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Overview and resources
Overview
Listserv:  
http://www.jiscmail.ac.uk/lists/multilevel.html

Web site and links: 
www.uoregon.edu/~stevensj/HLM-II

Software:
HLM MLWinN Mplus SAS
SPSS R and S-Plus WinBugs

http://www.jiscmail.ac.uk/lists/multilevel.html
http://www.uoregon.edu/~stevensj/HLM-II
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Workshop Overview
Rationale for multilevel modeling
Four examples as demonstrations of the power and 
flexibility of multilevel models

Achievement gap
Meta analysis
Longitudinal models of school effects
Interrupted time series

Introduction to several technical issues as we discuss 
examples
Lots of “how-to” information in last year’s workshop



Grouping and membership in particular 
units and clusters are important
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Hierarchical Data Structures

Many social and natural phenomena have a nested or 
clustered organization:

Children within classrooms within schools
Patients in a medical study grouped within doctors 
within different clinics 
Children within families within communities
Employees within departments within business 
locations
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Hierarchical Data Structures

More examples of nested or clustered organization:
Children within peer groups within 
neighborhoods
Respondents within interviewers or raters
Effect sizes within studies within methods (meta-
analysis)
Multistage sampling
Time of measurement within persons within 
organizations
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Simpson’s Paradox: Clustering Is 
Important

Quiz 1 Quiz 2 Total

Gina 60.0% 10.0% 55.5%

Sam 90.0% 30.0% 35.5%

Well known paradox in which performance of 
individual groups is reversed when the groups are 
combined

Quiz 1 Quiz 2 Total

Gina 60 / 100 1 / 10 61 / 110

Sam 9 / 10 30 / 100 39 / 110
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Simpson’s Paradox: Other Examples
2006 US School study:

• In past research, private schools achieve higher than public 
schools

• Study was expected to provide additional support to the idea 
that private and charter schools perform better

• USED study (using multilevel modeling):

• Unanalyzed math and reading higher for private schools

• After taking demographic grouping into account, there was 
little difference between public and private and differences 
were almost equally split in favor of each school type

1975 Berkeley sex bias case:

• UCB sued for bias by women applying to grad school

• Admissions figures showed men more likely to be admitted

• When analyzed by individual department, turned out that no 
individual department showed a bias; 
• Women applied to low admission rate departments

• Men applied more to high admission rate departments

“When the Oakies left Oklahoma and moved to 
California, it raised the IQ of both states.”

– Will Rogers



First Example: Does Multilevel 
Modeling Matter?

The Analysis of School Effects
Individual Level Analysis
Analysis of School Level Aggregates
Multilevel Analysis

The Intraclass Correlation Coefficient (ICC)
Fixed and Random Effects

9
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Why Is Multilevel Analysis Needed?

Nesting creates dependencies in the data
Dependencies violate the assumptions of 
traditional statistical models (“independence 
of error”, “homogeneity of regression slopes”)
Dependencies result in inaccurate statistical 
estimates

Important to understand variation at different 
levels
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Decisions About Multilevel Analysis

Properly modeling multilevel structure often 
matters (and sometimes a lot)
Partitioning variance at different levels is useful

tau and sigma (σ 2
Y = τ2 + σ 2)

policy & practice implications

Correct coefficients and unbiased standard 
errors
Cross-level interaction
Understanding and modeling site or cluster 
variability



Data Example from New Mexico State accountability system, 
2001 reading data for grade 6 children, N = 5,544, j=36

Example used here examines relationship between ethnicity 
(Hispanic, Native American, Other, or White) and reading 

achievement as measured on the TerraNova standardized test.
First analysis considers all 5,544 students without taking school 

membership into account.

Example 1: Achievement Gap

Second analysis considers the 36 schools without taking students 
into account.

Third analysis considers both the 5,544 students and the 36 schools 
using a multilevel modeling approach.



Disaggregated analysis (N = 5,544 students)



Y = 701.164 –31.449(X1) –38.740(X2) –22.486(X3)+ r

Interpretation:  White students average 6th grade 
reading performance is about 701 points; Hispanic 
students score on average 31 points less, American 
Indian students score on average 39 points less, and 
other ethnic categories of students score on average 
about 23 points less. 

