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The van der Waals interaction is discussed in Chapter 5 of J. J. Sakurai,
Modern Quantum Mechanics. Here I take a look at it in a little more depth.
It provides a nice application of perturbation theory.

1 Two atoms

We consider two atoms A and B.
Atom A has a center of mass position ~RA and constituents at positions

~ra + ~RA. That is, ~ra is the difference between the constituent position and
the center of mass position. The constituents have charges ea and masses ma.
The indices a are in a set that we will call A. One of the constituents is the
nucleus. The relative position ~ra for the nucleus is very small (the nucleus is
close to the center of mass), so we can take ~ra for the nucleus to be zero. If
the atom is neutral, then

∑
ea = 0. We will be most interested in that case,

but we will also consider the possibility of an ion, for which the total charge
is not zero.

Atom B has a center of mass position ~RB and constituents at positions
~rb + ~RB. The constituents have charges eb and masses mb. The indices b are
in a set that we will call B.

The hamiltonian is H = HA + HB + V where HA is the hamiltonian for
atom A by itself,

HA =
∑
a∈A

~p 2
a

2ma

+
1

2

∑
a∈A

∑
a′∈A
a′ 6=a

eaea′

|~ra − ~ra′ |
, (1)

HB is the hamiltonian for atom B by itself,

HB =
∑
a∈B

~p 2
b

2mb

+
1

2

∑
b∈B

∑
b′∈B
b′ 6=b

ebeb′

|~rb − ~rb′|
, (2)
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and V is the interaction between the two atoms,

V =
∑
a∈A

∑
b∈B

eaeb
|R~n+ ~ra − ~rb|

, (3)

where
R = |~Ra − ~Rb| (4)

and ~n is a unit vector in the direction of ~Ra − ~Rb

R~n = ~Ra − ~Rb . (5)

We would like to analyze this situation in the Born-Openheimer approx-
imation. The atoms exert a force on each other. We think of the atoms
as moving slowly and the electrons in each atom as moving quickly. Then
as the atoms move, the electron orbits in each atom adjust very quickly to
the separation R~n between the atoms. The atom energy levels thus slowly
change. This shift in energy then constitutes an effective potential VBO(R)
between the atoms. This effective potential is, approximately, a replacement
for the exact V .

The Born-Openheimer approximation is pretty intuitive, but we will not
explore it further in these notes. Rather, our task here is to determine how
VBO(R) depends on the separation R. We assume that both atoms are in
their ground states and that the separation R is large compared to the sizes
of the atoms. For this purpose, we take the separation R~n to be fixed.

2 The interaction for large separation

Having set up the problem, we now need to work out what V looks like when
the separation R~n is large compared to the intra-atomic separations ~ra and
~rb. That is, we ask how

Φ(R~n+ ~∆) =
1

|R~n+ ~∆|
=

1

R

1

[1 + 2~n · ~∆/R + ~∆2/R2]1/2
(6)

behaves when R� |~∆|. Using

1√
1 + ε

= 1− 1

2
ε+

3

8
ε2 + · · · , (7)
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we have

Φ(R~n+ ~∆) =
1

R

[
1− 1

2
(2~n · ~∆/R + ~∆2/R2) +

3

8
(2~n · ~∆/R)2 + · · ·

]
. (8)

That is,

Φ(R~n+ ~∆) =
1

R

[
1− 1

R
~n · ~∆− 1

2R2

[
~∆2 − 3(~n · ~∆)2

]
+ · · ·

]
. (9)

This has the form

Φ(R~n+ ~∆) =
1

R

[
1− 1

R
P1(~n)i∆i − 1

2R2
P2(~n)ij∆i∆j + · · ·

]
, (10)

where

P1(~n)i = ni ,

P2(~n)ij = δij − 3ninj .
(11)

This series goes on. The next term has the form const.×P3(~n)ijk∆i∆j∆k/R3.
We note that P ij

2 is symmetric under interchange of i, j and is traceless:
P ij
2 δij = 0. The higher order tensors PJ are also completely symmetric and

traceless in all pairs of indices. As we will see, this expansion is related to
multipole moments.

We can use this to expand our interaction V , using QA =
∑

a ea and
QB =

∑
b eb,

V =
∑
a∈A

∑
b∈B

eaeb
|R~n+ ~ra − ~rb|

=
1

R

∑
a∈A

∑
b∈B

eaeb −
1

R2

∑
a∈A

∑
b∈B

eaebP1(~n)i(ria − rib)

− 1

2R3

∑
a∈A

∑
b∈B

eaebP2(~n)ij(ria − rib)(rja − r
j
b) + · · ·

=
QAQB

R
+
QA

R2

∑
b∈B

eb P1(~n)irib −
QB

R2

∑
a∈A

ea P1(~n)iria

− QA

2R3

∑
b∈B

ebP2(~n)ijribr
j
b −

QB

2R3

∑
a∈A

eaP2(~n)ijriar
j
a

+
1

R3

∑
a∈A

∑
b∈B

eaebP2(~n)ijriar
j
b + · · · .

(12)
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3 First order perturbation theory

We can evaluate the interaction energy in first order perturbation theory by
simply taking the expectation value 〈V 〉 of V in the ground states of the two
atoms.

The biggest term is QAQB/R. This is the electrostatic attraction or re-
pulsion between the two atoms. If QA and QB are nonzero, this term is larger
than any of the other terms (in an expansion in powers of (atom size)/R).

