI)
∣∣〈ψF

∣∣V ∣∣ψI

〉∣∣2 . (26)

3 Scattering in perturbation theory

In this section, we use time dependent perturbation theory to set up scat-
tering theory and, at the same time, to generate the perturbative expansion
of the scattering amplitude. Starting from state

∣∣ψI

〉
in the distant past, the

amplitude to find the system in state
∣∣ψF

〉
at a time far in the future is〈

ψF

∣∣UI(T ;∞,−∞)
∣∣ψI

〉
. (27)

Recall that UI has a perturbative expansion in powers of V ,〈
ψF

∣∣UI(T ;∞,−∞)
∣∣ψI

〉
=
〈
ψF

∣∣ψI

〉
+
∞∑
n=1

〈
ψF

∣∣U (n)
I (T ;∞,−∞)

∣∣ψI

〉
. (28)

Recall also that

U
(n)
I (T ;∞,−∞) = (−i)n

∫ ∞
−∞

dτn · · ·
∫ τ3

−∞
dτ2

∫ τ2

−∞
dτ1

× VI(τn) · · ·VI(τ2)VI(τ1) .

(29)

Let us change integration variables to tJ defined by

τ1 = t1 ,

τ2 = t1 + t2 ,

...

τn = t1 + · · ·+ tn .

(30)
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Then

U
(n)
I (T ;∞,−∞) = (−i)n

∫ ∞
−∞

dt1

∫ ∞
0

dt2 · · ·
∫ ∞
0

dtn

× VI(t1 + · · ·+ tn) · · ·VI(t1 + t2)VI(t1) .

(31)

Now we take the
〈
ψF

∣∣ · · · ∣∣ψI

〉
matrix element of this and insert intermediate

states that are eigenstates of H0. That is, we use

1 =
∑
ψ

∣∣ψ〉〈ψ∣∣ . (32)

We use〈
ψJ
∣∣VI(t1 + · · · tJ)

∣∣ψJ−1〉 =
〈
ψJ
∣∣V ∣∣ψJ−1〉 ei(EJ−EJ−1)(t1+···+tJ ) g(t1 + · · ·+ tJ) .

(33)
After accounting for cancellations in the exponent, we get〈

ψF

∣∣U (n)
I (T ;∞,−∞)

∣∣~kI〉 = (−i)n
∫ ∞
−∞

dt1

∫ ∞
0

dt2 · · ·
∫ ∞
0

dtn

×
∑
ψ1

∑
ψ2

· · ·
∑
ψn−1

×
〈
ψF

∣∣V ∣∣ψn−1〉 · · · 〈ψ2

∣∣V ∣∣ψ1

〉〈
ψ1

∣∣V ∣∣ψI

〉
× ei(EF−En−1)tn · · · ei(EF−E1)t2ei(EF−EI)t1

× g(t1 + · · ·+ tn) · · · g(t1 + t2) g(t1) .

(34)

We can now perform the time integrals. For all of the times tJ except t1,
we have an integral from 0 to ∞:∫ ∞

0

dtJ e
i(EF−EJ−1)tJ . (35)

The integrand comes with some factors of g, which tell us that the integral
is to be cut off at very large positive tJ . For instance, we can start with the
integration over tn at a fixed value of t1,. . . ,tn−1. The factor g(t1 + · · ·+ tn)
provides a cutoff at large tn. We just replace this g by

g(t1 + · · ·+ tn)→ e−εtn . (36)
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Next, we perform the integration over tn−1 in the same fashion. In each case,
we replace the cutoff provided by the factors g by an exponential cutoff,
giving ∫ ∞

0

dtJ e
i(EF−EJ−1+iε)tJ =

i

EF − EJ−1 + iε
. (37)

Here we understand that we are supposed to take the limit ε → 0. For the
integration over t1, we integrate from −∞ to +∞. This gives the Fourier
transform g̃(EF − EI) of g(t):∫ ∞

∞
dt1 e

i(EF−EI)t1g(t1) = g̃(EF − EI) . (38)

In the limit T →∞, we use Eq. (22) and get∫ ∞
∞
dt1 e

i(EF−EI)t1 = 2πδ(EF − EI) . (39)

We will take the limit in this form, but we will need to remember at some
point that 2πδ(EF − EI) should really have been g̃(EF − EI).

Thus we obtain, in the T →∞ limit,〈
ψF

∣∣U (n)
I (∞,−∞)

∣∣ψI

〉
= 2πδ(EF − EI) (−i)n

∑
ψ1

∑
ψ2

· · ·
∑
ψn−1

×
〈
ψF

∣∣V ∣∣ψn−1〉 i

EF − En−1 + iε
· · ·

×
〈
ψ2

∣∣V ∣∣ψ1

〉 i

EF − E1 + iε

〈
ψ1

∣∣V ∣∣ψI

〉
.

(40)

This applies for n ≥ 1.

4 Factoring out energy conservation

We can write this in a useful form,〈
ψF

∣∣U (n)
I (∞,−∞)

∣∣ψI

〉
= 2πδ(EF − EI) (−i)

〈
ψF

∣∣T (n)
∣∣ψI

〉
(41)
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for n ≥ 1, where〈
ψF

∣∣T (n)
∣∣ψI

〉
= i (−i)n

∑
ψ1

∑
ψ2

· · ·
∑
ψn−1

×
〈
ψF

∣∣V ∣∣ψn−1〉 i

EF − En−1 + iε
· · ·

×
〈
ψ2

∣∣V ∣∣ψ1

〉 i

EF − E1 + iε

〈
ψ1

∣∣V ∣∣ψI

〉
.

(42)

We can write this in a more compact fashion by eliminating the sums over
intermediate states,〈

ψF

∣∣T (n)
∣∣ψI

〉
=
〈
ψF

∣∣V 1

EF −H0 + iε
· · ·V 1

EF −H0 + iε
V
∣∣ψI

〉
. (43)

Here there are n factors of V .
Let us define

T =
∞∑
n=1

T (n) . (44)

That is

T (E) = V + V
1

E −H0 + iε
V + · · · . (45)

We also define〈
ψF

∣∣S∣∣ψI

〉
=
〈
ψF

∣∣UI(∞,−∞)
∣∣ψI

〉
=
〈
ψF

∣∣ψI

〉
+
∞∑
n=1

〈
ψF

∣∣U (n)
I (∞,−∞)

∣∣ψI

〉
.

(46)

Then 〈
ψF

∣∣S∣∣ψI

〉
=
〈
ψF

∣∣ψI

〉
+ 2πδ(EF − EI)(−i)

〈
ψF

∣∣T (EF)
∣∣ψI

〉
. (47)

One calls S the scattering operator and
〈
ψF

∣∣S∣∣ψI

〉
the S-matrix. Then〈

ψF

∣∣T (EF)
∣∣ψI

〉
is the T-matrix. They differ in three ways: the S-matrix

has a no-scattering term; there is an energy conserving delta function in the
S-matrix that is not included in the T-matrix; and we factor a (−i) out of
the T-matrix, so that its perturbative expansion starts at V .

Notice that T (E) as defined by its perturbative expansion (45) is an
operator that depends on an energy variable E. In the definition (47), we
take E to be the energy of the final state, EF, which equals also the energy
of the initial state EI. However, the definition (45) does not involve any
particular states, so T (E) is defined for any E.
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5 The cross section

In this section we relate the scattering amplitude to the cross section for each
of our two cases, scattering of a nonrelativistic particle from a potential and
scattering involving atoms and photons.