Disaggregated analysis (N = 5,544 students)
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Participant 
(i)

Cluster (j) Outcome (Y) Predictor (X)

1 1 5 1

2 1 7 3

3 2 4 2

4 2 6 4

5 3 3 3

6 3 5 5

7 4 2 4

8 4 4 6

9 5 1 5

10 5 3 7

Cluster (j) Outcome (Y) Predictor (X)

1 6 2

2 5 3

3 4 4

4 3 5

5 2 6

Another alternative is to analyze 
data at the aggregated group level

The aggregated analysis considers the 36 middle 
schools without taking students into account.



Aggregated analysis ( J = 36 schools)



Y = 715.355 –50.789(X1) –60.006(X2) –70.699(X3)+ r

Interpretation:  White students average 6th grade 
reading performance is about 715 points; Hispanic 
students score on average 51 points less, American 
Indian students score on average 60 points less, and 
other ethnic categories of students score on average 
about 71 points less. 

Aggregated analysis ( J = 36 schools)
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Multilevel Models
Unlike the two previous single-level regression models, 
multilevel modeling takes both levels (students and 
schools) into account simultaneously:

Note that level 1 regression model parameters become 
outcomes at level 2

Yij = β0j + β1(X1) + rij Level 1

β0j = γ00 + u0j Level 2

β1 = γ10 + u1j Level 2
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Multilevel Models
Variance associated with the level 1 units (students) is 
partitioned from variance associated with level 2 units 
(schools)
In essence, a different regression model is fit within 
each school
Differences in model parameters (slopes and intercepts) 
can then be analyzed from one school to another
A fundamental question in multilevel analysis is how 
much the outcome differs in relation to the level 2 
grouping variable (e.g., schools); this relationship is 
estimated by the intraclass correlation coefficient (ICC)
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Intraclass Correlation ( ρ )

The Intraclass Correlation Coefficient (ICC) 
measures the correlation between a grouping factor 
and an outcome measure
In common notation there are 1 to J groups
If participants do not differ from one group to 
another, then the ICC = 0
As participants’ outcome scores differ due to 
membership in a particular group, the ICC grows 
large
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Intraclass Correlation Coefficient (ρ)

Total σ 2
Y = τ 2 + σ 2  

between unit variance
total variance

=     τ 2 / (τ 2 + σ 2)

When the ICC is 0, multilevel modeling is not needed and 
power is the same as a non-nested design. 

ICC =



Multilevel Analysis ( N = 5,544 students nested in J = 36 schools)

Final estimation of fixed effects
(with robust standard errors)
----------------------------------------------------------------------------

Standard             Approx.
Fixed Effect         Coefficient   Error      T-ratio   d.f.     P-value

----------------------------------------------------------------------------
For       INTRCPT1, B0

INTRCPT2, G00         695.411843   1.722110   403.814        35    0.000
For     HISP slope, B1

INTRCPT2, G10         -24.108579   1.497234   -16.102        35    0.000
For    AMIND slope, B2

INTRCPT2, G20         -28.703348   2.732653   -10.504        35    0.000
For    OTHER slope, B3

INTRCPT2, G30         -19.703434   2.306935    -8.541        35    0.000
----------------------------------------------------------------------------

Final estimation of variance components:
----------------------------------------------------------------------------
Random Effect           Standard      Variance     df    Chi-square  P-value

Deviation     Component
----------------------------------------------------------------------------
INTRCPT1,       U0        8.46948      71.73209    27     181.84069    0.000

HISP slope, U1        4.95524      24.55441    27      39.63265    0.055
AMIND slope, U2        6.70990      45.02271    27      25.33754    >.500
OTHER slope, U3        7.03970      49.55731    27      36.06544    0.114

level-1,       R        34.97760    1223.43237
----------------------------------------------------------------------------

Third analysis considers both the 5,544 students and the 36 schools 
using a multilevel modeling approach.

