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I offer here some background for Chapter 5 of J. J. Sakurai, Modern
Quantum Mechanics.

1 The problem

Let the hamiltonian for a system of interest have the form

H(t) = H0 + V (t) . (1)

Here H0 is time-independent. We assume that we know the eigenvectors and
eigenvalues of H0. The interaction hamiltonian V can be time independent
or time dependent.

We wish to solve the Schrödinger equation

i
d

dt

∣∣ψ(t)
〉

= (H0 + V (t))
∣∣ψ(t)

〉
, (2)

working order by order in powers of V .

2 The interaction picture

In the first section of these notes, we have been working in the usual Schrödinger
picture. Now let us switch to the “interaction picture” defined by∣∣ψI(t)

〉
= eiH0t

∣∣ψS(t)
〉
. (3)

One easily derives (see the derivation below for UI(t, t0)) that

i
d

dt

∣∣ψI(t)
〉

= VI(t)
∣∣ψI(t)

〉
, (4)

1Copyright, 2012, D. E. Soper
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where
VI(t) = eiH0tVS(t)e−iH0t . (5)

Note that VI(t) is time dependent even if VS(t) is time independent (unless
V commutes with H0). Note also that VI(t) at one time generally does
not commute with VI(t) at another time. Finally, note that if, for some
time interval, VS(t) vanishes, then

∣∣ψI(t)
〉

does not evolve during that time
interval. That is, essentially, the point of working in the interaction picture.

To express the evolution in the interaction picture using a starting time
t0 at which initial conditions are specified, it is convenient to write∣∣ψI(t)

〉
= eiH0t

∣∣ψS(t)
〉

= eiH0tUS(t, t0)
∣∣ψS(t0)

〉
= eiH0tUS(t, t0)e−iH0t

∣∣ψI(t0)
〉
.

(6)

Here US(t, t0) is the Schrödinger picture evolution operator, equal to

exp(−iH(t− t0))

if the hamiltonian is time independent. When the hamiltonian depends on
time, US(t, t0) is more complicated, but all that we need is the differential
equation that it obeys,

i
d

dt
US(t, t0) = H(t)US(t, t0) . (7)

Thus we have ∣∣ψI(t)
〉

= UI(t, t0)
∣∣ψI(t0)

〉
, (8)

where
UI(t, t0) = eiH0tUS(t, t0)e−iH0t0 . (9)

We have

i
d

dt
UI(t, t0) = eiH0t[−H0 +HS(t)]US(t, t0)e−iH0t0

= eiH0tVS(t)US(t, t0)e−iH0t0

= [eiH0tVS(t)e−iH0t] eiH0tUS(t, t0)e−iH0t0 .

(10)

Thus

i
d

dt
UI(t, t0) = VI(t)UI(t, t0) (11)

with the initial condition
UI(t0, t0) = 1 . (12)
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3 Perturbative solution

We can write an integral equation for UI(t, t0),

UI(t, t0) = 1− i
∫ t

t0

dτ VI(τ)UI(τ, t0) . (13)

The reader should check that if UI obeys this integral equation then it obeys
both the differential equation and the boundary condition.

We can think of this as follows. The operator UI(t, t0) tells us that the
system evolves from time t0 to time t. The system can evolve in two ways.
First, it may be that nothing happens: the “1” term. Second, it may be that
the system evolves up to some time τ , then an interaction happens at time
τ , then nothing happens from time τ to time t. We integrate over possible
times τ .

It is easy to solve this by iteration starting at UI(t, t0) = 1 so as to
generate a solution that is a power series in V . We write

UI(t, t0) =
∞∑
n=0

U
(n)
I (t, t0) , (14)

where U
(n)
I (t, t0) is proportional to exactly n powers of VI. Then

U
(0)
I (t, t0) = 1 . (15)

The integral equation gives

U
(n+1)
I (t, t0) = −i

∫ t

t0

dτ VI(τ)U
(n)
I (t, t0) . (16)

Substituting U
(0)
I = 1, we get

U
(1)
I (t, t0) = −i

∫ t

t0

dτ1 VI(τ1) . (17)

Then we get

U
(2)
I (t, t0) = (−i)2

∫ t

t0

dτ2

∫ τ2

t0

dτ1 VI(τ2)VI(τ1) . (18)
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Continuing in this manner, we get

U
(n)
I (t, t0) = (−i)n

∫ t

t0

dτn · · ·
∫ τ3

t0

dτ2

∫ τ2

t0

dτ1 VI(τn) · · ·VI(τ2)VI(τ1) . (19)

Another way to write the integration is

U
(n)
I (t, t0) = (−i)n

∫ t

t0

dτn · · ·
∫ t

t0

dτ2

∫ t

t0

dτ1 θ(τ1 < τ2 · · · < τn−1 < τn)

× VI(τn) · · ·VI(τ2)VI(τ1) .

(20)

That is, we integrate over the times τj in the interval from t0 to t subject to
the restriction that

τ1 < τ2 · · · < τn−1 < τn . (21)

4 Shorthand notation

There is a convenient shorthand for writing our result. We could write

U
(n)
I (t, t0) = (−i)n

∫ t

t0

dξn · · ·
∫ t

t0

dξ1

× 1

n!

∑
π∈Sn

θ(ξπ(1) < ξπ(2) · · · < ξπ(n−1) < ξπ(n))

× VI(ξπ(n)) · · ·VI(ξπ(2))VI(ξπ(1)) .

(22)

This may seem perverse. I have just made up new variable names ξj and
matched them up to the τj in according to the n! permutations of n objects.
The n! terms each gives the same integral. It is important that I always put
the operators V (τ) that have the later times to the left in the product of
operators.

I can write this as

U
(n)
I (t, t0) = (−i)n

∫ t

t0

dξn · · ·
∫ t

t0

dξ1

× 1

n!