5.1 Scattering from a potential

The differential probability to get a given final state characterized by ~kF
(with ~kF 6= ~kI) is

dP (~kI → ~kF) = d~kF
∣∣〈~kF∣∣UI(T ;∞,−∞)

∣∣~kI〉∣∣2 . (48)

Here we need to be careful about the T →∞ limit. We write this as

dP (~kI → ~kF) = |g̃(EF − EI)|2 d~kF
∣∣〈~kF∣∣T ∣∣~kI〉∣∣2 . (49)

We use Eq. (25) to replace

|g̃(EF − EI)|2 ∼ 2πδ(EF − EI)T . (50)

Thus
dP (~kI → ~kF) = 2πδ(EF − EI) T d~kF

∣∣〈~kF∣∣T ∣∣~kI〉∣∣2 . (51)

That is, our probability is proportional to T , which is why we needed to
beware of taking the limit T →∞. However, if we divide by T , we can take
a limit,

1

T
dP (~kI → ~kF) = 2πδ(EF − EI) d~kF

∣∣〈~kF∣∣T ∣∣~kI〉∣∣2 . (52)

We also divide by the flux F of incoming particles, that is, the number of
incoming particles that cross a unit area per unit time. For an incoming
plane wave, the number of particles per unit volume is3

ρ =
∣∣〈~x∣∣~kI〉∣∣2 =

1

(2π)3
. (53)

3Note that we could normalize our plane wave states with
∣∣~k〉

V
= V −1/2

∣∣~k〉 where

V is any number we like with dimensions of volume, for example 1 m3. Then 1 =
V
∫
d~k
∣∣~k〉

V

〈
~k
∣∣
V

, so
∣∣~k〉

V
is dimensionless. In that case, we the number of particles

per unit volume is ρ = 1/[(2π)3V ], which has the proper dimension 1/V . If we do this,
the factors of V will cancel in a cross section. Normally, we just leave out the factors of
V .
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The velocity of the particle is

v =
|~kI|
m

. (54)

Thus the flux of incoming particles is

F = ρv =
|~kI|

(2π)3m
. (55)

One defines the differential cross section as

dσ(~kI → ~kF) =
1

FT
dP (~kI → ~kF) . (56)

Thus

dσ(~kI → ~kF) = 2πδ(EF − EI) d~kF
(2π)3m

|~kI|

∣∣〈~kF∣∣T ∣∣~kI〉∣∣2 . (57)

We can simplify the result a bit by writing

d~kFδ(EF − EI) = k2FdkF δ

(
k2F
2m
− EI

)
dΩF = mkFdΩF . (58)

Since EI = ~k2I /(2m), we have kF ≡ |~kF| = |~kI| ≡ kI. Then

dσ(~kI → ~kF)

dΩF

= (2π)4m2
∣∣〈~kF∣∣T ∣∣~kI〉∣∣2 . (59)

Thus we need to calculate
〈
~kF
∣∣T ∣∣~kI〉 and we immediately get the cross sec-

tion.
Note the normalization of states that we have been using, following Saku-

rai: 〈
~x
∣∣~k〉 =

1

(2π)3/2
ei
~k·~x . (60)

Thus there is a factor (2π)−6 coming from the normalization of our plane
wave states.
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5.2 Photons

Either of the incoming or the outgoing particle could also be a photon. If
the incoming particles are photons, the velocity of the photons is c = 1 and
the flux of incoming particles is

F = ρc =
1

(2π)3
(photons) . (61)

If the outgoing particle is a photon, then

d~kFδ(EF − EI) = k2FdkF δ(kF − EI) dΩF = k2FdΩF (photons) . (62)

Thus a more general form of the cross section formula is

dσ((~kI, sI)→ (~kF, sF))

dΩF

= (2π)4
k2F
vIvF

∣∣〈~kF, sF∣∣T ∣∣~kI, sI〉∣∣2 (63)

where

vI =

{
kI/m nonrel.

1 photon
. (64)

and

vF =

{
kF/m nonrel.

1 photon
. (65)

Here I have included a spin (or polarization) index sI for the initial particle
and another index sF for the final particle. For a spin zero particle, there is
no spin index. For an electron, there is an index with values ±1/2. For a
photon there is a polarization index, usually called λ, that takes two values.

6 Lowest order perturbation theory

At first order, T = V , so (for scattering from a potential)〈
~kF
∣∣T (1)

∣∣~kI〉 =
〈
~kF
∣∣V ∣∣~kI〉 = (2π)−3

∫
d~x e−i(kF−kI)·x V (~x) . (66)

We can also apply lowest order perturbation theory to the case in which
a photon with momentum ~k and polarization λ is absorbed by the electron
in a bound state of a hydrogen atom, ionizing the atom. Let us call the
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initial atom state
∣∣1〉 and the final ionized state

∣∣~kF〉, as in the notes on time

dependent perturbation theory. Thus we seek
〈
~kF
∣∣T (1)

∣∣1;~k, λ
〉
.〈

~kF
∣∣T (1)

∣∣1;~k, λ
〉

=
〈
~kF
∣∣V ∣∣1;~k, λ

〉
=
〈
~kF
∣∣ e
m

~A(~x, 0) · ~p
∣∣1;~k, λ

〉
=

e

m

1

2π
√
ω(k)

~ε(~k, λ) ·
〈
~kF
∣∣ei~k·~x~p ∣∣1〉 (67)

From here, we can proceed as in our notes on time ordered perturbation
theory.

Exercise 6.1 Using first order perturbation theory, find the differential cross
section dσ/dΩF for scattering a nonrelativistic particle of mass m, charge e,
and momentum kẑ from a repulsive potential

V (r) =
e2

r
. (68)

State your result as a function of k and the scattering angle θ.

7 Higher order perturbation theory

At second order,

T (2)(EF) = V
1

EF −H0 + iε
V , (69)

so 〈
ψF

∣∣T (2)(EF)
∣∣ψI

〉
=
∑
ψ1

〈
ψF

∣∣V ∣∣ψ1

〉 1

EF − E1 + iε

〈
ψ1

∣∣V ∣∣ψI

〉
. (70)

Notice that the perturbative expansion for T is much simpler than the ex-
pansion for energy levels using time independent perturbation theory. With
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more terms, we have

T (EF) = V

+ V
1

EF −H0 + iε
V

+ V
1

EF −H0 + iε
V

1

EF −H0 + iε
V

+ V
1

EF −H0 + iε
V

1

EF −H0 + iε
V

1

EF −H0 + iε
V

+ · · · .

(71)

8 Decaying states

Recall from the notes on time dependent perturbation theory that an excited
state of an atom can decay to a lower energy state by emitting a photon. We
saw there how to calculate the decay rate Γ in first order perturbation theory.
But, if the state decays, how can it be an energy eigenstate? Clearly, it isn’t.
But then, what is it?

We can get some insight into these questions by using higher order per-
turbation theory. Let’s start with an atom in state

∣∣1〉, which we take here
to be the atom ground state, with energy E1. Suppose that the atom has
an excited state

∣∣2〉 with energy E2. This is a genuine eigenstate of H0,
the atom hamiltonian not including interactions with photons. Now suppose
that we start with the ground state plus a photon,

∣∣1;~k, λ
〉
. Suppose that

ω(~k) ≈ E2 − E1. Then we get to state
∣∣2, 0〉, with the atom in state 2 and

no photon. Or, in any case, we almost get to this state. But the state can
decay to

∣∣1;~k′, λ′
〉

consisting of the atom in its ground state plus a final state

photon with momentum ~k′ and polarization λ′. We need ω(~k′) = ω(~k) in
order to conserve energy. What is the scattering amplitude for this reaction?

This can’t happen at first order in V but it can at second order.4 The

4Actually, the atom can absorb one photon and emit another photon at first order in
V using the ~A 2 term in V . This is a small effect in the present context so we ignore it.
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second order contribution is〈
1;~k′, λ′

∣∣T (2)(E)
∣∣1;~k, λ

〉
=
〈
1;~k′, λ′

∣∣V 1

E −H0 + iε
V
∣∣1;~k, λ

〉
=
∑
N

〈
1;~k′, λ′

∣∣V ∣∣N ; 0
〉〈
N ; 0

∣∣V ∣∣1;~k, λ
〉

E − EN + iε
.