Within school variance = 226.091 

Between school Variance = 1304.875

ICC = .148

Estimation of ICC an important result with 

policy implications, in and of itself.  Over a large 

number of SER studies, ICC ranges from about 

10-20%.
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Comparing the Three Analyses
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Model R2 F b SE B t

Disaggregated

Intercept
Hispanic
Amer. Indian
Other

.389 328.890
701.164
-31.449
-38.740
-22.486

.795
1.046
2.390
1.993

-.401
-.208
-.147

-30.078
-16.211
-11.285

Aggregated
Intercept
Hispanic
Amer. Indian
Other

.895 42.894
715.355
-50.789
-60.006
-70.699

4.203
5.095
6.155

21.540

-1.031
-1.027
-.305

-9.969
-9.750
-3.282

Multilevel
Intercept
Hispanic
Amer. Indian
Other

Level 1 .156
Level 2 .697

χ2

695.412
-24.109
-28.703
-19.703

1.722
1.497
2.733
2.307

-.308
-.154
-.131

-16.102
-10.504
-8.541

379.686



Multilevel Model Specification
Another important difference in the approaches 
is the greater flexibility of model specification in 
HLM

Multilevel models preserve information about 
individual differences (level 1 variance)
Multilevel models take groups into account 
and explicitly model group effects (level 2 
variance)
Multilevel models allow for the examination 
of interactions between the two levels

28



Multilevel Model Specification
In single level regression models, only fixed 
effects are possible for many parameters (all 
groups the same on many model parameters; 
i.e., homogeneity of regression slopes 
assumption)
How to conceptualize and model group level 
variation?
Do groups vary on the model parameters (fixed 
versus random effects)?
Can group level information predict outcomes?

29
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The Single-Level, Fixed Effects 
Regression Model

Yi = β0+ β1X1i + β2X2i +…+ βkXki + ri

The parameters βkj are considered fixed 
One for all and all for one
Same values for all i and j; the single level 
model

The ri ’s are random: ri ~ N(0, σ) and 
independent
But what if the βkj were random and variable?
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Modeling variation at Level 2:
Intercepts as Outcomes

Yij = β0j + β1jX1ij + rij

β0j = γ00 + γ0jWj + u0j

β1j = γ10 + u1j

Predictors (W’s) at level 2 are used to model 
variation in intercepts between the j units
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Modeling Variation at Level 2:  Slopes as 
Outcomes

Yij = β0j + β1jX1ij + rij

β0j = γ00 + γ0jWj + u0j

β1j = γ10 + γ1jWj + u1j

Do slopes vary from one j unit to another?
W’s can be used to predict variation in slopes as 
well
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Fixed vs. Random Effects
Fixed Effects represent discrete, purposefully selected or 
existing values of a variable or factor

Fixed effects exert constant impact on DV
Random variability only occurs as a within subjects effect 

(level 1)
Should only generalize to particular fixed values used

Random Effects represent more continuous or randomly 
sampled values of a variable or factor

Random effects exert variable impact on DV
Variability occurs at level 1 and level 2
Can study and model variability
Can generalize to population of values
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Fixed vs. Random Effects?
Use fixed effects if

The groups are regarded as unique entities
If group values are determined by researcher through 
design or manipulation
Small j (< 10); improves power

Use random effects if
Groups regarded as a sample from a larger population
Researcher wishes to test effects of group level 
variables
Researcher wishes to understand group level 
differences
Small j (< 10); improves estimation
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Variance Components Analysis

VCA allows estimation of the size of random 
variance components

Important issue when unbalanced designs are 
used
Iterative procedures must be used (usually ML 
estimation)

Allows significance testing of whether there is 
variation in the components (parameters) across 
units
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Achievement Gap Example Again
Random effects allows parameters to vary across 
schools
Introduces an entirely different set of research 
questions, for example:

Does the relationship between reading achievement 
and ethnic group differ from one school to 
another?
Can the differences in the ethnicity-reading 
achievement relationship be explained by 
characteristics of the schools?
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Final estimation of fixed effects
(with robust standard errors)
----------------------------------------------------------------------------

Standard             Approx.
Fixed Effect         Coefficient   Error      T-ratio   d.f.     P-value

----------------------------------------------------------------------------
For       INTRCPT1, B0

INTRCPT2, G00         694.377894   1.590546   436.566        34    0.000
ANGLO, G01          24.756614   5.684485     4.355        34    0.000

For     HISP slope, B1
INTRCPT2, G10         -22.994825   1.654343   -13.900        34    0.000

ANGLO, G11           3.049102   5.680311     0.537        34    0.594
For    AMIND slope, B2

INTRCPT2, G20         -27.142110   2.525960   -10.745        34    0.000
ANGLO, G21          23.113476   9.189661     2.515        34    0.017

For    OTHER slope, B3
INTRCPT2, G30         -20.440687   2.350818    -8.695        34    0.000

ANGLO, G31          18.360940   9.255701     1.984        34    0.055
----------------------------------------------------------------------------

Multilevel Analysis with Level 2 Predictors 

(N = 5, 544 students nested within J = 36 schools)
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Summary of Example 1 – Structure Matters!