∑
π∈Sn

θ(ξπ(1) < ξπ(2) · · · < ξπ(n−1) < ξπ(n))

× T VI(ξn) · · ·VI(ξ2)VI(ξ1) .

(23)
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Here the notation “T” instructs me to put the operators V (τ) that have the
later times to the left in the product of operators. Then I can use∑

π∈Sn

θ(ξπ(1) < ξπ(1) · · · < ξπ(n−1) < ξπ(n)) = 1 . (24)

This gives

U
(n)
I (t, t0) = (−i)n 1

n!

∫ t

t0

dξn · · ·
∫ t

t0

dξ1 T VI(ξn) · · ·VI(ξ2)VI(ξ1) . (25)

With the “T” notation, the whole series can be written as

UI(t, t0) = T exp

(
−i
∫ t

t0

dτ VI(τ)

)
. (26)

This is a nice, compact expression. What it means is that one is supposed
to expand the exponential and time-order the operators. That is, what it
means is Eq. (20).

5 Two level system

As an example, let us consider a two level system subject to a perturbing
interaction that links the two levels and oscillates with frequency ω,

VS(t) = e−iωt
(

0 γ
γ 0

)
. (27)

Then the perturbing potential in the interaction picture is

VI(t) = e−iωt
(
eiω1t 0

0 eiω2t

)(
0 γ
γ 0

)(
e−iω1t 0

0 e−iω2t

)
. (28)

where ω2 is the unperturbed energy of the upper level, ω1 is the unperturbed
energy of the lower level. When we multiply the matrices, we obtain

VI(t) =

(
0 γe−2iω̃2t

γe−2iω̃1t 0

)
, (29)

where

ω̃2 =
1

2
[ω − (ω2 − ω1)] ,

ω̃1 =
1

2
[ω − (ω1 − ω2)]

(30)
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We take the initial time to be t0 = 0.
With this perturbation, the evolution operator evaluated to first order is

UI(t, 0) = 1− i
∫ t

0

dτ VI(τ) + · · ·

= 1− iγ
∫ t

0

dτ

(
0 e−2iω̃2t

e−2iω̃1t 0

)
+ · · ·

= 1− iγ
(

0 i
2ω̃2

[e−2iω̃2t − 1]
i

2ω̃1
[e2iω̃1t − 1] 0

)
+ · · ·

= 1− iγ
(

0 i
2ω̃2
e−iω̃2t[e−iω̃2t − eiω̃2t]

i
2ω̃1
e−iω̃1t[e−iω̃1t − eiω̃1t] 0

)
+ · · ·

= 1− iγ
(

0 1
ω̃2
e−iω̃2t sin(ω̃2t)

1
ω̃1
e−iω̃1t sin(ω̃1t) 0

)
+ · · · .

(31)

If the initial condition is

ψI(0) =

(
0
1

)
(32)

then at later times ψI(t) = UI(t, 0)ψI(0) is given by

ψI(t) =

(
0
1

)
− iγ sin(ω̃2t)

ω̃2

e−iω̃2t

(
1
0

)
+ · · · . (33)

This appears to be singular for ω̃2 → 0, but note that the factor sin(ω̃2t)
vanishes for ω̃2 → 0 so that the singularity is cancelled.

The probability to find the system in the excited state after time t is

|C2(t, ω̃2)|2 ≡ |
〈
2
∣∣ψI(t)〉|2 = γ2 sin2(ω̃2t)

ω̃2
2

. (34)

This solution applies when γ is small. If we do not have γ2/ω̃2 � 1 then
first order perturbation theory is not accurate and we need the exact solution
for the two level system with a harmonic perturbation, which is analyzed in
Sakurai.

6 Behavior integrated over energy

Let us consider a slightly generalized problem. Suppose that we have a
perturbation

VS(t) = e−iωtV0 (35)
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and suppose that the perturbation can take the system from a starting state∣∣1〉 with unperturbed energy ω1 at time t0 = 0 to a range of states
∣∣j〉 that

have unperturbed energies ωj. Then the first order transition amplitude to
get from state

∣∣1〉 to state
∣∣j〉 is

〈
j
∣∣U (1)

I (t, 0)
∣∣1〉 = − i

∫ t

0

dτ
〈
j
∣∣VI(τ)

∣∣1〉
= − i

∫ t

0

dτ
〈
j
∣∣eiH0τV0e

−iωτe−iH0τ
∣∣1〉

= − i
∫ t

0

dτ e−i(ω+ω1−ωj)τ
〈
j
∣∣V0

∣∣1〉
(36)

Let us define

ω̃j =
1

2
[ω − (ωj − ω1)]

γj =
〈
j
∣∣V0

∣∣1〉 (37)

Then 〈
j
∣∣U (1)

I (t, 0)
∣∣1〉 = − iγj

∫ t

0

dτ e−2iω̃jτ

=
γj

2ω̃j
e−iω̃jt[e−iω̃jt − eiω̃jt]

= − i γj
ω̃j
e−iω̃jt sin(ω̃jt)

(38)

Thus the probability to get to state
∣∣j〉, evaluated in lowest order pertur-

bation theory, is

|
〈
j
∣∣ψI(t)〉|2 = |γj|2

sin2(ω̃jt)

ω̃2
j

. (39)

The result in this form may be just what we want. However, in many cases,
this is not what we want. First, we want t to be large. Second, the function
|
〈
j
∣∣ψI(t)〉|2 will often appear inside an integral over ω̃j. For instance, there

may be a continuous range of excited states
∣∣j〉. If we want the probability

to go to any of these states, we need to sum over j, which amounts, for the
case of a continuous spectrum, to integrating over ωj. That is, we want to
integrate over ω̃j.
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In order to see what we get in a general way, suppose that we are interested
in an integral

I[h, t] ≡
∫
dω̃j

sin2(ω̃jt)

ω̃2
j

h(ω̃j) . (40)

Here h(ω̃j) represents whatever function of ω̃j appears in our problem. It
includes a factor of |γj|2. Our analysis will apply to any function as long as
it is smooth and well behaved at large ω̃j. We want to know the limiting
behavior of I[h, t] for large t.