(72)

Here we note that we will take E = EF = E1 +ω(~k′), which is also E = EI =

E1 + ω(~k). We sum over all atom states N . Since (by our choice of photon
energy) we will want E to be very close to E2, the dominant contribution is
from N = 2. Thus (when E is close to E2)〈

1;~k′, λ′
∣∣T (2)(E)

∣∣1;~k, λ
〉
≈
〈
1;~k′, λ

∣∣V ∣∣2; 0
〉〈

2; 0
∣∣V ∣∣1;~k, λ

〉
E − E2 + iε

. (73)

That’s a pretty answer, but it is a little suspicious: this is perturbation
theory, so we are supposed to get a small answer, but our answer is big
because of the small denominator.

If we go to higher orders of perturbation theory, do we get more factors
of our small denominator? Yes. At order 4 we have〈

1;~k′, λ′
∣∣T (4)(E)

∣∣1;~k, λ
〉
≈
〈
1;~k′, λ′

∣∣V ∣∣2; 0
〉 1

E − E2 + iε

×
〈
2; 0
∣∣V 1

E −H0 + iε
V
∣∣2; 0

〉
× 1

E − E2 + iε

〈
2; 0
∣∣V ∣∣1;~k, λ

〉
.

(74)

This has two factors of the small denominator, so it is not a tiny additional
term. At order 6 we have〈

1;~k′, λ′
∣∣T (6)(E)

∣∣1;~k, λ
〉
≈
〈
1;~k′, λ′

∣∣V ∣∣2; 0
〉 1

E − E2 + iε

×
〈
2; 0
∣∣V 1

E −H0 + iε
V
∣∣2; 0

〉
× 1

E − E2 + iε

×
〈
2; 0
∣∣V 1

E −H0 + iε
V
∣∣2; 0

〉
× 1

E − E2 + iε

〈
2; 0
∣∣V ∣∣1;~k, λ

〉
.

(75)
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At order 2 + 2n we have〈
1;~k′, λ′

∣∣T (2+2n)(E)
∣∣1;~k, λ

〉
≈
〈
1;~k′, λ′

∣∣V ∣∣2; 0
〉〈

2; 0
∣∣V ∣∣1;~k, λ

〉
E − E2 + iε

×
(

X

E − E2 + iε

)n
.

(76)

where

X =
〈
2; 0
∣∣V 1

E −H0 + iε
V
∣∣2; 0

〉
. (77)

Now X has two factors of V so it is small, but for each X there is one factor of
the small denominator, so the ratio could be large, depending on how small
the denominator is.

Clearly what we should do is add up the contributions that have the
potential not to be small:

〈
1;~k′, λ′

∣∣T (E)
∣∣1;~k, λ

〉
≈
〈
1;~k′, λ′

∣∣V ∣∣2; 0
〉〈

2; 0
∣∣V ∣∣1;~k, λ

〉
E − E2 + iε

×
∞∑
n=0

(
X

E − E2 + iε

)n
.

(78)

That is 〈
1;~k′, λ′

∣∣T (E)
∣∣1;~k, λ

〉
≈
〈
1;~k′, λ′

∣∣V ∣∣2; 0
〉〈

2; 0
∣∣V ∣∣1;~k, λ

〉
E − E2 + iε

×
[
1− X

E − E2 + iε

]−1
.

(79)

This simplifies to

〈
1;~k′, λ′

∣∣T (E)
∣∣1;~k, λ

〉
≈
〈
1;~k′, λ′

∣∣V ∣∣2; 0
〉〈

2; 0
∣∣V ∣∣1;~k, λ

〉
E − (E2 +X) + iε

. (80)

That’s amazing. The net effect of the interactions is to change the energy of
state 2 to E2 +X.

We should find out more about what X is. Since our interaction V creates
a photon, we have

X =
∑
N

∫
d~l
∑
λ

〈
2; 0
∣∣V ∣∣N ; l, λ

〉〈
N ; l, λ

∣∣V ∣∣2; 0
〉

E − EN − ω(~l) + iε
. (81)
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Any atom state N with EN < E2 and
〈
N ; l, λ

∣∣V ∣∣2; 0
〉
6= 0 can contribute.

Certainly state 1 works. Let’s assume it is the only one. Then

X =

∫
d~l
∑
λ

|
〈
1; l, λ

∣∣V ∣∣2; 0
〉
|2

E − E1 − ω(~l) + iε
. (82)

We analyzed this in our analysis of decaying states in the notes on time
dependent perturbation theory. Recall that we can write

1

E − E1 − ω(~l) + iε
=

1

[E − E1 − ω(~l)]P
− iπδ(E − E1 − ω(~l)) , (83)

where [· · · ]P denotes a principle value prescription when integrating over the
singularity. Thus

X = ∆− iΓ/2 , (84)

where

∆ =
∑
λ

∫
d~l
|
〈
1; l, λ

∣∣V ∣∣2; 0
〉
|2

[E − E1 − ω(~l)]P
,

Γ =
∑
λ

∫
d~l 2πδ(E − E1 − ω(~l)) |

〈
1; l, λ

∣∣V ∣∣2; 0
〉
|2 .

(85)

In simple examples, one can perform the integrals to calculate ∆ and Γ. The
dipole approximation can be helpful for this purpose. The values of ∆ and
Γ depend on E. In our application, we are interested in these values for
E ≈ E2. Thus we use ∆(E)→ ∆(E2) and Γ(E)→ Γ(E2)

Let us now state the result again, evaluating E at its physical value
E = E1 + ω(~k′) = E1 + ω(~k):

〈
1;~k′, λ′

∣∣T (EF)
∣∣1;~k, λ

〉
≈
〈
1;~k′, λ′

∣∣V ∣∣2; 0
〉〈

2; 0
∣∣V ∣∣1;~k, λ

〉
E1 + ω(~k)− (E2 + ∆) + iΓ/2

. (86)

We see that there is a shift ∆ in the energy of state 2. More significantly,
the energy of state 2 acquires an imaginary part −iΓ/2. We recall from our
previous analysis 1/Γ is the lifetime of state 2. That is, state 2 decays with
a time dependence exp(−Γt).

In our imagined scattering experiment, we are not measuring the time
that state 2 stays there. If we want to measure times accurately, then we
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cannot keep our photon beam on for a long time, so we cannot know the
energy of the photons accurately. Here, we assume that the photon energy
is very precisely known. Then, even if we tune ω(k) to make E1 + ω(~k) −
(E2 + ∆) = 0, we do not get an infinite cross section because the pole in the
denominator has moved away from the real energy axis. In fact, the cross
section is proportional to

f =
1

|E1 + ω(~k)− (E2 + ∆) + iΓ/2|2

=
1

(E1 + ω(~k)− (E2 + ∆))2 + Γ2/4
.

(87)

The relativistic version of this is known as a Breit-Wigner factor. It is a
sharply peaked function if Γ is small. One then speaks of a “narrow reso-
nance.” We should note that ∆ and Γ are functions of ω(~k). However, for a

narrow resonance one can simply evaluate ∆ and Γ at ω(~k) = E2 − E1.
We were wondering what state 2 is if it is not really a state because it

decays. Now we see that it is a pole in the S-matrix that is off the real energy
axis.

9 Relation to bound states

Notice that the transition operator T obeys

T (E) = V + V
1

E −H0 + iε
T (E) . (88)

This is an operator equation that we could imagine solving for T . In fact, if
we solve it perturbatively, the solution is Eq. (71).

We can do something else with it. We note that we can consider T to be
a function of a complex variable E, with T (E) defined by

T (E) = V + V
1

E −H0

T (E) . (89)

Then the “physical” value is obtained by letting E approach a positive value
EF from the upper half E plane. That is, we let E = EF + iε.