Correct statistical estimates

ICC, separating parts from whole

Understanding relations within and across levels



Example 2: Meta-Analysis
Can estimation techniques used in HLM 
provide a more sophisticated way to synthesize 
quantitative results across studies?
Example from Raudenbush & Bryk (2002)

Teacher expectancy (“the Pygmalion effect”)
Contentious literature (see Wineburg, 1987; 
Rosenthal, 1987)

Parameter Reliability
Empirical Bayes Estimation

41
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Statistical Estimation in HLM Models

Estimation Methods
FML
RML
Empirical Bayes estimation

Parameter estimation 
Coefficients and standard errors
Variance Components

Parameter reliability
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Estimation Methods: Maximum 
Likelihood (ML)

ML estimates model parameters by estimating a 
set of population parameters that maximize a 
likelihood function
The likelihood function provides the 
probabilities of observing the sample data given 
particular parameter estimates
ML methods produce parameters that maximize 
the probability of finding the observed sample 
data
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Estimation Methods

Full: Simultaneously estimate the 
fixed effects and the variance 
components.

Goodness of fit statistics apply to the 
entire model

(both fixed and random effects)

Check on software default

Restricted: Sequentially estimates 
the fixed effects and then the 
variance components 

Goodness of fit statistics (deviance 
tests) apply only to the random 
effects

RML only tests hypotheses about 
the VCs (and the models being 
compared must have identical 
fixed effects)

RML – Restricted Maximum Likelihood, only 
the variance components are included in the 
likelihood function

FML – Full Maximum Likelihood, both the 
regression coefficients and the variance components 
are included in the likelihood function



45

Estimation Methods

RML expected to lead to better estimates especially 
when j is small
FML has two advantages:

Computationally easier
With FML, overall chi-square statistic tests both 
regression coefficients and variance components, 
with RML only variance components are tested
Therefore if fixed portion of two models differ, 
must use FML for nested deviance tests
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Computational Algorithms

Several algorithms exist for existing HLM 
models:

Expectation-Maximization (EM)
Fisher scoring
Iterative Generalized Least Squares (IGLS)
Restricted IGLS (RIGLS)

All are iterative search and evaluation 
procedures
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Model Estimation

Iterative estimation methods usually begin with 
a set of start values
Start values are tentative values for the 
parameters in the model

Program begins with starting values (usually 
based on OLS regression at level 1)
Resulting parameter estimates are used as 
initial values for estimating the HLM model
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Model Estimation
Start values are used to solve model equations on first 
iteration
This solution is used to compute initial model fit
Next iteration involves search for better parameter values
New values evaluated for fit, then a new set of parameter 
values tried
When additional changes produce no appreciable 
improvement, iteration process terminates (convergence)
Note that convergence and model fit are very different 
issues
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Parameter estimation

Coefficients and standard errors estimated through 
maximum likelihood procedures (usually)

The ratio of the parameter to its standard error produces a Wald 
test evaluated through comparison to the normal distribution (z)
In HLM software, a more conservative approach is used:

t-tests are used for significance testing 
t-tests more accurate for fixed effects, small n, and nonnormal 
distributions)

Standard errors
Variance components
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Parameter reliability

Analogous to score reliability: ratio of true score 
variance to total variance (true score + error)
In HLM, ratio of true parameter variance to total 
variability
For example, in terms of intercepts, parameter 
reliability, λ, is:

)//()(/)( 22
00

2
000 jjjj nYVarVar σττβλ +==

Total variance of the 
sample means (observed)

True variance of the 
sample means (estimated)

Variance of error of 
the sample meansTrue variance of the 

sample means (estimated)
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ICC ( ρI )
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Parameter reliability
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Predicting Group Effects