We will mostly be interested in two neutral atoms, QA = QB = 0. How-
ever, first, it is interesting to consider the case that QA is zero but QB is not.
Then what contribution is biggest for large R? Then there is a 1/R2 term
proportional to

P1(~n)i

〈∑
a∈A

ear
i
a

〉
. (13)

This term describes the interaction of the electric dipole moment of atom A
with the field from atom B. However the expectation value in the ground
state of the electric dipole moment of atom A must vanish. If the total angu-
lar momentum of atom A is zero, then this statement follows from rotational
invariance. Even if the total angular momentum of atom A is not zero, parity
invariance prevents the dipole moment from being non-zero as long as the
ground state is a parity eigenstate. Furthermore, the ground state must be
a parity eigenstate as long as it is not degenerate. Thus we can safely rule
out a non-vanishing 1/R2 term. There is a 1/R3 term proportional to

P2(~n)ij

〈∑
a∈A

ear
j
ar

j
a

〉
. (14)

This term describes the interaction of the electric quadrupole moment of
atom A with the field from atom B. If atom A has angular momentum zero,
then rotational invariance gives〈∑

a∈A

ear
j
ar

j
a

〉
∝ δij . (15)

But P2(~n)ijδij = 0, so we get a contribution zero.3 If atom A has, say, angular
momentum 1, then I think that it can have a quadrupole moment and we
can get a non-zero contribution.

3Actually, we also get a zero contribution if the total angular momentum is 1/2, but the
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There is another 1/R3 contribution, proportional to

P2(~n)ij

〈∑
a∈A

ear
j
a

〉
A

〈∑
b∈B

ebr
j
b

〉
B

. (16)

This term is present even if the total charge of both atoms vanish. This
contribution vanishes because the expectation values of the dipole moments
vanish.

At the order 1/R4, we get contributions like

P3(~n)ijk

〈∑
a∈A

ear
j
ar

j
a

〉
A

〈∑
b∈B

ebr
k
b

〉
B

. (17)

At the order 1/R5, we get a term proportional to

P4(~n)ijkl

〈∑
a∈A

ear
j
ar

j
a

〉
A

〈∑
b∈B

ebr
k
b r

l
b

〉
B

. (18)

Terms like this are there even if the total charge of both atoms vanish. The
dipole moment factor 〈∑

b∈B

ebr
k
b

〉
B

(19)

will vanish by the parity argument given previously. For the 1/R5 term in
Eq. (18), we could possibly have a non-zero contribution. However, if the
angular momenta of the ground states vanish, then Eq. (15) applies and the
contribution vanishes because P4(~n)ijklδkl = 0.

In fact, we see that there is a remarkable consequence if the ground states
have angular momentum zero: all of the contributions to 〈V 〉 vanish. This
means that we should look at second order perturbation theory.

4 Second order perturbation theory

We have seen that if the atoms have zero charge, are in their ground state,
and have angular momentum zero, 〈V 〉 = 0 and we need to go to second

argument is a little more subtle.
∑

eaP2(~n)
ijrjar

j
a is an angular momentum 2 operator. If

we combine angular momentum 2 with angular momentum 1/2 for the ket state, we can
angular momentum 3/2 or 5/2, but we cannot get angular momentum 1/2 to match the
bra state.
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order perturbation theory to look for the energy shift. With QA = QB = 0,
the interaction V is

V =
1

R3

∑
a∈A

∑
b∈B

eaebP2(~n)ijriar
j
b + · · · . (20)

The corresponding second order energy shift is

∆ =
1

R6

∑
a,a′∈A

eaea′
∑
K 6=0

〈
0, A

∣∣rla′∣∣K,A〉〈K,A∣∣rja∣∣0, A〉
×
∑
b,b′∈B

ebeb′
∑
L6=0

〈
0, B

∣∣rkb′∣∣L,B〉〈L,B∣∣rib∣∣0, B〉
× P2(~n)ijP2(~n)kl

E
(A)
0 + E

(B)
0 − E(A)

K − E(B)
L

.

(21)

Here
∣∣0, A〉 is the ground state for atom A and the states

∣∣K,A〉 are the
states other than the ground state. An analogous notation applies for atom
B. The sums over states of the atoms, as dictated by the projection operator
Q, includes all states {K,L} except the state {0, 0} consisting of both atoms
in their ground states. In our application, neither {0, L} for L 6= 0 nor {K, 0}
for K 6= 0 contribute because the dipole moment operator has vanishing
matrix element between

〈
0
∣∣ and

∣∣0〉.
We can think of this energy shift as representing a dipole-dipole interac-

tion, where the two atoms induce dipole moments in each other.
It is not so easy to find approximations for the matrix elements and sums

here. However, even without doing that, we learn something interesting:
neutral atoms will experience a 1/R6 potential at large separations. This is
known as the van der Waals potential.

Notice something else. We get a 1/R6 potential. If we used terms in
V with more powers of 1/R or if we used higher order in perturbation the-
ory, we would get additional contributions, which would be proportional to
1/Rn with n > 6. This tells us that if we expand VBO(R) in powers of
(atom size)/R, the first contribution is proportional to 1/R6 and that the
result in Eq. (21) gives the 1/R6 contribution exactly.
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