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1 Introduction

People like me who do elementary particle physics usually like their physics
formulas to be uncluttered. More specifically, formulas in our book (and
most texts for quantum mechanics) contain factors of h̄, c and sometimes ε0
and µ0. I usually regard these factors as clutter that distracts us from the
meaning of the equations and their derivation. These notes concern how to
get rid of these factors.

As a first step, consider what the symbol “m” in l = 5 m means. I invite
you to think of m as a number. Perhaps it is length of a meter stick as
measured in Roman leagues. With that interpretation of unit symbols, an
equation like 1 in = 0.0254 m is an sensible equation that says two numbers
are equal. Similarly, the s in t = 4 s can represent a number.

With that understanding, c ≈ 3.0 × 108 m/s is a number. If we let s be
the number of Roman leagues that light travels in one second, then c = 1.

If we adopt the convention that c = 1 then we can leave c out of all of
our formulas. That saves a lot of writing and it saves us from thinking about
where c goes in various formulas.

Still, you may think that we will get into trouble. What if after some
calculation we wind up with the answer for a time t = 2.0 m. Now what?
That’s easy. We have defined

1 = c ≈ 3.00× 108 m/s . (1)

Therefore

2 m =
2 m

c
=

2 m

3.0× 108 m/s
≈ 6.7× 10−9s = 6.7 ns . (2)

That is, we could measure times in meters, but we want to follow the con-
vention that time should be measured in seconds. To do that, we just use c
as a conversion factor according to Eq. (1).
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2 The speed of light

We define c = 1 according to Eq. (1). Then time and distance can be
represented in the same units. Also

1 kg = 1 kg × c2 ≈ 1 kg × (3.0× 108 m/s)2 = 9.0× 1016J . (3)

Thus mass and energy can be represented in the same units too.

3 Plank’s constant

In the same spirit, we define

1 = h̄ ≈ 1.05× 10−34 J s . (4)

Using this as a conversion factor, energy and inverse time can be represented
in the same units. For instance, the relation between the angular frequency
ω = 2πν of a photon and its energy E is often written as E = h̄ω. However,
we can write this relation simply as E = ω. Then we can convert from joules
to inverse seconds using Eq. (4). (However, be careful about the distinction
between ω and ν so that you don’t drop a 2π.)

The same relation (4) is also

1 = h̄ ≈ 1.05× 10−34 (kg m/s)×m . (5)

Using this as a conversion factor, momentum and inverse distance can be
represented in the same units.

4 Permittivity of space

In the same spirit, we can define

1 = 4πε0 ≈ 1.11× 10−10 C2/J m . (6)

Then
1 = 4πε0 h̄ c ≈ 3.52× 10−36 C2 . (7)

Thus with this as a conversion factor, we can represent charge with no units.
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5 Useful relations

For atomic physics, one usually measures energies in eV, charges in units
of e, distances in nm, and times in units of fs. (1 nm = 10−9 m and 1 fs =
10−15 s.) Then the following relations are useful.

First, the proton charge e is dimensionless in the natural units of these
notes and e2 is the fine structure constant

e2 = αem ≈
1

137
. (8)

(I take the symbol e to represent the proton charge, e > 0. Sakurai takes e
to be the electron charge, e < 0. I think that is unfortunate. For instance, I
like the unit of energy eV to be positive and to be e times V = 1 Volt.)

Distance scales in atomic physics are set by the electron mass me. In
particular, αem times me gives the inverse of the Bohr radius,

aB =
1

αemme

≈ 0.0529 nm . (9)

Energies in atomic physics are also set by the electron mass. In particular,
α2
em times me gives twice the hydrogen atom binding energy

|E1| =
α2
emme

2
≈ 13.6 eV (10)

To convert between the inverse of energies in eV and times in fs, one can use

1 = h̄ ≈ 0.658 eV fs . (11)

6 The Schrödinger equation

In our natural units, the Schrödinger equation for the hydrogen atom is[
− 1

2me

∇2 − e2

|~r |

]
ψ = Eψ . (12)

That’s simpler than what is in your book. Note also that with the convention
advocated here, we can easily transform to the standard SI units in which
distances are measured in meters, times in seconds, masses in kilograms, and
charges in coulombs (or currents in amperes).
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What is in your book, Eqs. (A.5.1) and (A.6.1), is[
− h̄2

2me

∇2 − e2

|~r |

]
ψ = Eψ . (13)

If you want SI units, this has h̄2 in the right place. However, with SI units,
it should be [

− h̄2

2me

∇2 − e2

4πε0

1

|~r |

]
ψ = Eψ . (14)

Thus, what is in the book is in physicists’ units that are not SI units. If,
in the end, you want meters, volts, amperes, etc, you have to look up what
the physicists’ units are and convert. (You can find definitions of the units
Appendix A of your book.) My taste is to use natural units with h̄ = c =
4πε0 = 1 in derivations and then use h̄, c, and 4πε0 as conversion factors as
outlined in the sections above.

7 Cautionary note

Actually, 4πε0 = 1 is not my favorite convention. For purposes of doing
relativistic quantum field theory, I like ε0 = 1. Then the non-relativistic
Schrödinger equation for the hydrogen atom is[

− 1

2me

∇2 − e2

4π

1

|~r |

]
ψ = Eψ . (15)

This seems ugly because a 1/(4π) appears. Why is this nice? It’s because

∫
d~r ei~q·~r

e2

4π

1

|~r |
=
e2

~q 2
. (16)

By having a 1/4π in coordinate space, we avoid having one in momentum
space. However, in order to match the conventions of Sakurai, I use 4πε0 = 1
in this course.
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