It is often of interest to estimate the random group 
effects ( β0j, β1j )
This is accomplished using Empirical Bayes (EB) 
estimation
The basic idea of EB estimation is to predict group 
values using two kinds of information:

Group j data
Population data obtained from the estimation of the 
regression model
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Empirical Bayes

If information from only group j is used to estimate 
then we have the OLS estimate:

If information from only the population is used to 
estimate then the group is estimated from the grand 
mean:

j

N

j

j Y
N
n

Y    
1

..00 ∑
=

==γ

jj Y=0β
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Empirical Bayes

A third possibility is to combine group level and 
population information
The optimal combination is an average 
weighted by the parameter reliability:

This results in the “posterior means” or EB 
estimates

0000  )1( γλβλβ jjjj
EB −+=

The larger the reliability, the greater 
the weight of the group mean

The smaller the reliability, the greater 
the weight of the grand mean
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Bayesian Estimation
Use of prior and posterior information improves 
estimation (depending on purpose)
Estimates “shrink” toward the grand mean as shown in 
formula
Amount of shrinkage depends on the “badness” of the 
unit estimate

Low reliability results in greater shrinkage (if λ = 1, there is no 
shrinkage; if λ = 0, shrinkage is complete, γ00)
Small n-size within a j unit results in greater shrinkage, 
“borrowing” from larger units

0000  )1( γλβλβ jjjj
EB −+=
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Example 2: Meta-Analysis
Can estimation techniques used in HLM 
provide a more sophisticated way to synthesize 
quantitative results across studies?
Example from Raudenbush & Bryk (2002)

Teacher expectancy (“the Pygmalion effect”)
Contentious literature

Approach takes the standard error (SE) of effect 
size into account:

61

SE( dj ) = (τ + Vj )1/2 , where Vj = 1/ (nj – 3)   

Note the effect of sample size on the 
standard error of the effect size



Example 2: Meta-Analysis

Term coined by Gene Glass in his 1976 AERA 
Presidential address
An alternative to the traditional literature 
review
Allows the reviewer to quantitatively combine 
and analyze the results from multiple studies
Traditional literature review is based on the 
reviewer’s analysis and synthesis of study 
themes or conclusions



What is Meta-Analysis (MA)?

Meta-analysis
Collects empirical results from multiple studies
Expresses all results on a common scale, effect 
size
Can analyze covariates of effect size
Draws conclusions about the “overall” effect 
across studies no matter what the original study 
conclusions were

Thus a MA becomes a research study on research 
studies, hence the term "meta"



Example 2: Meta-Analysis through HLM

Implemented through interactive DOS-based HLM 
programs rather than the Windows interface
Involves estimation based on the observed variance-
covariance matrix
In this example, the v-c matrix is simply the study 
effect sizes and their standard errors
Data file prepared with relevant variables (effect 
size, variance of effect size, predictors)
Then an HLM “.mdm” file is created
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link
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The HLM analysis allows the use of Bayesian estimation 
methods to temper the estimates of study effect sizes
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Use of a covariate to account for variation in study 
effect size:  Teacher expectancy as a function of 

unfamiliarity
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Summary of Example 2 – Estimation Methods

Advanced estimation methods (ML and Bayesian)

More realistic estimates of model parameters tempered

by available information (e.g., n, reliability)



Example 3: Longitudinal Models

Growth models as an Alternative to NCLB 
Adequate Yearly Progress (AYP)
HLM as a more flexible means to model 
repeated measures

Individual growth curves
Ability to model growth parameters

See Stevens (2005), Stevens & Zvoch (2006)
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No Child Left Behind
Purpose of legislation is to ensure the learning of all 
children
Schools (and districts and states) judged on whether a 
sufficient proportion of students are learning each 
year
Measure and report “Adequate Yearly Progress” 
(AYP) in each content area
Disaggregation of results by ethnicity, economic 
advantage, disability, and ELL
But does NCLB AYP validly reflect student learning?



No Child Left Behind

NCLB and other recent federal mandates and 
programs place strong emphasis on “evidence 
based” or “scientifically based” research.

