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1. Introduction

I am a number theorist whose research falls primarily under algebraic number theory. In particular,
I study properties of number fields and groups with number theoretic connections, and I do this mainly
by studying certain exponential sums. I have also recently begun an entirely new research project on
explicit and computational aspects of automorphic forms on unitary groups.

One example of the sums that I study are Gaussian periods, which have been used in various
areas of mathematics, including number theory, cryptography, and analysis. Motivated by the recent
work of several mathematicians, I study Gaussian periods from a visual perspective by plotting them
in the complex plane. These Gaussian period plots have many striking patterns, and I study the
mathematical structures underlying these patterns in my research.

Additionally, one can view Gaussian periods as natural objects of study from the perspectives of
character theory and class field theory. Using these perspectives as a guide, I have generalized Gaussian
periods to other contexts. Specifically, I have used so-called supercharacter theory to study sums of
characters on other groups, and I have used explicit class field theory for quadratic imaginary fields to
study Galois sums acting on abelian extensions, which requires studying elliptic curves and complex
multiplication. I study the visual aspects of both of these types of sums, where I attempt to glean
number theoretic information by studying the emergent patterns and structures.

Overall, the driving philosophy of my research is that computation and experimentation have a
mutually inspirational and informational relationship with new and interesting mathematics, and I
wish to foster this relationship further in the continuance of my work.

2. Gaussian Periods and Analogues

In this section, we cover the definition of Gaussian periods and Gaussian period plots, some mo-
tivating examples, and discuss some of my own results. Following this, we discuss generalizations of
Gaussian periods from both a supercharacter theory and class field theory perspective.

We note that throughout our discussion, we define e(x) := e2πix.

2.1. Gaussian Periods.

Definition 1. Let n be a positive integer and ω an integer coprime to n. Let d be the multiplicative
order of ω modulo n. For an integer k, we define the following map:

ηn,ω : Z/nZ → C, ηn,ω(k) :=

d−1∑
j=0

e

(
ωjk

n

)
.

We call ηn,ω(k) a Gaussian period of modulus n and generator ω. Additionally, we call img(ηn,ω) the
Gaussian period plot of modulus n and generator ω.

We provide examples of Gaussian period plots for various moduli n and generators ω in Figure 1.
Each dot in the images represents a single Gaussian period for some k ∈ Z/nZ. For our discussion,
we omit a description of the color scheme being used.

Gaussian periods have been studied for centuries, starting with Gauss while studying constructibil-
ity. They were also studied by Kummer and more recently by Lenstra and Pomerance. However,
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(a) n = 212979, ω = 9247 (b) n = 52059, ω = 766 (c) n = 478125, ω = 3124 (d) n = 62160, ω = 319

Figure 1. Examples of Gaussian period plots for various choices of n and ω

it wasn’t until the work of Brumbaugh et al., Duke, Garcia, Hyde, and Lutz [BBF+14, BBGG+13,
DGL15,GHL15] in the last decade that mathematicians began to study Gaussian period plots.

These plots have remarkable patterns and structures, inspiring curiosity into the mathematics un-
derlying them. Many patterns have been explained, though many others remain a mystery. We provide
one understood case for motivation, proved by Duke, Garcia, and Lutz [DGL15].

Theorem 2 (DGL15). Let n = pa, where p is an odd prime. Choose ω with multiplicative order d
dividing p − 1. Then for j ∈ {0, . . . , d − 1} and m ∈ {0, . . . , φ(d) − 1}, there exist explicitly defined
constants cmj such that img(ηn,ω) is contained in the image of the Laurent polynomial function

gd : Tφ(d) → C, gd(z1, z2, . . . , zφ(d)) =

d−1∑
j=0

φ(d)−1∏
m=0

z
cmj

m+1.

Moreover, img(gd) is “filled out” asymptotically by Gaussian periods as n goes to infinity.

In the case where d is itself also a prime, the image img(gd) becomes a d-sided hypocycloid. We
provide examples of this phenomenon (for d both prime and composite) in Figure 2.

(a) n = 313, d = 3 (b) n = 135, d = 3 (c) n = 413, d = 5 (d) n = 315, d = 15

Figure 2. Examples of Duke–Garcia–Lutz Theorem for various values of d

Thus far in our discussion, we have viewed Gaussian period plots as fixed final products. However,
Benjamin Young and I discovered that these plots can also be viewed from a more dynamic perspective.
Instead of plotting ηn,ω(k) for every k ∈ Z/nZ all at once, we can plot them in batches. Stringing these
batches together into a short animation gives us insight into the behavior of Gaussian periods. Some
examples of these animations can be found on my website at pages.uoregon.edu/splatt3/research.html.