We can take the defining equation and rewrite it as[
1− V 1

E −H0

]
T (E) = V . (90)
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Thus

[E −H0 − V ]
1

E −H0

T (E) = V , (91)

so

T (E) = [E −H0]
1

E −H
V , (92)

Here H = H0 + V is the full hamiltonian. Take any matrix element of T (E)
and insert a sum over eigenstates

∣∣n〉 of H:〈
φ2

∣∣T (E)
∣∣φ1

〉
=
∑
n

〈
φ2

∣∣E −H0

∣∣n〉 1

E − En
〈
n
∣∣V ∣∣φ1

〉
, (93)

Thus
〈
φ2

∣∣T (E)
∣∣φ1

〉
has a pole when E equals any bound state energy En

of the full hamiltonian H. That is, if you were to solve exactly for T (E),
then by analytically continuing from the region that you started in you can
find the bound state energies for your potential as poles of the scattering
amplitude.

The function
〈
φ2

∣∣T (E)
∣∣φ1

〉
is also non-analytic when E is in the range

of energies of unbound eigenstates of H. However for unbound states the
sum over n is really an integral and we have a continuous singularity, usually
called a cut, instead of a pole.

10 The Lippmann-Schwinger equation

In this and the following sections, we restrict our analysis to the scattering
of non-relativistic particles from a potential.

Let us turn Eq. (88) into an equation for a wave function. Define the
wave function

∣∣ψ+

〉
by

∣∣ψ+

〉
=

[
1 +

1

EF −H0 + iε
T
] ∣∣~kI〉 (94)

so that
V
∣∣ψ+

〉
= T

∣∣~kI〉 . (95)

(Here the subscript “+” refers to the “+iε” in the denominator in the equa-
tion for T .) With this definition, we have∣∣ψ+

〉
=
∣∣~kI〉+

1

EF −H0 + iε
T
∣∣~kI〉 . (96)
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That is ∣∣ψ+

〉
=
∣∣~kI〉+

1

EF −H0 + iε
V
∣∣ψ+

〉
. (97)

This is the Lippmann-Schwinger equation. Notice that if we multiply it by
EF −H0 and use [EF −H0]

∣∣~kI〉 = 0, we get

[H0 + V ]
∣∣ψ+

〉
= EF

∣∣ψ+

〉
. (98)

That is,
∣∣ψ+

〉
satisfies the time-independent Schrödinger equation. Essen-

tially, the arrangement in the Lippmann-Schwinger equation tells us the
boundary conditions.

We can solve the Lippmann-Schwinger equation perturbatively, giving∣∣ψ+

〉
=
∣∣~kI〉
+

1

EF −H0 + iε
V
∣∣~kI〉

+
1

EF −H0 + iε
V

1

EF −H0 + iε
V
∣∣~kI〉

+ · · · .

(99)

Evidently, this is the same as using our perturbative expansion of T .

11 The Green function

The operator 1/[EF −H0 + iε] obeys

[EF −H0]
1

EF −H0 + iε
= 1 . (100)

In a position representation of this operator,
〈
~x
∣∣1/[EF −H0 + iε]

∣∣~x ′〉 is a
Green function for the time independent free particle Schrödinger equation.
It obeys [

EF −
1

2m
~∇2
x

] 〈
~x
∣∣ 1

EF −H0 + iε

∣∣~x ′〉 = δ(~x− ~x ′) . (101)

The “+iε” specifies the boundary conditions.
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We can find
〈
~x
∣∣1/[EF −H0 + iε]

∣∣~x ′〉 by Fourier transforming,

〈
~x
∣∣ 1

EF −H0 + iε

∣∣~x ′〉 =

∫
d~k
〈
~x
∣∣~k〉 1

EF − ~k 2/(2m) + iε

〈
~k
∣∣~x ′〉

=

∫
d~k

(2π)3
ei
~k·(~x−~x ′) 1

EF − ~k 2/(2m) + iε
.

(102)

We can perform the integration by using spherical polar coordinates for ~k,
with the z-axis chosen in the direction of ~x− ~x ′:〈

~x
∣∣ 1

EF −H0 + iε

∣∣~x ′〉
=

2m

(2π)2

∫ ∞
0

k2 dk
1

k2F − k2 + iε

∫ 1

−1
d cos θ eik|~x−~x

′| cos θ

=
m

(2π)2

∫ ∞
−∞

k2 dk
1

k2F − k2 + iε

1

ik|~x− ~x ′|

(
eik|~x−~x

′| − e−ik|~x−~x ′|
)

=
m

(2π)2
1

i|~x− ~x ′|

×
∫ ∞
−∞

k dk
1

kF − k + iε

1

kF + k + iε

(
eik|~x−~x

′| − e−ik|~x−~x ′|
)

.

(103)

Note that in the last line, we got the iε right: putting the denominator back
together we get k2F − k2 + iεkF, which has the right sign for the iε because
kF > 0. We can perform the k-integration by closing the integration contour
in either the upper or lower half plane. For the term with exp(ik|~x − ~x ′|),
we need to close the contour in the upper half k plane, giving us the residue
of the pole at k = kF. For the term with exp(−ik|~x− ~x ′|), we need to close
the contour in the lower half k plane, giving us the residue of the pole at
k = −kF. This gives〈

~x
∣∣ 1

EF −H0 + iε

∣∣~x ′〉 = −m
2π

1

|~x− ~x ′|
eikF|~x−~x

′| . (104)

If we consider this as a function of ~x, we have a spherical wave centered
at ~x ′. For large |~x− ~x ′|, it looks like a plane wave. To see this, define

~k ′F =
kF (~x− ~x ′)
|~x− ~x ′|

. (105)
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Then
eikF|~x−~x

′| = ei
~k ′F·(~x−~x

′) . (106)

If |~x−~x ′| � 1/kF, then locally (within a region containing a few wavelengths),
~k ′F is approximately constant. Then our factor looks like a plane wave with

momentum ~k ′F that points away from the center of our wave at ~x = ~x ′ and

has magnitude equal to kF. Notice that this is an outgoing wave: ~k ′F points
away from the wave center. This is a consequence of our having a +iε in the
denominator EF − ~k 2/(2m) + iε.

12 The wave function at large distance

In this section, we examine the behavior of the wave function ψ+(~x) ≡
〈
~x
∣∣ψ+

〉
for large |~x|. From Eq. (97), we have

〈
~x
∣∣ψ+

〉
=
〈
~x
∣∣~kI〉+

∫
d~x ′

〈
~x
∣∣ 1

EF −H0 + iε

∣∣~x ′〉V (~x ′)
〈
~x ′
∣∣ψ+

〉
. (107)

That is

ψ+(~x) = (2π)−3/2ei
~kI·~x

− m

2π

∫
d~x ′

1

|~x− ~x ′|
eikF|~x−~x

′| V (~x ′)ψ+(~x ′)
(108)

We are interested in the behavior of ψ+(~x) for large |~x|. We assume that
V (~x ′) is concentrated in a region of finite, not large, |~x ′|.

Let
~x = R~n , (109)

where R = |~x| and ~n is a unit vector in the direction of ~x. Let us see what
this looks like for fixed ~n in the limit of large R. In the exponent, we have

kF|~x− ~x ′| = kFR

∣∣∣∣~n− ~x ′

R

∣∣∣∣
= kFR

[
1− 2

~n · ~x ′

R
+

(~x ′)2

R2

]1/2
= kFR− kF~n · ~x ′ +O(1/R) .

(110)
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We can take the limit R→∞ and throw away the term proportional to 1/R
or higher powers of 1/R, but we need to keep the term in the exponent with
no powers of R. In the denominator, we can simply write

1

|~x− ~x ′|
=

1

R

[
1 +O

(
1

R

)]
(111)

and drop the terms that are suppressed by powers of 1/R. This gives

ψ+(~x) ∼ (2π)−3/2ei
~kI·~x

− m

2π

1

R
eikFR

∫
d~x ′ e−ikF~n·~x

′
V (~x ′)ψ+(~x ′) .