This is an easy problem. We note that sin2(ω̃jt)/ω̃
2
j is very sharply peaked

at ω̃j = 0, with a width δω̃j ∼ 1/t. For this reason, only values of ω̃j near
zero matter in the integral. This allows us to approximate h(ω̃j) by h(0),
giving

I[h, t] ∼ h(0)

∫
dω̃j

sin2(ω̃jt)

ω̃2
j

. (41)

All that we have to do now is to approximate the integral for t→∞. Change
variables to x = ω̃jt, giving

I[h, t] ∼ h(0) t

∫
dx

sin2(x)

x2
. (42)

The integral is finite and equals π. Thus

I[h, t] ∼ h(0)π t . (43)

That is
sin2(ω̃jt)

ω̃2
j

∼ π t δ(ω̃j) for t→∞ . (44)

The presence of the delta function indicates that this large t limiting behavior
applies inside an integration.

This result has a physical interpretation. Recall that the probability to
get to state

∣∣j〉, evaluated in lowest order perturbation theory, is

|
〈
j
∣∣ψI(t)〉|2 = |γj|2

sin2(ω̃jt)

ω̃2
j

. (45)

We have now seen that for large t this becomes

|
〈
j
∣∣ψI(t)〉|2 ∼ |γj|2 π t δ(ω̃j) . (46)
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Therefore the probability per unit time to get to state
∣∣j〉 is

1

t
|
〈
j
∣∣ψI(t)〉|2 ∼ |γj|2 2π δ(ω − (ωj − ω1)) . (47)

Here I have used the definition of ω̃ and moved a factor 1/2 outside of the
delta function.

7 Behavior integrated over energy II

The analysis of the previous section has followed, more or less, that in Saku-
rai. Here is another way to think about it.

Suppose that the matrix element of the perturbing potential between
state

∣∣1〉 and state
∣∣j〉 is〈
j
∣∣VI(t)∣∣1〉 = γje

−i(ω−ωj+ω1)t g(t) . (48)

What we had before was that g(t) = 1 and that we specified the initial
condition that the system started in state

∣∣1〉 at t = 0. Now, let’s suppose
that the system started in state

∣∣1〉 at t0 = −∞. However, VI(t) is turned
off for times far in the past. Then the interaction is turned on and stays on
for a long time. Finally the interaction is turned off. We describe turning
the potential on and off with the function g(t). We want g(t) = 0 for times
far in the past and for times far in the future, while g(t) = 1 for intermediate
times. We can imagine that the turning on is smooth. We could also take
g(t) = θ(0 < t < T ), which would give the same results as in the previous
section.

If g(t) = θ(0 < t < T ), then T is the time that the perturbation was on.
We can generalize this. We note that g is proportional to, say, the amplitude
of the electromagnetic field that perturbs the system. The intensity of the
field is |g(t)|2. We define the effective time that the field is on (weighted by
the intensity) by

T =

∫
dt |g(t)|2 . (49)

Now we are ready for perturbation theory. The amplitude to find the
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system in state
∣∣j〉 at a time t far in the future is〈

j
∣∣U (1)

I (∞,−∞)
∣∣1〉 = − i

∫
dt
〈
j
∣∣VI(t)∣∣1〉

= − iγj
∫
dt e−i(ω−ωj+ω1)t g(t)

= − iγj g̃(−ω + ωj − ω1) ,

(50)

where g̃(ω′) is the Fourier transform of g(t). The probability to find the
system in state

∣∣j〉 at a time t far in the future is

|
〈
j
∣∣U (1)

I (∞,−∞)
∣∣1〉|2 = |γj|2 |g̃(−ω + ωj − ω1)|2 . (51)

Now g(t) is very flat as a function of time – almost 1 for a long time.
Therefore g̃(ω′) as a function of frequency is very sharply peaked near ω′ = 0
– almost proportional to δ(ω′). That is, for any function h(ωj) we will have∫

dωj|g̃(−ω+ωj −ω1)|2h(ωj) ∼ h(ω+ω1)

∫
dωj|g̃(−ω+ωj −ω1)|2 . (52)

That is,

|
〈
j
∣∣U (1)

I (∞,−∞)
∣∣0〉|2 ∼ |γj|2 2πδ(−ω + ωj − ω1)× I , (53)

where

I =

∫
dω′

2π
|g̃(ω′)|2 (54)

We can use the general theorem∫
dω′

2π
|g̃(ω′)|2 =

∫
dt |g(t)|2 (55)

together with our definition Eq. (49) to obtain

I = T . (56)

Thus
|
〈
j
∣∣U (1)

I (∞,−∞)
∣∣1〉|2 ∼ |γj|2 2πδ(−ω + ωj − ω1)× T , (57)

We conclude that the probability to find the system in state
∣∣j〉 at a time

far in the future, per unit time that the potential was on, is

1

T
|
〈
j
∣∣U (1)

I (∞,−∞)
∣∣1〉|2 ∼ |γj|2 2πδ(−ω + ωj − ω1) . (58)
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This assumes that the time T is very large and that we will integrate over
one or more of the frequencies that appear in the delta function. There has
been an approximation: the delta function is not really a delta function but
rather a sharply peaked function with a width δω′ of order 1/T ; the function
is normalized so that the area under the peak is 1.

8 Cross section

Eq. (58) gives the probability per unit time for the system to get to a state∣∣j〉 if it starts in state
∣∣1〉. There can also be a range R of states, in which

case we want to sum over j in the range. The probability per unit time to
find the system in a state j ∈ R is then

1

T
P (R) =

∑
j

θ(j ∈ R)|γj|2 2πδ(−ω + ωj − ω1) . (59)

In applications, the sum here may be an integral.
In the following section, we consider an atom placed in a beam of photons.