Scientifically based research “…means research that 
involves the application of rigorous, systematic, 
and objective procedures to obtain reliable and 
valid knowledge relevant to education activities and 
programs”  (NCLB, 2001) 
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No Child Left Behind

However, NCLB methods appear to contradict 
the federal push for more rigorous, scientifically 
based evidence

Collectively, NCLB regulations prescribe an 
unusual form of case study design that must be 
used to evaluate school effectiveness for AYP

74



NCLB accountability requirements impose a nonequivalent-
groups, case study design for the evaluation of school 
effectiveness:

Year 1        Year 2       Year 3
Group A (4th grade)     X? O1

Group B (4th grade) X? O2

Group C (4th grade) X? O3

X? is used to indicate unknown treatment implementation
AYP in NCLB is a simple comparison of one Ot to a 
calculated target for improvement



How to Measure School Effectiveness?
Estimating the impact a school has on students is a 
complex task; a problem in research or program 
evaluation design
One of the most important challenges is separating  
“intake” to the school from “value added” by the school 
Raudenbush and Willms (1995) Type A and Type B 
effects or total causal effects vs. school effects
Intake represents confounding pre-existing student 
differences as well as previous learning
Intake also represents differences in group composition 
from school to school
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The Analysis of Change

Cross sectional comparisons do not likely  
measure change effectively/accurately
Individual growth curve analysis an important 
tool for analyzing change 
HLM models are one mechanism for estimating 
growth curves
Height analogy



Analogy: Measuring Physical 
Development

2004

Measure Height



Measuring Height, NCLB Method

2004

Actual Height

AYP defined by requiring 100% of children to 
be at least 6’0’’ by 2014 and projecting 
backwards to year in which height is first 
measured

Height AYP for 2004

All children must grow enough in each year 
to show AYP; all children must be tall by 
2014



Get your facts first, 

- Mark Twain quoted by Rudyard Kipling in 
From Sea to Shining Sea

and then you can 
distort them as much as you please.



Measuring Height Using Longitudinal 
Methods

2004 2005

Growth
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Longitudinal models using HLM
Level 1 defined as repeated measurement 
occasions
Levels 2 and 3 defined as higher levels in the 
nested structure
For example, longitudinal analysis of student 
achievement:

Level 1 = achievement scores at times 1 – t
Level 2 = student characteristics
Level 3 = school characteristics
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Longitudinal models

Three important advantages of the HLM 
approach to repeated measures:

Times of measurement can vary from one 
person to another
Data do not need to be complete on all 
measurement occasions
Growth parameters can be modeled at higher 
levels
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HLM Longitudinal models

Level-1
Ytij = π0ij + π1ij(time)+ etij

Level-2
π0ij = β00j + β01j(Xij) + r0ij

π1ij = β10j + β11j(Xij) + r1ij
Level-3

β00j = γ000 + γ001(W1j) + u00j

β10j = γ100 + γ101(W1j) + u10j
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Curvilinear Longitudinal models
Level-1

Ytij = π0ij + π1ij(time)+ π2ij(time2)+ etij
Level-2

π0ij = β00j + β01j(Xij) + r0ij
π1ij = β10j + β11j(Xij) + r1ij
π2ij = β20j + β21j(Xij) + r2ij

Level-3
β00j = γ000 + γ001(W1j) + u00j
β10j = γ100 + γ101(W1j) + u10j
β20j = γ200 + γ201(W2j) + u20j



Mathematics Achievement Predicted by Individual Characteristics
________________________________________________________________        
Fixed Effect                                Coefficient    SE t             df _    p___       
School Mean Achievement, γ000 663.54 1.28 513.86 241 < .001

White Student, γ010 14.62 0.77         18.88    241 < .001
LEP, γ020 -16.00 1.19 -13.50 241 < .001
Title 1 Student, γ030 -11.10 1.44 -7.71 241     < .001
Special Education, γ040 -33.09 1.88 -17.62 241     < .001
Modified Test, γ050 -16.83      2.63 -6.40 241     < .001
Free Lunch Student, γ060 -7.75 1.13 -6.85 241     < .001
Gender, γ070 -1.21 0.59 -2.03 241        .042

School Linear Growth, γ100 19.40 0.70 27.88    241     < .001
White Student, γ110 -1.20 0.64          -1.86    241        .062
LEP, γ120 0.70 1.13 0.60    241        .547
Title 1 Student, γ130 -2.58 0.95 -2.72    241        .007
Special Education, γ140 -2.16  1.67           -1.29    241        .196
Modified Test, γ150 -2.43  2.47           -0.99    241        .325
Free Lunch Student, γ160 -0.75 1.03 -0.73    241        .466
Gender, γ170 -4.68 0.59 -7.98    241     < .001