This perspective leads to the following proposition, which I prove in [Pla23, §3.1].

Proposition 3 (Pla23). Let n = pa be a power of an odd prime, d a prime dividing p − 1, and
ω ∈ (Z/nZ)× an element of order d. Let k ∈ Z/nZ. Then the value of the k-th Gaussian period of
modulus n and generator ω is contained in a (d − 1)-sided hypocycloid centered at e

(
k
n

)
and rotated

https://pages.uoregon.edu/splatt3/research.html
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by a factor of e
(

−k
(d−1)n

)
. That is,

ηn,ω(k) ∈
{
e

(
k

n

)
+ h · e

(
−k

(d− 1)n

)
: h ∈ Hd−1

}
,

where Hd−1 represents the filled-in (d− 1)-sided hypocycloid centered at the origin.

Since d is assumed to be prime in this proposition, then by the DGL Theorem, img(ηn,ω) is contained
in the d-sided hypocycloid centered at the origin. This proposition then says that, as k increases from
0 to n − 1, the behavior of Gaussian periods is that of a (d − 1)-sided hypocycloid rolling smoothly
counterclockwise along the interior of this d-sided hypocycloid. This fact relies on viewing Gaussian
periods as trace maps of special unitary matrices U ∈ SU(d), demonstrating connections between
Gaussian periods and more areas of mathematics.

2.2. Supercharacter Theory Perspective. Gaussian periods can be viewed as certain sums of
characters on the groups Z/nZ. In particular, note that every character χy of Z/nZ corresponds to

the map χy(k) = e
(
yk
n

)
for some y ∈ Z/nZ. Thus, if we sum over χ1, χω, . . . , and χωd−1 , then we

exactly obtain Gaussian periods as described above.
The choice of using 1, ω, . . . , ωd−1 ∈ Z/nZ relates to a generalization of character theory known as

supercharacter theory, which was first defined by Diaconis and Isaacs [DI08]. We omit a technical
definition of supercharacter theory, but we note that, as mentioned in [GHL15], it has been used in
studying various objects, including random walks on upper triangular matrices and the Hopf algebra
of symmetric functions of non-commuting variables.

Given that Gaussian periods are a supercharacter theory on Z/nZ, I define in [Pla23, §3.2] an
analogous construction of a supercharacter theory on (Z/nZ)m for m ∈ Z≥1.

Definition 4 (Pla23). Let n and m be positive integers, and let A ∈ GLm(Z/nZ) be a matrix of
multiplicative order d. For x ∈ (Z/nZ)m, we define the following supercharacter theory:

θn,m,A : (Z/nZ)m → C, θn,m,A(x) :=

d−1∑
j=0

e

(
(Aj1) · x

n

)
,

where 1 = (1, 1, . . . , 1)T ∈ (Z/nZ)m is viewed as a column vector.

Note that restricting to m = 1 gives the definition of Gaussian periods, where A is viewed as a 1×1
invertible matrix. Examples of plots of these supercharacter theories are shown in Figure 3.

(a) A =
(

0 2
61 121

)
, n = 715 (b) A =

(
310 229
458 295

)
, n = 1155 (c) A =

(
51 224 140
168 268 14
203 203 170

)
, n = 273

Figure 3. Examples of supercharacter theory plots for a variety of m, n, and A.

My work then yields a natural generalization of the DGL Theorem.

Theorem 5 (Pla23). Let n ∈ Z≥2 and m ∈ Z≥1. Suppose d | (#GLm(Z/nZ)), and let Φd(x) be
the d-th cyclotomic polynomial. Choose a matrix A ∈ GLm(Z/nZ) of order d such that Φd(A) = 0
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in Matm(Z/nZ). Then img(θn,m,A) is contained in the image of the Laurent polynomial function

gd : Tφ(d) → C defined identically as in Theorem 2. Additionally, img(gd) is “filled out” asymptotically
as n goes to infinity, assuming there exists a matrix A ∈ GLm(Z/nZ) such that Φd(A) = 0 mod n.

Remark 6. This theorem generalizes the original DGL Theorem in two ways. First, it looks at the
group (Z/nZ)m for any m ≥ 1, rather than just the case m = 1. Second, it allows for moduli n
which are not just powers of a prime, assuming there is some matrix A ∈ GLm(Z/nZ) such that
Φd(A) = 0 mod n. As an example of such an element A existing, if n = 7 ·13, then A = 16 ∈ (Z/nZ)×
has order 3 and satisfies Φ3(A) = 0 mod n. Thus, even in the case where m = 1, the theorem
generalizes the DGL Theorem.