(112)

Now note that∫
d~x ′ e−ikF~n·~x

′
V (~x ′)ψ+(~x ′) = (2π)3/2

〈
kF~n

∣∣V ∣∣ψ+

〉
. (113)

Here
〈
kF~n

∣∣ is the momentum eigenstate with the magnitude of the momen-
tum equal to kF and the direction in the chosen direction of the momentum
~n. Using Eq. (95), this is∫

d~x ′ e−ikF~n·~x
′
V (~x ′)ψ+(~x ′) = (2π)3/2

〈
kF~n

∣∣T ∣∣~kI〉 . (114)

Thus for large R we have

ψ+(R~n) ∼ (2π)−3/2
[
ei
~kI·~nR − 1

R
eikFR(2π)2m

〈
kF~n

∣∣T ∣∣~kI〉] . (115)

We can also write this as

ψ+(R~n) ∼ (2π)−3/2
[
ei
~kI·~nR +

1

R
eikFRf(kF~n,~kI)

]
. (116)

where
f(kF~n,~kI) ≡ −(2π)2m

〈
kF~n

∣∣T ∣∣~kI〉 . (117)

There is an overall normalization factor (2π)−3/2. There is a plane wave

that represents the incoming particle, exp(i~kI ·~x). Then there is an outgoing

wave factor exp(ikFR) times 1/R. The coefficient of this is f(kF~n,~kI), which
is proportional to the transition matrix element for scattering the incoming
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momentum eigenstate
∣∣~kI〉 to an outgoing momentum eigenstate

〈
kF~n

∣∣. Also
note that the differential cross section dσ/dΩF, as given in Eq. (59), is

dσ

dΩF

= |f(kF~n,~kI)|2 . (118)

If we want to find the scattering amplitude
〈
kF~n

∣∣T ∣∣~kI〉 and thus the cross
section, we now have two choices. We can use our perturbation theory, for
which the first order approximation is〈

kF~n
∣∣T ∣∣~kI〉 ∼ 〈kF~n∣∣V ∣∣~kI〉 . (119)

Alternatively, we can solve the Lippmann-Schwinger equation for ψ+(~x) and
pick out the behavior of this function at large |~x|. The limiting form of this
function depends on the direction of ~x. The coefficient of exp(ikFR)/R gives
the scattering amplitude.

We can also understand the relation of the cross section to f(kF~n,~kI) in
a direct way based on wave functions. We have a plane wave coming in and,
far away from the scattering center, almost a plane wave going out. The
ratio of the number of particles that cross an area dA in some fixed time
interval in the two waves is the ratio of the squares of the coefficients of the
two plane wave factors:

dNF/dA

dNI/dA
=

1

R2
|f(kF~n,~kI)|2 . (120)

Far away from the scattering center, an area dA subtends a solid angle dΩF =
dA/R2. Thus the ratio of the number of particles per unit solid angle in the
outgoing wave to the number of particles per unit area in the incoming wave
is

dNF/dΩF

dNI/dA
= |f(kF~n,~kI)|2 . (121)

This ratio is just what we mean by the differential cross section. Thus

dσ

dΩF

= |f(kF~n,~kI)|2 . (122)

13 The optical theorem

There is a relation, known as the optical theorem, between the scattering
amplitude for forward scattering and the total cross section. This relation is
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derived from the fact that the scattering operator S is unitary. The derivation
is simple in outline:

1 = S†S
= [1 + ic T †][1− ic T ]

= 1 + ic [T † − T ] + c2 T †T
(123)

so
−i[T † − T ] = c T †T . (124)

When this relation is taken between
〈
~kI
∣∣ · · · ∣∣~kI〉, the left hand side is propor-

tional to the imaginary part of the forward scattering amplitude and the right
hand side is the total cross section. However, we have to be careful because
the “c” here is a delta function. Let us, therefore, try a careful derivation.

Let’s look back at the S matrix, Eq. (47),〈
~kF
∣∣S∣∣~kI〉 =

〈
~kF
∣∣~kI〉+ 2πδ(EF − EI)(−i)

〈
~kF
∣∣T ∣∣~kI〉 . (125)

Consider also the complex conjugate of this with a state
∣∣~k′I〉 that is slightly

different from
∣∣~kI〉,〈

~k′I
∣∣S†∣∣~kF〉 =

〈
~k′I
∣∣~kF〉+ 2πδ(EF − E ′I)(+i)

〈
~kF
∣∣T ∣∣~k′I〉∗ . (126)

Multiply these together and integrate over ~kF:∫
d~kF

〈
~k′I
∣∣S†∣∣~kF〉〈~kF∣∣S∣∣~kI〉

=

∫
d~kF

〈
~k′I
∣∣~kF〉〈~kF∣∣~kI〉

− i
∫
d~kF 2πδ(EF − EI)

〈
~k′I
∣∣~kF〉〈~kF∣∣T ∣∣~kI〉

+ i

∫
d~kF 2πδ(EF − E ′I)

〈
~kF
∣∣~kI〉〈~kF∣∣T ∣∣~k′I〉∗

+

∫
d~kF 2πδ(EF − E ′I)2πδ(EF − EI)

〈
~kF
∣∣T ∣∣~kI〉〈~kF∣∣T ∣∣~k′I〉∗ .

(127)

If we recognize that
〈
~kF
∣∣~kI〉 is a delta function and that the integral of
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∣∣~kF〉〈~kF∣∣ is the unit operator, we have〈
~k′I
∣∣S†S∣∣~kI〉

=
〈
~k′I
∣∣~kI〉

− i2πδ(E ′I − EI)
〈
~k′I
∣∣T ∣∣~kI〉

+ i2πδ(E ′I − EI)
〈
~kI
∣∣T ∣∣~k′I〉∗

+ 2πδ(E ′I − EI)

∫
d~kF 2πδ(EF − EI)

〈
~kF
∣∣T ∣∣~kI〉〈~kF∣∣T ∣∣~k′I〉∗ .

(128)

So far we have simply written S as a matrix in the momentum representation
and multiplied S† by S. Now we insert an important condition that follows
directly from the definition of S:

S†S = 1 . (129)

That is, S is unitary. This gives〈
~k′I
∣∣~kI〉 =

〈
~k′I
∣∣~kI〉

− i2πδ(E ′I − EI)
〈
~k′I
∣∣T ∣∣~kI〉

+ i2πδ(E ′I − EI)
〈
~kI
∣∣T ∣∣~k′I〉∗

+ 2πδ(E ′I − EI)

∫
d~kF 2πδ(EF − EI)

〈
~kF
∣∣T ∣∣~kI〉〈~kF∣∣T ∣∣~k′I〉∗ .

