NATURALNESS

arXiv:1607.06821
Phys. Rev. Lett. 117, 251801

Tim Cohen
University of Oregon

with
N. Arkani-Hamed,
A. Hook,
H.D. Kim,
R.T. D’Agnolo,
D. Pinner

THEORY GROUP SEMINAR
UCSD
Dec 16, 2016
Top partner limits constrain natural scenarios.
For simplicity:
Only variation away from our Standard Model is Higgs mass parameter.

$$-\Lambda_{\text{UV}}^2 \lesssim \left(m_H^2 \right)_i \lesssim \Lambda_{\text{UV}}^2$$
Not a multiverse.
No anthropics!

\[\nu = 0 \]

\[\nu_{us} = 246 \text{ GeV} \]

\[\nu > \nu_{us} \]

\[\Lambda_{UV}^2 \]

\[-\Lambda_{UV}^2 \]

\[m_H^2 \]
But why is there energy density in only our sector?!?
OUTLINE

General Mechanism

Two Simple Models

Signatures!

Completing the Story

Outlook
GENERAL MECHANISM
<table>
<thead>
<tr>
<th>$m^2_H > 0$</th>
<th>$m^2_H < 0$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Massless photon</td>
<td>Massless photon</td>
</tr>
<tr>
<td>W^\pm, Z^0 masses</td>
<td>W^\pm, Z^0, and fermion masses</td>
</tr>
<tr>
<td>$\sim \Lambda_{QCD}$</td>
<td>$\sim \Lambda_{QCD}$</td>
</tr>
<tr>
<td>Fermion masses</td>
<td>Neutrino masses:</td>
</tr>
<tr>
<td>$\sim y_f \frac{\Lambda_{QCD}^3}{m^2_H}$</td>
<td>- Majorana mass $\sim \nu^2$</td>
</tr>
<tr>
<td>$T_{sphaleron} < \Lambda_{QCD}$</td>
<td>- Dirac mass $\sim \nu$</td>
</tr>
<tr>
<td>no baryon relic density</td>
<td></td>
</tr>
<tr>
<td>No baryon relic density</td>
<td></td>
</tr>
</tbody>
</table>
S reheats the Universe after inflation.

Couples universally to all copies.
The reheaton is a gauge singlet;

Parametrically lighter than the naturalness cutoff, Λ_H / \sqrt{N};

Couplings are most relevant ones possible that involve Higgs bosons of each sector.
COUPLE S TO $H + X$

<table>
<thead>
<tr>
<th>$m_H^2 > 0$</th>
<th>$m_H^2 < 0$</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>H</td>
<td>X'</td>
</tr>
<tr>
<td>X</td>
<td>$\langle H \rangle$</td>
</tr>
<tr>
<td>$\Gamma \sim m_S$</td>
<td>$\Gamma \sim m_S$</td>
</tr>
<tr>
<td>or</td>
<td>or</td>
</tr>
<tr>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>t</td>
<td>t</td>
</tr>
<tr>
<td>$\Gamma \sim \frac{m_S^5}{m_H^4}$</td>
<td>$\Gamma \sim \frac{v^2m_S^3}{v^4}$</td>
</tr>
</tbody>
</table>

Increasing m_H^2

Increasing v
Even spacing for Higgs mass squared parameters:

\[
\left(m^2_H \right)_i = i \times \left(m^2_H \right)_{us}
\]

So that \(v_i \sim \sqrt{i} \).
MASSLESS DOF

Energy density in additional relativistic degrees of freedom.

\[N_{\text{eff}} \sim \frac{\sum \rho_i}{\rho_{us}} \sim \frac{\sum \Gamma_i}{\Gamma_{us}} \sim \log N \]

Relic density of additional neutrinos.

\[\Omega_{\nu} h^2 \sim \begin{cases} \frac{\sum v_i \rho_i^{3/4}}{v_{us} \rho_{us}^{3/4}} & \sim N^{3/4} \quad \text{Dirac} \\ \frac{\sum v_i^2 \rho_i^{3/4}}{v_{us}^2 \rho_{us}^{3/4}} & \sim N^{5/4} \quad \text{Majorana} \end{cases} \]
MASSIVE DOF

THERMAL FREEZE-OUT

Heaviest sector that thermalizes

Model dependence

\[\Omega h^2 = \frac{s_0}{\rho_c} \sum_{i=-N_d}^{N_d} m_i Y_i^{fo} + ... = a (N_d)^p + ... \]

Naively, \(a \sim \Omega^{us} h^2 \), and \(p > 0 \).

Neglect contribution from reheaton decays (relevant at large \(N \)).