2.3. Class Field Theory Perspective. We can also view Gaussian periods through the lens of class
field theory. In particular, the ray class field of Q of modulus n is Q(ζn), where n is a primitive
n-th root of unity. Additionally, the ray class group of Q of modulus n is naturally isomorphic to
Gal(Q(ζn)/Q) ∼= (Z/nZ)×. Since ω is an element of (Z/nZ)×, then Gaussian periods are sums over
the Galois action of ⟨ω⟩ acting on the generators of the ray class field.

Thus, we would like to study Gaussian period analogues using base fields other than Q. However,
we must be able to describe explicitly the algebraic integers which generate abelian extensions, which
is historically a difficult problem. In fact, it is Hilbert’s 12th problem, and it has been solved in only
two cases: when the base field is either quadratic imaginary or totally real, the latter being shown very
recently by Dasgupta and Kakde in [DK21,DK23]. The case of quadratic imaginary fields is answered
by the theory of elliptic curves and complex multiplication, and we restrict ourselves to this case.

Before continuing, we note that we assume knowledge of elliptic curves, complex multiplication
(CM), and the class field theory of quadratic imaginary fields.

Let K = Q(
√
−D), where D ∈ Z>0 is square-free. Let OK be its ring of integers, E an elliptic curve

with CM by OK , m ⊆ OK an ideal, and K[m] the ray class field modulus m. Then

K[m] = K(j(E), h(E[m])),

where j(E) is the j-invariant, E[m] is the set of m-torsion, and h : E → E/Aut(E) is a Weber function.
Additionally, if K[1] is the Hilbert class field of K, then I show in [Pla23, §4.2] that

Gal(K[m]/K[1]) ∼= (OK/mOK)×/O×
K .

I have defined in [Pla23, §4.3] the following analogue of Gaussian periods.

Definition 7 (Pla23). Let K be a quadratic imaginary field, α ∈ K in the upper half-plane so that
OK = Z[α], and E the elliptic curve isomorphic to C/Λ, where Λ = Z + Zα (so E has CM by OK).
Choose A ∈ (OK/mOK)×/O×

K , let d be the order of A, and let ℘(z) := ℘(z; Λ) be the Weierstrass
℘-function. Let z ∈ OK/mOK , seen as an element of C/Λ. Then we define the following map:

ηK,m,A : OK/mOK → C, ηK,m,A(z) =
d−1∑
j=0

℘(Ajz).

We call ηK,m,A(z) a ray class field period (RCFP) of modulus m and generator A. Additionally, we
call img(ηK,m,A) the ray class field period plot of modulus m and generator A.

Examples of RCFP plots are shown in Figure 4. For simplicity, we use K = Q(
√
−7) and moduli

m = (m) for m ∈ Z.
Several distinctive patterns emerge in these images. In particular, every example has areas where

points accumulate more densely. Additionally, when m = pa and d = p, these accumulation areas have
well-defined spirals. I provide more plots and discussions in [Pla23, §4].

While these RCFP plots have interesting patterns, we run into problems when trying to study
them mathematically. In particular, note that there exists some rational function fA(x) ∈ K[x] such
that ℘(Az) = fA(℘(z)). The functions fA are determined by division polynomials, which are defined
recursively on A and are dependent on the specific elliptic curve under consideration.
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(a) m = (2401), d = 7 (b) m = 1265, d = 3 (c) m = 625, d = 5

Figure 4. RCFP plots for K = Q(
√
−7), modulus (m), and A of order d

The study of division polynomials for general A (and not just integers) is a rather underdeveloped
area of mathematics, though algorithms do exist [Sat04, Küç15]. However, in order to understand
RCFPs, we need to study the arithmetic dynamics of the rational functions fA, which is a difficult
and under-researched problem.

3. Future Work

I have several avenues of exploration in mind for my future research. First, there remain several
unanswered questions about Gaussian periods, general cyclic supercharacter theories, and ray class
field periods. I state many of these open questions in [Pla23, §5.1], but I highlight a few of them here.

• What are the unexplained mechanisms behind Gaussian periods for n and ω outside of the
conditions described in Theorem 5?

• Can the geometry of img(gd) be described succinctly when d is not a prime power? On this
note, are these images the traces of some subgroup of SU(d)?

• Can the rational functions fA feasibly be studied in a general way? If so, can the arithmetic
dynamics of fA be described?

Finally, I would also like to mention that I have begun a new research project. This project is still
in its beginning stages, but it focuses on explicit and computational aspects of automorphic forms on
unitary groups. While this has connections to my previous research, it also has a completely different
focus. However, I believe this project will broaden my research contributions in mathematics.
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