We will represent the beam of photons by a classical electromagnetic field,
and then in Sec. 10 we will see how to do the same thing with a real quantum
description of photons. With either description, we need the key concept of
cross section. The cross section to find j ∈ R is defined to be

σ(R) =
1

FT
P (R) . (60)

Here F is the “flux” of incoming photons: the number of photons per unit
time per unit area. Note that then σ(R) has the dimensions of area. In a
simple classical picture in which the atom has area A and every photon that
hits the atom excites it to a state j ∈ R, the cross section is precisely A.

In first order perturbation theory, the cross section is

σ(R) =
∑
j

θ(j ∈ R)|γ′j|2 2πδ(−ω + ωj − ω1) . (61)

Here

|γ′j|2 =
|γj|2

F
=
|
〈
j
∣∣V ∣∣1〉|2
F

. (62)
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As we will see, V is proportional to the strength of the classical electromag-
netic field strength that we use in the calculation and F is proportional to
the square of the field strength, so |γ′j|2 is independent of the field strength.

In some cases, the photon beam can consist of a mixture of photons with
different frequencies, so that the number of photons crossing the position
of the atom per unit time and per unit area in the frequency range dω is
dF = ρ(ω)dω. This would be the case, for instance, for a beam of sunlight
impinging on an atom. In this case, the probability per unit time to find the
system in a state j ∈ R is

1

T
P (R) =

∫
dω ρ(ω)σ(R, ω) , (63)

where σ(R, ω) is the cross section for a monochromatic beam. Thus in first
order perturbation theory,

1

T
P (R) =

∫
dω ρ(ω)

∑
j

θ(j ∈ R)|γ′j|2 2πδ(−ω + ωj − ω1) . (64)

In this case, even if there is only one, discrete, final state
〈
j
∣∣, the factor

δ(−ω + ωj − ω1) is absorbed by the integration over the frequencies of the
initial photon.

9 Absorbing and emitting photons

In quantum mechanics, one describes the electromagnetic field using the
vector potential ~A(~x, t) and the scalar potential φ(~x, t). It is useful to choose
the Coulomb gauge

~∇ · ~A = 0 . (65)

In that gauge, a beam of light is described by

~A(~x, t) = 2A0 ~ε cos(~k · ~x− ωt) . (66)

That is

~A(~x, t) = A0 ~ε exp(−i(~k · ~x− ωt)) + A0 ~ε exp(+i(~k · ~x− ωt)) . (67)

Here ~ε gives the polarization direction of the light; ~ε is normalized to ~ε 2 = 1
and ~k · ~ε = 0. The wave is moving in the ~k direction. The angular frequency
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of the radiation is ω = |~k|. Note that I have taken units with c = 1. The
scalar potential associated with the radiation is zero. However, in an atom
there will be a potential φ(~x) associated with the electric field of the nucleus
or the nucleus plus other electrons.

The hamiltonian for an electron of charge −e interacting with the elec-
tromagnetic field is3

H =
1

2m
(~p+ e ~A(~x, t))2 − eφ(~x, t)

=
1

2m
~p 2 +

e

2m
(~p · ~A+ ~A · ~p) +

e2

2m
~A 2 − eφ

=
1

2m
~p 2 +

e

m
~A · ~p− ie

2m
(~∇ · ~A) +

e2

2m
~A 2 − eφ

=
1

2m
~p 2 +

e

m
~A · ~p+

e2

2m
~A 2 − eφ .

(68)

We will use this for doing first order perturbation theory, with

H0 =
1

2m
~p 2 − eφ (69)

and
VS(t) =

e

m
~A(~x, t) · ~p . (70)

Here I have dropped the term proportional to ~A 2 because it contains two
powers of e and we are doing first order perturbation theory in powers of e.

Let’s use this for first order perturbation theory. First, we suppose that
the radiation is turned on for a large but not infinite amount of time T , as
described in the previous section by using a function g(t), so that we use

VS(t) =
e

m
g(t)A0 exp(i(~k ·~x−ωt)) ~ε · ~p+

e

m
g(t)A0 exp(−i(~k ·~x−ωt)) ~ε · ~p .

(71)
Second, we simplify our calculation by using only one of these terms. We will
want to calculate the amplitude for the atom to go from state

∣∣1〉 to state∣∣j〉. This amplitude will have two terms, corresponding to the two terms in
V (t). The first term will be large for ω = ωj − ω1 and nearly zero otherwise.
The second will be large for ω = −ωj + ω1 and nearly zero otherwise. Let

3My notation is that ~k is the photon momentum, a numerical vector, while ~p is the
momentum operator for the electron.
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us suppose that we are interested in ωj > ω1. Then only the first term will
contribute. Thus we can simplify the calculation by taking

VS(t) =
e

m
g(t)A0 exp(i(~k · ~x− ωt)) ~ε · ~p . (72)

In first order perturbation theory using Eq. (72), the amplitude for the
atom to go from state

∣∣1〉 to state
∣∣j〉 is

〈
j
∣∣U (1)

I (∞,−∞)
∣∣1〉 = − i

∫ +∞

−∞
dt
〈
j
∣∣VS(t)

∣∣1〉eiωjt−iω1t . (73)

The probability for a transition per unit time that the potential was on is
then

1

T
|
〈
j
∣∣U (1)

I (∞,−∞)
∣∣1〉|2 ∼ 2πδ(−ω + ωj − ω1)

× |
〈
j
∣∣ e
m
A0 exp(i~k · ~x) ~ε · ~p

∣∣1〉|2 .
(74)

(This follows from our expression in Eq. (58), with γj replaced by the matrix
element that is the coefficient of exp(−iωt) in V .)

Cross section. Our atoms are being hit by a beam of photons. The flux
of photons – the number per unit area per unit time – is

F =
ω

2π
A2

0 . (75)

This is obtained by calculating the energy per unit area per unit time in the
light beam and dividing by the energy per photon, ω.