___________________________________________________________________



Mathematics Achievement Predicted by Individual Characteristics (continued)
__________________________________________________________________
Fixed Effect                             Coefficient SE t       df p
__________________________________________________________________
School Curvilinear Growth, γ200 -2.09   0.21           -9.78241      < .001

White Student, γ210 0.48   0.20            2.35 241         .019
LEP, γ220 -0.10  0.36           -0.27 241         .790
Title 1 Student, γ230 0.61  0.28            2.17 241         .030
Special Education, γ240 0.61  0.50            1.22 241         .224
Modified Test, γ250 -0.10  0.75           -0.14 241         .890
Free Lunch Student, γ260 0.26 0.33 0.79 241         .427
Gender, γ270 1.05 0.19 5.64 241      < .001

__________________________________________________________________
School Level Level-1            Level-2         Variance
Variance Component Explained   
__________________________________________________________________        
Mean Achievement, u00 242.78 184.89 23.8%
Linear Growth, u10 41.46 30.68 26.0%
Curvilinear Growth, u10 2.94 2.60 11.6%
__________________________________________________________________



Mathematics Achievement Predicted by School Characteristics  

________________________________________________________________________           

Fixed Effect Coefficient SE  t               df p

________________________________________________________________________           

School Mean Achievement, γ000 662.53  1.07 620.80        237     < .001

Percent Bilingual Students, γ001 4.19 4.00 1.05        237 .295

Percent LEP Students, γ0o2 -0.99 4.56 -0.22        237 .828

Percent White Students, γ003 19.55 3.72 5.25        237     < .001

Percent Free Lunch, γ004 -5.29 3.18           -1.67        237         .096

School Mean Linear Growth, γ100 19.18          0.71          26.87         237   < .001 

Percent Bilingual Students, γ101 -0.17 1.98 -0.09         237         .932

Percent LEP Students, γ102 2.90 2.85 1.02         237         .309

Percent White Students, γ003 3.51 2.74 1.28         237         .201

Percent Free Lunch, γ004 -3.67 2.23           -1.65         237        .099



Mathematics Achievement Predicted by School Characteristics  

________________________________________________________________________           

Fixed Effect Coefficient SE  t               df p

School Curvilinear Growth, γ200 -1.99          0.22           -9.10         237       < .001 

Percent Bilingual Students, γ201 -0.12 0.57 -0.21         237          .834

Percent LEP Students, γ202 0.39 0.84 0.46          237          .643

Percent White Students, γ203 -1.11 0.75 -1.48         237           .138

Percent Free Lunch, γ204 -1.17 0.64             1.84         237          .065

__________________________________________________________________
School Level Level-1            Level-2         Level-3              Variance
Variance Component Explained*  

Mean Achievement, u00 242.78             184.89 123.96 33.0%
Linear Growth, u10 41.46 30.68 29.54 3.7%
Curvilinear Growth, u10 2.94              2.60 2.49 4.2%

* Percent level 2 residual variance explained by level 3 model.
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Achievement Status versus Achievement 
Growth

Also important to note that the two research 
design approaches and the two parameters 
represent very different things
In this example, the correlation between status 
and growth parameters was -. 378

Has important policy implications
Varies substantially across content, assessment, and 
state system
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Inferences about School Performance
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depends on methods used



Relationships Between the Proportion of Free-Reduced Price Lunch (FRPL) in 
the School and Status (r = -.56) or Growth (r = -.17) in New Mexico Middle 
School Mathematics Achievement.



Relationships Between the Proportion of Limited English Proficient (LEP) 
Students in the School and Status (r = -.51) or Growth (r = -.06) in New 
Mexico Middle School Mathematics Achievement.



Relationships Between the Proportion of Hispanic Students in the School and 
Status (r = -.30) or Growth (r = -.05) in New Mexico Middle School 
Mathematics Achievement.



Relationships Between the Proportion of Native American Students in the 
School and Status (r = -.35) or Growth (r = -.02) in New Mexico Middle 
School Mathematics Achievement.



