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1 The electric and magnetic fields

A particle of charge3 Q in an electric field E(x, t) and a magnetic field B(x, t)
feels a force

F = QE +Q ẋ×B . (1)

What is the lagrangian that generates this?
What we need is the vector and scalar potential, which are related to E

and B by

E(x, t) = −∇Φ(x, t)− d

dt
A(x, t) ,

B(x, t) = ∇×A(x, t) .
(2)

2 The lagrangian

Let’s start with our standard lagrangian for particles interacting with each
other but with no external forces,

L = T − V (3)

with

T =
∑
J

1

2
mJ ẋ

2
J ,

V =
1

2

∑
JK

VJK(|xJ − xK |) .
(4)

1Copyright, 2012, D. E. Soper
2soper@uoregon.edu
3Instead of Q for the charge, one could use q. However that choice is rather unfortunate

since we often have coordinates qJ . An alternative that one often sees is e. However, e
is the charge of a proton, so that an electron has charge −e and an up quark has charge
3e/3. Thus e is not such a good choice.
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Now we add an interaction with the external fields,

L = T − V +
∑
J

L
(e)
J . (5)

We just take a guess and see if it does what we want:

L
(e)
J = QJ ẋJ ·A(xJ , t)−QJ Φ(xJ , t) . (6)

We need (using explicitly the components xiJ of xJ)

d

dt

∂L
(e)
J (xJ , ẋJ , t)

∂ẋiJ
=

d

dt
QJA

i(xJ , t)

= QJ
∂Ai(xJ , t)

∂t
+QJ

∂Ai(xJ , t)

∂xjJ
ẋjJ

(7)

and
∂L

(e)
J (xJ , ẋJ , t)

∂xiJ
= QJ ẋ

j
J

∂Aj(xJ , t)

∂xiJ
−QJ

∂Φ(xJ , t)

∂xiJ
. (8)

Thus

− d

dt

∂L
(e)
J (xJ , ẋJ , t)

∂ẋiJ
+
∂L

(e)
J (xJ , ẋJ , t)

∂xiJ

= −QJ

[
∂Φ(xJ , t)

∂xiJ
+
∂Ai(xJ , t)

∂t

]
+QJ

[
∂Aj(xJ , t)

∂xiJ
− ∂Ai(xJ , t)

∂xjJ

]
ẋjJ

= QJE
i(xJ , t) +QJεijkB

k(xJ , t) ẋ
j
J

= [QJE(xJ , t) +QJ ẋJ ×B(xJ , t)]
i .

(9)

We have already analyzed what the other terms in the lagrangian con-
tribute to the equations of motion. Putting everything together, we have

mJ ẍJ = QJE(xJ , t) +QJ ẋJ ×B(xJ , t)−
∑
K

∇VJK(|xJ − xK |) . (10)

We have the effect of internal forces, as previously, but now each particle
feels an electromagnetic force of the form (1). We conclude that Eq. (6) was
the right guess for the lagrangian.
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For a single particle with charge Q and position x, the lagrangian is then

L =
1

2
m ẋ2 +Q ẋ ·A(x, t)−QΦ(x, t) , (11)

which gives the single particle equation of motion

mẍ = QE +Q ẋ×B . (12)

Exercise 2.1: Consider the lagrangian Eq. (11) for just one particle. Sup-
pose that Φ and A are independent of time (for fixed x). Then there should
be a conserved energy. What is it?

Exercise 2.2: Consider equation of motion (12) for just one particle. Sup-
pose that E = 0 and the magnetic field is uniform and time independent and
in the z direction, B = Bẑ. Suppose that the particle starts at time 0 at
x = 0 with initial velocity v0 = (v10, v

2
0, v

3
0). Solve the equation of motion to

find x(t) as a function of t. Verify that the energy that you found in Exercise
2.1 is conserved.

It would seem that this problem has symmetries under translations in
the x1, x2, and x3 directions and under rotations about the x3 axis. The
following exercises explore this issue. In the exercises, I suggest particular
choices of A that simplify consideration of each symmetry. One can also use
an arbitrary choice of A that gives the desired B for each of the symmetries.
This is more elegant, but requires more cleverness.

Exercise 2.3: In the case of a particle in a uniform magnetic field as in
Exercise 2.2, one could take

A1 = −B
2
x2 , A2 =

B

2
x1, A3 = 0 .

With this chooice of A, the lagrangian is invariant under translations in the
x3 direction. Thus there ought to be a corresponding conserved quantity Q.
What is Q? Verify directly from your solutions in Exercise 2.2 or from the
equations of motion that this quantity is conserved.
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Exercise 2.4: In the case of a particle in a uniform magnetic field as in
Exercise 2.2, one could take

A1 = 0 , A2 = Bx1, A3 = 0 .

With this chooice of A, the lagrangian is invariant under translations in the
x2 direction. Thus there ought to be a corresponding conserved quantity Q.
What is Q? Verify directly from your solutions in Exercise 2.2 or from the
equations of motion that this quantity is conserved.

Exercise 2.5: In the case of a particle in a uniform magnetic field as in
Exercise 2.2, one could take

A1 = −B
2
x2 , A2 =

B

2
x1, A3 = 0 .

Show that with this chooice of A, the lagrangian is invariant under rotations
about the x3 axis. Thus there ought to be a corresponding conserved quantity
Q. What is Q? Verify directly from your solutions in Exercise 2.2 or from
the equations of motion that this quantity is conserved.
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