(130)

We can cancel the two
〈
~k′I
∣∣~kI〉 terms and then take the coefficient of 2πδ(E ′I−

EI):

0 = − i
〈
~k′I
∣∣T ∣∣~kI〉+ i

〈
~kI
∣∣T ∣∣~k′I〉∗

+

∫
d~kF 2πδ(EF − EI)

〈
~kF
∣∣T ∣∣~kI〉〈~kF∣∣T ∣∣~k′I〉∗ . (131)

We have been careful to keep ~k′I just a little different from ~kI, but now we
can take the limit in which they are equal:

i
〈
~kI
∣∣T ∣∣~kI〉− i〈~kI∣∣T ∣∣~kI〉∗

=

∫
d~kF 2πδ(EF − EI)

〈
~kF
∣∣T ∣∣~kI〉〈~kF∣∣T ∣∣~kI〉∗ . (132)
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The left hand side is minus two times the imaginary part of
〈
~kI
∣∣T ∣∣~kI〉. By

using ∫
d~k · · · =

∫
mk dE dΩ · · · , (133)

we can eliminate the energy conserving delta function on the right hand side.
This gives

−2 Im
〈
~kI
∣∣T ∣∣~kI〉 = 2πmkF

∫
dΩF |

〈
~kF
∣∣T ∣∣~kI〉|2 . (134)

Recall from Eq. (59) that∣∣〈~kF∣∣T ∣∣~kI〉∣∣2 =
1

(2π)4m2

dσ

dΩF

. (135)

Thus

−Im
〈
~kI
∣∣T ∣∣~kI〉 =

kI
2m(2π)3

∫
dΩF

dσ

dΩF

. (136)

We call the integral of dσ/dΩF the total cross section, σT. Thus

−Im
〈
~kI
∣∣T ∣∣~kI〉 =

kI
2m(2π)3

σT . (137)

This says that the imaginary part of the forward scattering amplitude is
proportional to the total cross section. The proportionality constant depends
on what we mean by “forward scattering amplitude.” If we use Eq. (117),〈

~kF
∣∣T ∣∣~kI〉 = − 1

(2π)2m
f(~kF, ~kI) , (138)

we obtain

Imf(~kI, ~kI) =
kI
4π

σT . (139)

14 The eikonal approximation

There is an approximation that is useful for small angle scattering of a highly
energetic incoming particle from a smooth potential. We consider the case
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that the incoming momentum kI is large and the potential is smooth: if d is
the distance range over which the potential varies significantly, then kId� 1.

In addition, the potential should be sufficiently strong to actually scatter
the particle. To see what this means, consider a semiclassical approximation
for the phase accumulated by a particle moving through the potential along a
straight line along the z-axis at transverse position b, starting at z-coordinate
z0 and ending at z:

φ(b, z, z0) =

∫ z

z0

dz′ k(z′, b)

=

∫ z

z0

dz′
√
k2I − 2mV (z′, b)

≈
∫ z

z0

dz′
{
kI −

m

kI
V (z′, b)

}
= kI(z − z0)−

m

kI

∫ z

z0

dz′ V (z′, b) .

(140)

There is a term kI(z − z0) that gives the phase of a plane wave. This phase
is present even when V is not there. Then the potential produces an extra
phase. For z0 → −∞ and z →∞, the extra phase is

∆φ(b) = −m
kI

∫ ∞
−∞

dz′ V (z′, b) . (141)

We are interested in the case that V is strong enough that ∆φ(b) is not
negligible.

Let us see how this phase gets into the wave function if we use a large kI
approximation. Let

ψ+(z, b) = (2π)−3/2eikIzΦ(z, b) (142)

where, we suppose, Φ(z, b) is slowly varying (compared to the fast variation
of exp(ikIz)). The wave function ψ+(z, b) obeys[

− 1

2m

∂2

∂z2
− 1

2m
∇2
b + V (z, b)− k2I

2m

]
ψ+(z, b) = 0 . (143)

As an equation for Φ, this becomes[
−ikI
m

∂

∂z
− 1

2m

∂2

∂z2
− 1

2m
∇2
b + V (z, b)

]
Φ(z, b) = 0 . (144)
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This is without approximation. If we now say that Φ is slowly varying, we
can neglect the derivatives of Φ except for the one that is multiplied by kI.
Then [

−ikI
m

∂

∂z
+ V (z, b)

]
Φ(z, b) ≈ 0 . (145)

The solution of this equation is

Φ(z, b) ≈ exp

(
−i m

kI

∫ z

−∞
dz′ V (z′, b)

)
. (146)

This solution obeys the boundary condition Φ(z, b) → 1 for z → −∞, so
that (2π)−3/2 exp(ikIz)Φ(z, b) approaches the desired incoming plane wave
for large negative z. With this solution for Φ, we have

ψ+(z, b) ≈ (2π)−3/2eikIz exp

(
−i m

kI

∫ z

−∞
dz′ V (z′, b)

)
. (147)

We can turn this approximation for ψ+(x) into an approximation for the
scattering amplitude by using

f(~kF, ~kI) = − (2π)2m
〈
~kF
∣∣T ∣∣~kI〉

= − (2π)2m
〈
~kF
∣∣V ∣∣ψ+

〉
.

(148)

We take ~kI along the z-axis and we let ~kF have a transverse component k⊥
that is much smaller than its z-component, corresponding to small angle
scattering. The size of the z-component of ~kF is [k2I − k2

⊥]1/2, but we can
approximate this by just kI. Thus

~kF ≈ kI ẑ + k⊥ . (149)
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Then

f(~kF, ~kI) = − m

2π

∫
dz

∫
db e−ikIz−ik⊥·b V (z, b)

× eikIz exp

(
−i m

kI

∫ z

−∞
dz′ V (z′, b)

)
= − m

2π

∫
db e−ik⊥·b

×
∫
dz V (z, b) exp

(
−i m

kI

∫ z

−∞
dz′ V (z′, b)

)
= − m

2π

∫
db e−ik⊥·b

(
i
kI
m

)∫
dz

d

dz
exp

(
−i m

kI

∫ z

−∞
dz′V (z′, b)

)
(150)

Performing the z-integration gives

f(~kF, ~kI) = − ikI
2π

∫
db e−ik⊥·b

[
exp

(
−i m

kI

∫ ∞
−∞

dz′ V (z′, b)

)
− 1

]
. (151)

This is the eikonal approximation to the scattering amplitude. It has a
simple interpretation. There is an incoming plane wave. The plane wave
represents particles that travel through the potential on straight line paths;
the paths are not deflected because the momentum of the particles is so high.
However, the particles accumulate a b dependent phase factor as they pass
through the potential. This means that they acquire a little bit of transverse
momentum. We find the amplitude in transverse momentum space by Fourier
transforming from transverse position to transverse momentum. That gives
the scattering amplitude. Our wave function includes the incoming plane
wave, but this is subtracted before we perform the Fourier transform. With
the “1” subtracted, the quantity that we are Fourier transforming vanishes
for large |b|.

Exercise 14.1 We can think of the eikonal approximation problem in a differ-
ent way that is very similar to classical optics problems that you are familiar
with. The incoming wave is distorted by the potential, acquiring an extra
phase factor. We can calculate this phase factor in the semiclassical approx-
imation that we used above. Then at a position z1 that is large enough to be
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outside the range of the potential but not larger than that, the wave function
is

ψ+(z1, b
′) ≈ (2π)−3/2eikIz1 exp

(
−i m

kI

∫ ∞
−∞

dz′ V (z′, b′)

)
. (152)

Now we would like to know the wave function at a particle detector that is
far away from the scattering center at a position (z, zθ) where θ is a vector
in the two transverse dimensions, with |θ| � 1. For the propagation from
(z1, b

′) to (z, zθ), one can use Eq. (144) as an approximation, but we cannot
neglect the −∇2

b/(2m) term because this term can have a big effect if it is
applied for propagation over a very big distance. However, the propagation
is simple because for z > z1 the potential vanishes.

Solve Eq. (144) with V = 0 to find ψ+(z, zθ) in terms of ψ+ at fixed
z-coordinate equal to z1. This is similar to problems that we have done
before and it is similar to problems in optics. Use your solution and the form
Eq. (116) to pick out the scattering amplitude f(kIẑ, kIθ).

What you see from this exercise is that the scattering amplitude far from
the scattering center is analogous to the diffraction pattern formed at a screen
far from the scattering center in an optics experiment in which an incoming
electromagnetic wave is distorted by some sort of scattering. (Letting it go
through two slits is the simplest example.)

15 Partial waves

For many purposes, particularly in connection with scattering of low energy
particles from a spherically symmetric potential, it is useful to use an angular
momentum basis.