Relationship Between Schools Ranked on Status and Schools Ranked on Growth 
(r = -.75) in New Mexico Elementary School Reading Achievement.

Classifying Schools using Status or Growth



Classifying Schools using Status or Growth: 
Rankings can Differ Substantially

Relationship Between Schools Ranked on Status and Schools Ranked on 
Growth in New Mexico Middle School Mathematics Achievement  (r = -.12).



Example 4: Interrupted Time Series
Variation on longitudinal growth models 
presented earlier
Flexible modeling of intervention effects over 
time
In progress study of reading intervention in 
Bethel School District

Examine effects of time of intervention on reading 
performance
Examine effects of “dosage” of intervention on reading 
performance
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Interrupted Time Series Designs: 
Change in Intercept

ijijiijiiij TreatmentTimeY επππ +++= 210

ijijiiij TimeY εππ ++= 10

ijijiiiij TimeY επππ +++= 120 )(
When Treatment = 1:

When Treatment = 0: Treatment is 
coded 0 or 1
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Interrupted Time Series Designs

Treatment effect on 
level: )( 20 ii ππ +
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Interrupted Time Series Designs: 
Change in Slope

ijijiijiiij imeTreatmentTTimeY επππ +++= 310

ijijiiij TimeY εππ ++= 10

When Treatment = 1:

When Treatment = 0:
Treatment time expressed as 0’s 

before treatment and time intervals 
post-treatment (i.e., 0, 0, 0, 1, 2, 3
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Interrupted Time Series Designs

Treatment effect 
on slope: )( 3iπ+
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Change in Intercept and Slope

ijijiiijiiij imeTreatmentTTreatmentTimeY εππππ ++++= 3210

ijijiiij TimeY εππ ++= 10

When Treatment = 0:

Effect of treatment 
on intercept

Effect of treatment 
on slope
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Interrupted Time Series Designs

Effect of treatment 
on slope

Effect of treatment on 
intercept



Preliminary example modeling 
“What I did last summer”

Prior to evaluating our treatment effects:
Examine nature of growth function
Explore the effect of summer drop in 
performance
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Effect of summer 
break on intercept?

Effect of summer 
break on slope?
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Final estimation of fixed effects:
----------------------------------------------------------------------------

Standard     Approx.

Fixed Effect        Coefficient   Error      T-ratio   d.f.     P-value
----------------------------------------------------------------------------
INTRCPT1, P0  11.934266    1.496115      7.977        6    0.000
TIME slope, P1 24.969961    0.588547     42.426        6    0.000
INTERCHA slope, P2 -25.886013    0.844983    -30.635        6    0.000
SLOPECHA slope, P3 -0.777770    0.899231     -0.865        6    0.421
----------------------------------------------------------------------------

Testing change in intercept and slope after summer break: 
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Final estimation of level-1 and level-2 variance components:
----------------------------------------------------------------------------
Random Effect           Standard      Variance     df    Chi-square   P-value

Deviation     Component
----------------------------------------------------------------------------
INTRCPT1,       R0     27.84145     775.14633    1362   12718.00625    0.000

TIME slope, R1     10.65064     113.43621    1362    3795.84626    0.000
INTERCHA slope, R2      4.62646      21.40417    1362    1508.33545    0.003
SLOPECHA slope, R3     10.03375     100.67614    1362    2352.66736    0.000
level-1,       E       9.33343      87.11298
----------------------------------------------------------------------------
Final estimation of level-3 variance components:
----------------------------------------------------------------------------
Random Effect           Standard      Variance     df    Chi-square   P-value

Deviation     Component
----------------------------------------------------------------------------
INTRCPT1/INTRCPT2, U00     3.49659      12.22617     6      31.18004    0.000

TIME/INTRCPT2, U10     1.28195       1.64341     6      19.29324    0.004
INTERCHA/INTRCPT2, U20     1.86312       3.47123     6      20.65449    0.002
SLOPECHA/INTRCPT2, U30     2.15169       4.62977     6      39.43444    0.000
----------------------------------------------------------------------------

Variation across students and schools? 



A last thought or two:

Better modeling tools can expand the richness of 
research questions 
Better models allow more nuanced understanding 
of educational and social phenomena

114

Supposing is good, but finding out is 
better.

- Mark Twain's Autobiography
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