One defines the cross section for absorbing photons as

σ(1→ j) =
1

FT
|
〈
j
∣∣U (1)

I (∞,−∞)
∣∣1〉|2 . (76)

Substituting Eqs. (74) and (75) into Eq. (76), we have for the cross section

σ(1→ j) ∼ 2πδ(−ω + ωj − ω1)
2πe2

ωm2
|
〈
j
∣∣ exp(i~k · ~x) ~ε · ~p

∣∣1〉|2 . (77)

Dipole approximation. The wavelength of light with ω = ωj − ω1 for
atomic states is generally much bigger than the size of an atom. For this
reason, we can approximate

exp(i~k · ~x)→ 1 . (78)

14



This gives

σ(1→ j) ∼ 2πδ(−ω + ωj − ω1)
2πe2

ωm2
|~ε ·
〈
j
∣∣~p ∣∣1〉|2 . (79)

We also have
pi = im [H0, xi] . (80)

Thus
~ε ·
〈
j
∣∣~p∣∣1〉 = im(ωj − ω1) ~ε ·

〈
j
∣∣~x∣∣1〉 . (81)

Because of the delta function, we can replace (ωj − ω1)→ ω. This gives

σ(1→ j) ∼ 2πδ(−ω + ωj − ω1) 2πe2ω |~ε ·
〈
j
∣∣~x ∣∣1〉|2 . (82)

Note that the operator −e~x measures contribution of the electron to the
electric dipole moment of the atom. Also note that we have simplified the
notation by considering just one electron, but we could have had lots of
electrons. Then we would have a sum over electrons i of the electron positions
~xi.

10 Really absorbing and emitting photons

The presentation in the preceding section has been with an external classical
electromagnetic field. One can also use the quantum electromagnetic field.
Then we really have photons.

We can designate our photon states by
∣∣~k, λ〉. This represents a single

photon with momentum ~k and polarization vector ~ε(~k, λ) specified by λ.

We have ~ε(~k, λ)2 = 1 and ~k · ~ε(~k, λ) = 0. Given ~k, there are two linearly
independent ways that ~ε can point and these are specified by λ = 1 or λ = 2.
We choose to normalize states following the convention that we have been
using for states of other particles:〈

~k′, λ′
∣∣~k, λ〉 = δλ′λ δ(~k

′ − ~k) . (83)

The state with no photons is called
∣∣0〉, “the vacuum” or, in the case that

we still have an atom, the photon vacuum.
We will need to know what is the flux of photons if there is just one of

them. With our chosen normalization, the wave function for the photon is

ψ(~x, λ′) =
〈
~x, λ′

∣∣~k, λ〉 =
1

(2π)3/2
δλ′λ e

i~k~x (84)
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The probability to find a photon in a box of size d~x is then∑
λ′

|ψ(~x, λ′)|2d~x =
d~x

(2π)3
. (85)

That is, the density of photons is 1/(2π)3. The flux is then the density times
the speed, which (with c = 1) is 1. Thus

F =
1

(2π)3
. (86)

Now that we know about photons, we need to know that the quantum
electromagnetic potential destroys them or creates them. To see how that
happens, we need quantum field theory. The development of quantum field
theory is a rather long story, but the answer is easy to state. For photon
destruction, we have〈

0
∣∣ ~A(~x, t)

∣∣~k, λ〉 =
1

2π
√
ω
~ε(~k, λ) ei(

~k·~x−ωt) , (87)

where ω = |~k |. In this formula, I have assigned the e−iωt time dependence to

the operator ~A(~x, t) instead of to the photon states. That is, I have ~A(~x, t)

and
∣∣~k, λ〉 instead of ~A(~x) and

∣∣~k, λ, t〉. This puts us in the interaction picture
with respect to the photons. This picture seems most natural if we want to
connect with the formalism in which there is a time dependent classical field
~A(~x, t). For photon creation, we have a similar formula,〈

~k, λ
∣∣ ~A(~x, t)

∣∣0〉 =
1

2π
√
ω
~ε(~k, λ)∗ e−i(

~k·~x−ωt) . (88)

(We will normally take ~ε to be real, but it can also be complex, so we distin-
guish between ~ε and ~ε ∗.)

Now we use Eq. (70) for the perturbation VS(t), including a “turn on”
function g(t),

VS(t) =
e

m
~A(~x, t) · ~p g(t) , (89)

but now ~A(~x, t) is the quantum operator. Next, we work out the amplitude

for a transition from atom state
∣∣1〉 and photon state

∣∣~k, λ〉 to atom state〈
j
∣∣ and photon state

〈
0
∣∣,〈

j; 0
∣∣U (1)

I (∞,−∞)
∣∣1;~k, λ

〉
= − i e

m

∫ +∞

−∞
dt g(t) eiωjt−iω1t

×
〈
j; 0
∣∣ ~A(~x, t) · ~p

∣∣1;~k, λ
〉
.

(90)

16



Using Eq. (87), this becomes

〈
j; 0
∣∣U (1)

I (∞,−∞)
∣∣1;~k, λ

〉
= − i e

m

1

2π
√
ω

∫ +∞

−∞
dt g(t) ei(ωj−ω1−ω)t

×
〈
j
∣∣ei~k·~x~ε(~k, λ) · ~p

∣∣1〉 (91)

Using the same derivation as previously, we see that the probability for a
transition per unit time that the interaction was on is

1

T
|
〈
j; 0
∣∣U (1)

I (∞,−∞)
∣∣1;~k, λ

〉
|2 ∼ 2πδ(ωj − ω1 − ω)

e2

m2(2π)2ω

× |
〈
j
∣∣ exp(i~k · ~x) ~ε · ~p

∣∣1〉|2 .