We first need to translate between plane waves and angular momen-
tum eigenstates. Let the states

∣∣~k〉 denote plane wave states, eigenstates
of px, py, pz. Let us find a basis for the quantum Hilbert space consisting of
states ∣∣E, l,m〉 (153)

that are eigenstates of ~p 2/(2m), ~L 2, and Lz. We will normalize these to〈
E ′, l′,m′

∣∣E, l,m〉 = δ(E ′ − E) δl′l δm′m . (154)
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The translation between these is given by

〈
~k
∣∣E, l,m〉 =

1√
mk

δ

(
~k 2

2m
− E

)
Y m
l (k̂) , (155)

where k̂ is a unit vector in the direction of ~k. Our book makes this seem
difficult. However, the Y m

l factor is obvious, given our extensive knowledge
of angular momentum. Similarly, the delta function is obvious. The only
thing that needs checking is the normalization:

〈
E ′, l′,m′

∣∣E, l,m〉 =
1

mk

∫
d~k δ

(
~k 2

2m
− E ′

)
δ

(
~k 2

2m
− E

)
Y m′

l′ (k̂)Y m
l (k̂)

=
1

mk

∫ ∞
0

mk d

(
k2

2m

)
δ

(
k2

2m
− E ′

)
δ

(
k2

2m
− E

)
×
∫
dΩ Y m′

l′ (k̂)Y m
l (k̂)

= δ(E ′ − E) δl′l δm′m .

(156)

For a plane wave
〈
~kI
∣∣ in the z-direction, Eq. (155) takes the simple form

〈
~kI
∣∣E, l,m〉 =

1√
mkI

δ

(
~k 2
I

2m
− E

) √
2l + 1

4π
δm,0 . (157)

For a plane wave
〈
~kF
∣∣ in any direction, but for m = 0, Eq. (155) takes the

simple form

〈
~kF
∣∣E, l, 0〉 =

1√
mkF

δ

(
~k 2
F

2m
− E

)√
2l + 1

4π
Pl(cos θF) . (158)

The position space version of Eq. (155) is

〈
~x
∣∣E, l,m〉 = il

√
2mk

π
jl(k|~x|)Y m

l (x̂) , (159)

where x̂ is a unit vector in the direction of ~k and jl(k|~x|) is a spherical Bessel
function. Again, the Y m

l factor is obvious. The spherical Bessel function is
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there because it is the solution of the radial wave function for a free particle
with angular momentum l – provided that we demand that the solution not
be singular at r = 0. To get the factor il and the normalization, you need a
real calculation, which I omit.

I will assume that spherical Bessel functions are known from a mathemat-
ical physics course or an electrodynamics course. Some information about
them is given in Appendix B of Sakurai. One particularly useful relation is
the partial wave expansion of a plane wave in the z-direction,

eikz = eikr cos θ =
∑
l

(2l + 1)Pl(cos θ) iljl(kr) . (160)

We now consider scattering from a spherically symmetric potential. Let’s
use the angular momentum decomposition to write the scattering amplitude
f ,

f(~kF, ~kI) = − (2π)2m
〈
~kF
∣∣T ∣∣~kI〉

= − (2π)2m
∑
l′,m′

∫
dE ′

∑
l,m

∫
dE

×
〈
~kF
∣∣E ′, l′,m′〉〈E ′, l′,m′∣∣T ∣∣E, l,m〉〈E, l,m∣∣~kI〉 .

(161)

Since the initial plane wave is in the z-direction, only m = 0 contributes.
Since the potential is invariant under rotations, the Lz eigenvalue can’t
change, so only m′ = 0 contributes. Also, since the potential is invariant
under rotations, the only l′ value that contributes is l′ = l. Also, the matrix
elements

〈
~kF
∣∣E ′, l′,m′〉 and

〈
E, l,m

∣∣~kI〉 contain delta functions that elimi-
nate the integrations over E and E ′. Thus

f(~kF, ~kI) = − π

kI

∑
l

(2l + 1)Pl(cos θF)
〈
EI, l, 0

∣∣T ∣∣EI, l, 0
〉
. (162)

One often defines the “partial wave amplitude” fl(k) by

fl(k) = −π
k

〈
E, l, 0

∣∣T ∣∣E, l, 0〉 . (163)

Then

f(~kF, ~kI) =
∑
l

(2l + 1)Pl(cos θF) fl(kI) . (164)
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This “partial wave expansion” is particularly useful when only one or a few
partial waves are important.

Exercise 15.1 Using partial waves, consider the perturbative expansion for
scattering from a spherically symmetric potential. Using the Born approxi-
mation, express fl(kI) as an integral over position r of V (r) times some other
functions. What is this for l = 0 and l = 1? Which is bigger if kI is very
small?

Exercise 15.2 Consider a particle of mass m that is elastically scattered ac-
cording to non-relativistic quantum mechanics by a Gaussian potential in
three dimensions,

V (~r) = −V0e−~r
2/a2 . (165)

Here V0 > 0 and a is a parameter with dimension of length. The incoming
particle has wavevector ~k and, after the scattering, the outgoing particle has
wavevector ~k′. Define ~q = ~k′ − ~k and denote the scattering angle by θ.

(a) Show that |~q| = 2|~k| sin(θ/2).

(b) Using the Born approximation, calculate the scattering amplitude f(~kF, ~kI).

(c) Using your approximate f(~kF, ~kI), calculate the differential scattering
cross section dσ/dΩ.

(d) Making use of this result, calculate the total scattering cross section σT .

(e) Using your approximate scattering amplitude f(~kF, ~kI), find fl(kI) for
l = 0, 1, 2.
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16 Unitarity and the phase shift

We consider scattering from a spherically symmetric potential. Start with〈
~kF
∣∣S∣∣~kI〉 =

〈
~kF
∣∣~kI〉+ 2πδ(EF − EI)(−i)

〈
~kF
∣∣T (EF)

∣∣~kI〉 . (166)

We can think of this as an operator equation,

S = 1− i
∫ +∞

−∞
dt eiH0tT (EF)e−iH0t . (167)

Between energy eigenstates, this gives back Eq. (166). Now we can take
matrix elements of this operator equation between states

〈
EF, lF,mF

∣∣ and∣∣EI, lI,mI

〉
. This gives〈

EF, lF,mF

∣∣S∣∣EI, lI,mI

〉
=
〈
EF, lF,mF

∣∣EI, lI,mI

〉
+ 2πδ(EF − EI)(−i)

〈
EF, lF,mF

∣∣T (EF)
∣∣EI, lI,mI

〉
.

(168)

For the two terms on the right hand side of Eq. (168), we have〈
EF, lF,mF

∣∣EI, lI,mI

〉
= δ(EF − EI) δlF,lI δmF,mI

,〈
EF, lF,mF

∣∣T (EF)
∣∣EI, lI,mI

〉
= δlF,lI δmF,mI

〈
EF, lI, 0

∣∣T (EF)
∣∣EI, lI, 0

〉
.

(169)

Here we have noted that T (EF) commutes with ~L, so the matrix element of
T (EF) vanishes unless lF = lI and mF = mI. Also, the matrix element must
be independent of mI, as one can prove by using the fact that the angular
momentum raising and lowering operators L± commute with T (EF); thus
we can evaluate the matrix element with mF = mI = 0. On the left hand
side of Eq. (168), S commutes with H0 and ~L, so

∣∣EI, lI,mI

〉
must be an

eigenstate of S. Furthermore, the eigenvalue must be independent of mI.
Call the eigenvalue Sl(kI). Then〈

EF, lF,mF

∣∣S∣∣EI, lI,mI

〉
= SlI(kI)

〈
EF, lF,mF

∣∣EI, lI,mI

〉
= SlI(kI) δ(EF − EI) δlF,lI δmF,mI

(170)

These results give

SlI(kI) δ(EF − EI) δlF,lI δmF,mI

= δ(EF − EI) δlF,lI δmF,mI

+ 2πδ(EF − EI)(−i)δlF,lI δmF,mI

〈
EF, lI, 0

∣∣T (EF)
∣∣EI, lI, 0

〉
.