Neglect freeze-in.
Gravity sees all degrees of freedom.

\[M_{\text{pl}}^2(\mu) = M_{\text{pl}}^2(0) - N \frac{\mu^2}{96 \, \pi^2} \]

\[\Lambda_{\text{UV}} \sim \frac{M_{\text{pl}}(0)}{\sqrt{N}} \]

HOW MANY COPIES?

Full hierarchy problem

\[\nu_{us} \sim \frac{\Lambda_{UV}}{\sqrt{N}} \quad \text{and} \quad \Lambda_{UV} \sim \frac{M_{Pl}}{\sqrt{N}} \]

\[N \sim \frac{M_{Pl}}{\nu_{us}} \simeq 10^{16} \]

and

\[\Lambda_{UV} \sim 10^{10} \text{ GeV} \]
How Many Copies?

Little hierarchy problem

\[v_{us} \sim \frac{\Lambda_{SUSY}}{\sqrt{N}} \quad \text{and} \quad \Lambda_{UV} \sim \frac{M_{Pl}}{\sqrt{N}} \]

\[\Lambda_{UV} \sim M_{GUT} \]

\[N \sim 10^4 \]

\[\Lambda_{SUSY} \sim 10 \text{ TeV} \]

Tons of signatures at future colliders!
HOW MANY COPIES?

Full hierarchy problem (again)

All new degrees of freedom

\[N_{\text{total}} \quad \text{and} \quad N_{\text{reheat}} \]

Couple to reheaton

\[\nu_{us} \sim \frac{\Lambda_{\text{UV}}}{\sqrt{N_{\text{reheat}}}} \quad \text{and} \quad \Lambda_{\text{UV}} \sim \frac{M_{\text{Pl}}}{\sqrt{N_{\text{total}}}} \]

with \[N_{\text{total}} \gg N_{\text{reheat}} \]

For this scenario:

\[N \rightarrow N_{\text{reheat}} \]
TWO SIMPLE MODELS
NEUTRINO REHEATON

\[\mathcal{L} = m_S S S^c + \lambda \sum_i S H_i L_i \]

- \[m_H^2 > 0 \]
 - \[\Gamma \sim m_S \]
 - \[\Gamma \sim \frac{m_S^5}{m_H^4} \]

- \[m_H^2 < 0 \]
 - \[\Gamma \sim m_S \]
 - \[\Gamma \sim \frac{m_S^5}{\nu^4} \]

Increasing \(m_H^2 \) or Increasing \(\nu \)
SHI, $N=10^4$

BR_{us}

Z_{us}^0

W_{us}^\pm

Next sector
3-body to 2-body

$m_s(\text{GeV})$
TOY SCENARIO

Parametrize distribution of Higgs masses:

\[
(m^2_H)_i = -\frac{\Lambda^2_H}{N} (2i + r)
\]

\[
(m^2_H)_{us} = -r \times \frac{\Lambda^2_H}{N} \approx -(88 \text{ GeV})^2
\]

\(r \) parametrizes tuning.
SHI, N=10^4

\[BR_{us} = \begin{cases}
0.1 & \text{for } m_s = 0 \\
0.5 & \text{for } m_s = 50 \\
1 & \text{for } m_s = 300
\end{cases} \]
Reheaton mass is technically natural.

Critical that reheaton mass be $O(m_{W_{us}})$.

Analogous to μ-problem in the MSSM.
SCALAR REHEATON

\[\mathcal{L} = \frac{1}{2} m_\phi \phi^2 + a \phi \sum_i |H_i|^2 \]

<table>
<thead>
<tr>
<th>(m_H^2 > 0)</th>
<th>(m_H^2 < 0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Increasing (m_H^2)</td>
<td>Increasing (\phi)</td>
</tr>
</tbody>
</table>

\[\Gamma \sim \frac{a^2}{m_\phi} \]

\[\Gamma \sim \frac{a^2 g^4}{(16\pi^2)^2} \frac{m_\phi^3}{m_H^4} \]

\[\Gamma \sim y_b^2 a^2 \frac{m_\phi^3}{v^4} \]

\[\Gamma \sim y_c^2 a^2 \frac{m_\phi^3}{v^4} \]

\[\phi, \ m_\phi = 100 \ \text{GeV} \]

\[m^2_H < 0 \]

\[m^2_H > 0 \]

\[\sim i^{-1/4} \]

\[\sim i^{-1/2} \]

\[(\rho_i/\rho_{\text{us}})^{1/4} \]

\[i \]

\[1 \quad 10^2 \quad 10^4 \quad 10^6 \quad 10^8 \quad 10^{10} \quad 10^{12} \quad 10^{14} \quad 10^{16} \]
SIGNATURES!
(AND CONSTRAINTS)
\[\mathcal{L} = m_S S S^c + \lambda \sum_i S H_i L_i \]

Freeze-in abundance from:
\[\nu_{us} \nu_{us} \rightarrow \nu_{us} \nu_i \]

Also, mixing with neutrino impacts their masses.