(92)

If we divide by the flux from Eq. (86), we have for the cross section

σ(1 + γ → j) ∼ 2πδ(−ω + ωj − ω1)
2πe2

ωm2
|
〈
j
∣∣ exp(i~k · ~x) ~ε · ~p

∣∣1〉|2 . (93)

This is the same as the result that we got in Eq. (77) by using the device
of an external electromagnetic field. Thus we can do a problem involving
exciting atoms with photons by either considering actual quantum photons
or by using an external electromagnetic field. There is a difference if we
start the atom in an excited state. It will decay by emitting a photon. Then
there is no external electromagnetic field: the atom decays all by itself. To
calculate the decay probability per unit time, we need quantum photons. If
there is an external electromagnetic field, as in a laser cavity, that helps the
atoms to decay. This is called stimulated emission. For stimulated emission,
we can use either the classical picture or the photon picture, accounting for
all of the photons in the laser cavity. I leave that for an optics course.

11 Photoelectric effect

Let us try out these ideas by calculating (approximately) the cross section
for ionizing a hydrogen atom by hitting it with a beam of photons. We start
with Eq. (77) with state

∣∣j〉 taken to be the state
∣∣~kf

〉
consisting of an ionized

electron with momentum ~kf ,

dσ(1→ ~kf) ∼ 2πδ(−ω + ωf − ω1) d~kf
2πe2

ωm2
|
〈
~kf

∣∣ exp(i~k · ~x) ~ε · ~p
∣∣1〉|2 . (94)

17



Here there is a continuous range of states
∣∣~kf

〉
, so it doesn’t make sense to

talk about a cross section to go to exactly one of them. Rather, we consider
integrating over a range of states. The factor d~kf indicates that we are going
to integrate over some set S of momenta ~kf . The total cross section for
finding our electron in the desired range is then written as∫

dσ θ(~kf ∈ S) =

∫
d~kf θ(~kf ∈ S) · · · (95)

For this to work consistently with the meaning of cross section as probability
per unit time that the beam is on and per unit flux in the beam, we need to
normalize the states

∣∣~kf

〉
so that4

1 =

∫
d~kf

∣∣~kf

〉〈
~kf

∣∣ . (96)

One can take care of the restriction provided by the energy-conserving
delta function by writing

d~kf δ(−ω + ωf − ω1) = k2
f dkfdΩf δ(−ω + ωf − ω1)

= mkf d

(
k2

f

2m

)
dΩf δ

(
−ω +

k2
f

2m
− ω1

)
= mkf dΩf ,

(97)

We have “integrated out” the energy-conserving delta function, thus fixing
the absolute value of ~kf to

kf =
√

2m(ω1 + ω) . (98)

This gives

dσ(1→ ~kf) ∼ dΩf
4π2e2kf

ωm
|
〈
~kf

∣∣ exp(i~k · ~x) ~ε · ~p
∣∣1〉|2 . (99)

This is usually expressed using the notation

dσ

dΩf

∼ 4π2e2kf

ωm
|
〈
~kf

∣∣ exp(i~k · ~x) ~ε · ~p
∣∣1〉|2 . (100)

4Note that Sakurai takes the whole experiment to take place in a big box, so that the
values of ~kf are discrete and one should sum over them instead of integrating. However,
we are already used to states labeled by a continuous variable, so there is no real need to
do this.
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The quantity dσ/dΩf is called a differential cross section because it is differ-
ential in the angles (θ, φ) of the final state electron.

You probably thought that
∣∣~kf

〉
was a plane wave state. It is not, since it

is supposed to be an eigenstate of H0, which includes the Coulomb potential.
Thus it should be an exact eigenstate of H0 that looks like a plane wave with
momentum ~kf far away from the origin. Thus, until we solve for the wave
function

〈
~x
∣∣~kf

〉
and perform all of the overlap integrals, we have not really

solved our problem.
That’s hard, so let’s simplify some more. Let’s just approximate

∣∣~kf

〉
by

a plane wave state. That should be a pretty good approximation if ω is
much greater than the binding energy of the hydrogen atom. Taking

∣∣~kf

〉
to

be a plane wave state, our result is pretty simple. First of all, we can let
the momentum operator ~ε · ~p operate on

〈
~kf

∣∣, giving the eigenvalue ~ε · ~kf .

Now there is an intervening operator exp(i~k · ~x), but the commutator of this

operator with ~ε · ~p vanishes because ~ε · ~k = 0. Thus

dσ

dΩf

∼ 4π2e2kf

ωm
(~ε · ~kf)

2|
〈
~kf

∣∣ exp(i~k · ~x)
∣∣1〉|2 . (101)

Next, let the operator exp(i~k · ~x) operate on
〈
~kf

∣∣. We have〈
~kf

∣∣ exp(i~k · ~x) =
〈
~kf − ~k

∣∣ . (102)

This is because, just as the operator ~p generates translations in position
space, so also the operator ~x generates translations in momentum space. To
see this in more detail, just take the inner product of the proposed equation
above with any state

∣∣ψ〉 and write out the equation in terms of integrations
of the wave function

〈
~x
∣∣ψ〉 over position.

The result is

dσ

dΩf

∼ 4π2e2kf

ωm
(~ε · ~kf)

2|
〈
~kf − ~k

∣∣1〉|2 . (103)

This is remarkably simple. The factor
〈
~kf − ~k

∣∣1〉 is the hydrogen atom wave
function in momentum space, which is simple. The interpretation is also
simple: |

〈
~kf − ~k

∣∣1〉|2 is the probability that the electron in the hydrogen
atom ground state has momentum

~ki = ~kf − ~k . (104)
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The other factors give the probability that this electron gets momentum ~kf

after absorbing the photon. The result is simple because we have neglected
the effect of the Coulomb force on the outgoing electron.

We have approximated the state
∣∣~kf

〉
by a plane wave state. This should

be a pretty good approximation if ω is large, much larger than an atom
binding energy. If ω is not so large, just large enough to ionize the atom,
then the photon wavelength is much larger than the atom size and we would
be better off to use the dipole approximation that we have discussed earlier.
In this case,

∣∣~kf

〉
is an exact Coulomb wave function. Other parts of the

analysis remain the same.