(171)
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We can cancel the δ(EF − EI) and the δlF,lI δmF,mI
and also use Eq. (163) to

write the matrix element of T in terms of fl(k). This gives

Sl(k) = 1 + 2i kfl(k) . (172)

Now since S is a unitary operator, its eigenvalue must be a phase factor.
One calls the phase factor exp(2iδl(k)), where δl is the phase shift for the lth
partial wave. Thus

e2iδl(k) = 1 + 2i kfl(k) . (173)

We can solve this for fl(k):

fl(k) =
1

2ik

[
e2iδl(k) − 1

]
.

=
1

k
sin(δl(k)) eiδl(k) .

(174)

17 The wave function

Let us now look at the wave function. We assume that the potential is
spherically symmetric, so that it is a function V (r) of r = |~x|. We shorten
kI and kF to just k. Similarly, we denote the scattering angle θF by just
θ. The wave function ψ+(~x) obeys the Schrödinger equation with energy
E = k2/(2m). For our application, the wave function is independent of the
azimuthal angle φ, but it depends on r and θ. We can decompose it in partial
waves as

(2π)3/2ψ+(~x) =
∞∑
l=0

il

2
(2l + 1)Pl(cos θ)ψl(r) . (175)

The normalizing factors here are chosen to make the final results simple.
Then ψl(r) must be a solution of the radial Schrödinger equation[

1

r

d2

dr2
r + k2 − 2mV (r)− l(l + 1)

r2

]
ψl(r) = 0 . (176)

Generally there will be two independent solutions of this equation, one of
them regular for r → 0 and the other singular for r → 0. For the physical
problem, we need to select the regular solution. This determines ψl(r) up to
an overall normalizing constant.
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Now let us now look at the wave function for large r. Suppose that
V (r) = 0 for r > R. (This condition is not essential, but it makes our
analysis simple. All that we really need is that V (r)→ 0 faster than 1/r for
r →∞.) Then ψ+(~x) for r > R satisfies the free Schrödinger equation. The
solutions of this equation are the spherical Hankel functions,

h
(1)
l (kr) = jl(kr) + inl(kr) ,

h
(2)
l (kr) = jl(kr)− inl(kr) .

(177)

These functions are quite simply related to exponential functions

h
(1)
l (z) = − izl

(
−1

z

d

dz

)l
1

z
eiz ,

h
(2)
l (z) = izl

(
−1

z

d

dz

)l
1

z
e−iz .

(178)

Thus h
(1)
l (kr) contains a polynomial in 1/(kr) times an outgoing spherical

wave exp(ikr), while h
(2)
l (kr) contains a polynomial in 1/(kr) times an in-

coming spherical wave exp(−ikr).
Thus for r > R we must have

ψl(r) = c+l h
(1)
l (kr) + c−l h

(2)
l (kr) . (179)

Here c±l are constants. The overall normalization is not fixed by the differ-
ential equation, so one could multiply both c+l and c−l by the same constant.
However, c+l /c

−
l is fixed by the differential equation.

One might solve the radial Schrödinger equation numerically. A standard
method for doing that is to rewrite the radial Schrödinger equation as a first
order differential equation for two functions, ψl(r) and dψl(r)/dr. Then we
would approximate the differential equation as a finite difference equation
using a step size ∆r and solve the difference equation recursively starting
near r = 0. The result is that we would find ψl(r) and dψl(r)/dr for r
outside the range of the potential. Then we could match ψl(r) and dψl(r)/dr
to Eq. (179) and find the coefficients c+l and c−l .

In the following section, we see what this means for the scattering ampli-
tude.
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18 Relation to the phase shift

To relate our solution (179) to the scattering phase shift, we begin with
Eq. (116), which applies when r is large enough that not only is V (r) small
enough to neglect, but also kr � 1. We have

(2π)3/2ψ+(r~n) ∼ eikr cos θ +
1

r
eikrf(k~n, kẑ) . (180)

For f(k~n, kẑ), we can use the partial wave expansion (164),

f(~kF, ~kI) =
∑
l

(2l + 1)Pl(cos θ) fl(kI) . (181)

With Eq. (174), this becomes

f(~kF, ~kI) =
1

2ik

∑
l

(2l + 1)Pl(cos θ)
[
e2iδl(k) − 1

]
. (182)

Thus

(2π)3/2ψ+(~x) ∼ eikr cos θ

+
∑
l

(2l + 1)Pl(cos θ)
1

2ikr
eikr

[
e2iδl(k) − 1

]
.

(183)

This applies for kr � 1. We can relate this form to the structure of ψ+(~x)
when r is greater than the range R of the potential, even if kr is not large
compared to 1. To do that, we consider

φ(~x) = (2π)3/2ψ+(r~n)− eikr cos θ . (184)

For r > R, this function obeys the free Schrödinger equation, so if we expand
it in partial waves, the coefficient of Pl(cos θ) obeys the free radial Schrödinger

equation and is thus a linear combination of h
(1)
l (kr) and h

(2)
l (kr). For kr �

1, these become

h
(1)
l (kr) ∼ (−i)l

ikr
eikr r →∞ ,

h
(2)
l (kr) ∼ − (+i)l

ikr
e−ikr r →∞ .

(185)
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Our factor (1/2ikr) eikr in Eq. (183) is just the large kr behavior of h
(1)
l (kr)

times il/2:

il

2
h
(1)
l (kr) ∼ 1

2ikr
eikr r →∞ , (186)

Eq. (183) has no term (1/2ikr) e−ikr in the expansion of φ(~x), so there is no

h
(2)
l (kr) term. Thus ψ+(~x) must have the form

(2π)3/2ψ+(~x) ∼ eikr cos θ

+
∑
l

(2l + 1)Pl(cos θ)
il

2
h
(1)
l (kr)

[
e2iδl(k) − 1

] (187)

for r big enough that V (r) = 0 (or V (r) is small enough to be neglected).
For exp(ikr cos θ), we can use Eq. (160)

eikr cos θ =
∑
l

(2l + 1)Pl(cos θ) iljl(kr)

=
∑
l

(2l + 1)Pl(cos θ)
il

2

[
h
(1)
l (kr) + h

(2)
l (kr)

]
.

(188)

This gives

(2π)3/2ψ+(~x) ∼
∑
l

(2l + 1)Pl(cos θ)
il

2

[
h
(1)
l (kr) + h

(2)
l (kr)

]
+
∑
l

(2l + 1)Pl(cos θ)
il

2
h
(1)
l (kr)

[
e2iδl(k) − 1

]
.

(189)

Thus we obtain

(2π)3/2ψ+(~x) ∼
∑
l

(2l + 1)Pl(cos θ)
il

2

[
e2iδl(k)h

(1)
l (kr) + h

(2)
l (kr)

]
(190)

or
ψl(r) = e2iδl(k)h

(1)
l (kr) + h

(2)
l (kr) . (191)

If there were no potential, then we would have just the plane wave eikr cos θ

and would replace e2iδl(k) → 1 in Eq. (191). Two terms then would represent
the outgoing wave part and the incoming wave part of the plane wave. With
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a potential, the incoming wave part is unchanged, but now the outgoing wave
part gets a phase e2iδl(k).

Comparing to the r > R form of our solution of the radial Schrödinger
equation, Eq. (179), we see that if we normalize the solution so that c−l = 1
then

c+l = e2iδl(k) . (192)

Exercise 18.1 Find the phase shifts δl(k) for a hard sphere potential

V (r) =

{
∞ r < a

0 r > a
. (193)

Evaluate your result for the case l = 0.
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