Hard to go beyond \(N \sim 10^3 \).
CMB Stage IV: future constraint on $N_{\text{eff}} \lesssim 0.02$.
Also constrain $\sum m_{\nu_i}$ to SM value.

Wu, et al. [arXiv:1402.4108]
ELECTRON (AND PROTON) OVERCLOSURE

Scalar model: \(\mathcal{L} = \frac{1}{2} m_\phi \phi^2 + a \phi \sum_i |H_i|^2 \)

Estimate thermal electron density.

\[
\Omega_e^\phi h^2 = \sum_{i=1}^{N_{th}} \frac{m_e^i n_e^i}{\rho_c^0} \approx \left(\frac{m_e^{\text{us}} T_0^{\text{us}}}{\rho_c^0} \right)^3 \frac{N_{th}^{5/2}}{M_{\text{pl}} v_{\text{us}} \alpha^2}
\]

Requiring

\[
\Omega_e^\phi h^2 \lesssim 0.1 \times \Omega_{\text{DM}} h^2 \quad \implies \quad N_\phi \lesssim 10^5
\]

Proton (symmetric) abundance subdominant.
GETTING TO $N = 10^{16}$

Ultra-safe model: add vector like-lepton.

$$\left(L, L^c, E, E^c, N, N^c \right)$$

with

$$\mathcal{L} \supset \text{mass terms} + \text{Yukawa terms} + \lambda HLS + \mu_E E e^c$$

\[\Gamma \sim \frac{m_S^9}{v^8} \]
Potentially observable imprint on small scale power spectrum of cosmological perturbations.
MIXING BETWEEN SECTORS

Kinetic mixing: $\epsilon_i F_{\mu \nu} F^{\mu \nu}_i$.

Energy loss in stars $\implies \sqrt{\sum_i \epsilon_i^2} \lesssim 10^{-14}$

Neutral state mixing: $\epsilon_i^n \nu_i^\dagger \bar{\sigma}^\mu D_{\mu \nu}$.

Neutrino production rate from neutral current bremsstrahlung $\implies \sqrt{\sum_i (\epsilon_i^n)^2} \lesssim 10^{-4}$

Charged state mixing: $\epsilon_i^c G_F \left(\nu_i^\dagger \bar{\sigma}^\mu e^c \right) (p^\dagger \bar{\sigma}_\mu n)$.

SN1987a charged current neutrino production $\implies \sqrt{\sum_i (\epsilon_i^c)^2} \lesssim 10^{-5}$
COMPLETING THE STORY
REHEAT TEMPERATURE

\[T_{\text{rh}} \sim \sqrt{\Gamma_{\text{reheaton}} \, M_{\text{pl}}} \]

Set by size of reheaton - Higgs coupling.

Constrained to be \(\lesssim m_{W_{\text{us}}} \).

\[T \sim |m_H| \] in other sectors changes predictions.

Leads to larger reheaton branching ratios into \(i \neq \text{us} \).

[Tension can be alleviated by preheating.]
Low reheat temperature: not all standard mechanisms work.

One option
Primordial lepton asymmetry.
Only converted to baryons for sectors with $T > T_{\text{sphaleron}} \sim m_W$.
STRONG CP

Assume only breaking of \mathbb{Z}_2 is from m_H^2, common axion to all sectors.

Same effective θ_{CP} for all sectors.

Axion gets contribution to mass from every Λ_{QCD}. Larger m_α as function of f.
DARK MATTER

MANY OPTIONS

Thermal relic
(neutralino in SUSY scenario?)

Relics from other sectors

Axion

Superpartner of reheaton

...
Observable in HL-LHC, tera-Z, 100 TeV pp??

Very challenging.

Observability in tension with low reheat temp.

Likely only possible for small N.

Potentially see rate change by sending more energy through propagator to access more sectors!
OUTLOOK
Dynamically realizing N

\[\langle \mathbf{h}_i \rangle \neq 0 \quad \Rightarrow \quad \text{Extra dimension (deconstruction)} \]

\[\langle \mathbf{h}_i \rangle = 0 \quad \Rightarrow \quad \text{Large number of DOF's} \]
CONCLUSIONS

Novel solution to big/little hierarchy problem.

Many simple models exist.

Success relies on cosmology.

Constrained by N_{eff}, neutrino, electron, and proton over closure.

If strong CP solved by axion, expect it to be heavier.

If $N \lesssim 10^4$, spectacular signatures at LHC or future colliders.

Observe “steps” in primordial power spectrum.