12 Decaying states

Let us suppose that there is a discrete state
∣∣1〉 with unperturbed energy ω1

and that there are other states
∣∣n〉, for n 6= 1, with unperturbed energies ωn.

A perturbing hamiltonian V links these states at first order:
〈
n
∣∣V ∣∣1〉 6= 0.

We consider the case of a V that is time independent in the Schrödinger
picture except that we turn it off far in the past with a function g(t) that
is 0 far in the past and 1 for a wide range of times that includes t = 0.
(Also, g(t) is zero far in the future, but in this section, we are going to be
looking at what is happening for times not far in the future, so this will not
be relevant.) Thus

VI(t) = eiH0tV e−iH0tg(t) . (105)

We will be particularly interested in the case that the states
∣∣n〉 for n 6= 1

include states with a continuous range of energies that includes ωn = ω1. In
that case, we should really have integrals over some continuous quantum
numbers rather than a sum over n, but we will retain the notation of a
discrete index that we sum over just to keep the notation simple.

An important example of this is that
∣∣1〉 is an excited state of an atom

and the states
∣∣n〉 are the atom in its ground state together with a photon.

Then ωn is the atom’s ground state energy plus the energy of the photon,
which can cover a continuous range.

We should note that we cannot really turn off the interaction that makes
the excited state decay to the ground state plus a photon. We just pretend
that we can in order to see what description we get. In a more sophisticated
treatment, we would start with an atom in its ground state plus a photon
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and let the interaction of these create the excited state of the atom, which
can then decay. However, that is a more difficult derivation.

We will want to look at

C(t) =
〈
1
∣∣UI(t,−∞)

∣∣1〉 . (106)

This is the amplitude to find the system in state
∣∣1〉 after the interaction has

been operating for a long time in the case that we started with state
∣∣1〉 far

in the past. We will use second order perturbation theory to look at the rate
at which C(t) is changing,

Ċ(t) = −i
〈
1
∣∣VI(t)UI(t,−∞)

∣∣1〉 . (107)

Expanding U to first order, we get

Ċ(t) = − i
〈
1
∣∣VI(t)

∣∣1〉
−
∫ t

−∞
dτ
〈
1
∣∣VI(t)VI(τ)

∣∣1〉+O(V 3)

= − i
〈
1
∣∣VI(t)

∣∣1〉− ∫ t

−∞
dτ
〈
1
∣∣VI(t)

∣∣1〉〈1∣∣VI(τ)
∣∣1〉

−
∫ t

−∞
dτ
∑
n6=1

〈
1
∣∣VI(t)

∣∣n〉〈n∣∣VI(τ)
∣∣1〉+O(V 3)

= − ig(t)
〈
1
∣∣V ∣∣1〉− g(t)

∣∣〈1∣∣V ∣∣1〉∣∣2 ∫ t

−∞
dτ g(τ)

− g(t)

∫ t

−∞
dτ g(τ)

∑
n6=1

exp(i(ω1 − ωn)(t− τ))
∣∣〈n∣∣V ∣∣1〉∣∣2

+O(V 3)

(108)

We are interested in times t that are not far in the past or in the future, so
we set g(t) = 1. Thus

Ċ(t) = − i
〈
1
∣∣V ∣∣1〉− ∣∣〈1∣∣V ∣∣1〉∣∣2 ∫ t

−∞
dτ g(τ)

−
∫ t

−∞
dτ g(τ)

∑
n6=1

exp(i(ω1 − ωn)(t− τ))
∣∣〈n∣∣V ∣∣1〉∣∣2

+O(V 3)

(109)
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If we evaluate C(t) (rather than Ċ(t)) in first order perturbation theory, we
get

C(t) = 1− i
∫ t

−∞
dτ
〈
1
∣∣VI(τ)

∣∣1〉+O(V 2)

= 1− i
〈
1
∣∣V ∣∣1〉 ∫ t

−∞
dτ g(τ) +O(V 2)

(110)

Thus if we divide Ċ(t) by C(t) and expand to order V 2, there is a convenient
cancellation and we are left with

Ċ(t)/C(t) = − i
〈
1
∣∣V ∣∣1〉

−
∫ t

−∞
dτ g(τ)

∑
n6=1

exp(i(ω1 − ωn)(t− τ))
∣∣〈n∣∣V ∣∣1〉∣∣2

+O(V 3)

(111)

Now let’s look at the integral

I =

∫ t

−∞
dτ g(τ) exp(i(ω1 − ωn)(t− τ)) (112)

If we do this exactly, it depends on what our choice for g(τ) was. However,
the only purpose of having g(τ) was to turn the interaction off gradually far
in the past. That is, g(τ) is supposed to regulate the integral far in the past.
We can accomplish the same thing by replacing the integral by

I =

∫ t

−∞
dτ exp(i(ω1 − ωn + iε)(t− τ)) , (113)

where we understand that we want the limit ε→ 0. We calculate

I =
i

ω1 − ωn + iε
. (114)

Thus

Ċ(t)/C(t) = − i
〈
1
∣∣V ∣∣1〉

−
∑
n6=1

i

ω1 − ωn + i0

∣∣〈n∣∣V ∣∣1〉∣∣2
+O(V 3)

(115)
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where ω1 − ωn + i0 means ω1 − ωn + iε with ε→ 0.
What we have here is

Ċ(t) ∼ (−i∆− Γ/2)C(t) , (116)

where

−i∆− Γ/2 = −i
〈
1
∣∣V ∣∣1〉−∑

n6=1

i

ω1 − ωn + i0

∣∣〈n∣∣V ∣∣1〉∣∣2 . (117)

My notation is that ∆ and Γ are real. We can solve the differential equation
to obtain

C(t) ∼ e−i∆t e−Γt/2 C(0) . (118)

The first factor represents a perturbative correction to the energy of state∣∣1〉. The second factor gives exponential decay:

|C(t)|2 ∼ e−Γt |C(0)|2 . (119)

To see what ∆ and Γ are, we use

1

ω1 − ωn + i0
=

1

[ω1 − ωn]P
− iπδ(ω1 − ωn) . (120)

Here 1/[ω1 − ωn]P denotes the principle value of 1/[ω1 − ωn], which can be
defined by ∫

dω
h(ω)

[ω]P
= lim

ε→0

∫
dω h(ω)

1

2

{
1

ω + iε
+

1

ω − iε

}
= lim

ε→0

∫
dω h(ω)

ω

ω2 + ε2
.

(121)

To prove Eq. (120), we take ε to be a positive number that will be arbi-
trarily small and write

1

ω + iε
=

1

2

{
1

ω + iε
+

1

ω − iε

}
+

1

2

{
1

ω + iε
− 1

ω − iε

}
. (122)

The first term gives the principle value. For the second, we note that

I[h] ≡ lim
ε→0

∫
dω h(ω)

1

2

{
1

ω + iε
− 1

ω − iε

}
(123)
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can get contributions only from ω near zero. Thus we can replace h(ω) by
h(0) giving

I[h] = h(0) lim
ε→0

∫
dω

1

2

{
1

ω + iε
− 1

ω − iε

}
= − iπh(0)

=

∫
dω h(ω)

[
− iπ δ(ω)

]
.

(124)

This establishes Eq. (120).
Using Eq. (120), we have

∆ =
〈
1
∣∣V ∣∣1〉+

∑
n6=1

1

[ω1 − ωn]P

∣∣〈n∣∣V ∣∣1〉∣∣2 ,

Γ =
∑
n6=1

2πδ(ω1 − ωn)
∣∣〈n∣∣V ∣∣1〉∣∣2 .

(125)

Note that the expression for ∆ is the result previously obtained for the energy
shift using second order time independent perturbation theory, except that
we now have the principle value prescription in the case that ωn can equal
ω1. The expression for Γ is what we have derived previously for the rate
at which states

∣∣n〉 get populated if we start with the system in the state∣∣1〉 with probability 1. Our previous calculation was only in lowest order
perturbation theory, so it did not account for the loss of probability from
state

∣∣1〉.
13 Example of decaying states

Let’s try an example. Let state
∣∣1〉 be the 2p state of a hydrogen atom with

z-component of angular momentum m:
∣∣2, 1,m; 0

〉
. The {2, 1,m} here is

{n, l,m}, following our standard notation. The “0” denotes no photons. Let
the states that we were denoting

〈
n
∣∣ be the 1s state of the atom together with

a photon:
〈
1, 0, 0;~k, λ

∣∣. Again, the atom state is denoted by {n, l,m} with

now n = 1 and l = m = 0. There is now one photon with momentum ~k and
polarization labelled by λ, which takes two values. We are simply ignoring
the spin of the electron in our hydrogen atom. For the photon, I use here
the Schrödinger picture, in which the photon state evolves according to it’s
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energy ω and the field operator ~A(~x) is time independent. This is a slightly
different notation from that in section 10, in which we used the interaction
picture for ~A(~x, t).

The hamiltonian is H0 +V , where H0 includes the hydrogen atom hamil-
tonian and the photon energy. Thus

H0

∣∣2, 1,m; 0
〉

= −1

4
E0

∣∣2, 1,m; 0
〉
, (126)

where E0 is an abbreviation for the binding energy of a hydrogen atom

E0 =
me4

2
≈ 13.6 eV , (127)

and the 1/4 is 1/n2 with n = 2. Similarly,

H0

∣∣1, 0, 0;~k, λ
〉

= [−E0 + ω(~k)]
∣∣2, 1,m; 0

〉
, (128)

with ω(~k) = |~k |. The perturbation is

V =
e

m
~A(~x) · ~p (129)

Here ~x is the position operator for the electron and ~p is the momentum
operator for the electron. For the effect of the photon field in creating a
photon, we use the secret result from quantum field theory,〈

~k, λ
∣∣ ~A(~x)

∣∣0〉 =
1

2π
√
ω
~ε(~k, λ)∗ e−i

~k·~x . (130)

Thus 〈
1, 0, 0;~k, λ

∣∣V ∣∣2, 1,m; 0
〉

=

e

m

1

2π
√
ω
~ε(~k, λ)∗ ·

〈
1, 0, 0

∣∣e−i~k·~x~p ∣∣2, 1,m〉 .
(131)

In applying this result, one needs to square the amplitude, integrate over
~k, and sum over the polarization choices λ. For the polarization sum, you
need

2∑
λ=1

(~v · ε(~k, λ))2
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for a certain vector ~v. One way to handle that is to note that, letting k̂ be a
unit vector in the direction of ~k,

2∑
λ=1

(~v · ε(~k, λ))2 + (~v · k̂)2 = ~v 2 , (132)

since the vectors ε(~k, 1), ε(~k, 2) and k̂ make a basis for the space of three
dimensional vectors. Thus

2∑
λ=1

(~v · ε(~k, λ))2 = ~v 2 − (~v · k̂)2 = ~v 2[1− cos2(θvk)] . (133)

Another approach is to choose the two polarization vectors so that ε(~k, 1))

is a unit vector in the plane of ~v and ~k, orthogonal to ~k, while ε(~k, 2)) is a

unit vector orthogonal to both ~v and ~k. Then only ε(~k, 1) contributes. Then
simple geometry gives

2∑
λ=1

(~v · ε(~k, λ))2 = (~v · ε(~k, 1))2 = ~v 2 sin2(θvk) . (134)

Either way, one gets the same result.

Exercise 12.1 Calculate the total decay width Γ for the decay of the 2p state
of hydrogen to the 1s state by photon emission. Use the dipole approximation
from section 9. The answer should be independent of m, so you can just set
m = 0. Please find a numerical answer in units of eV.
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