Generalized 't Hooft anomalies

0

PacNW 2020

arXiv:1805.12290, 1909.09027, 2002.02037, with Erich Poppitz 2008.05491 with Stephen Baker

M. Anber; Generalized 't Hooft anomalies

2/20/2020

• Introduction.

• New 't Hooft anomalies: construction and examples.

Why 't Hooft anomaly?

- 't Hooft anomalies: study nonperturbative phenomena in strongly coupled QFT. ^{compare to Large-N} AdS/CFT, lattice
- They put sever constraints on the IR spectrum of asymptotically free theories (composite quarks and leptons, dualities).
 Review by Rosner, 1998 Seiberg 1994
- Ordinary 't Hooft anomalies (0-form) were known since the 80s.
- New generalized 't Hooft anomalies new constraints on the spectrum of a theory. Gaiotto, Kapustin, Seiberg, Willett, 2014 Gaiotto, Kapustin, Komargodski, Seiberg, 2017

- Given a global symmetry *G* of a QFT, we may try to gauge *G*. (turn on a **background field** of *G*)
- If obstructed (anomalous), the theory has an
 - **'t Hooft anomaly**. 't Hooft, 1980 Frishman, Schwimmer, Banks, Yankielowicz 1981
- 't Hooft anomaly is RG invariant, useful for asymptotically free theories.

- The anomaly is unremovable phase in the *G* partition function upon the transformation: G is a 0-form symmetry $\lambda \to U\lambda$, $U = e^{i\varepsilon^a T^a}$ $\begin{bmatrix} D\lambda \end{bmatrix} \begin{bmatrix} D\overline{\lambda} \end{bmatrix} \to e^{-2i\varepsilon DQ^T} \begin{bmatrix} D\lambda \end{bmatrix} \begin{bmatrix} D\overline{\lambda} \end{bmatrix} Q^T = \frac{1}{32\pi^2} \int F_{\mu\nu} \widetilde{F}_{\mu\nu}$ fields of G
- Also, G can be G = G₁×G₂×... : mixed anomalies.
 In all the traditional (0 form) anomalies we take

 $Q^T \in \mathbb{Z}$ a la BPST instantons

5

- The UV/IR matching of the anomaly: (1) CFT, (2) composite massless fermions, (3) Goldstone bosons (or domain walls). **Unique gapped vacuum is excluded**.
- E.g. QCD with 3 fundamentals: $G = U(1)_B \times SU(3)_L \times SU(3)_R$
- Anomalies: $\left[SU(3)_L\right]^3 = N_c$, $U(1)_B \left[SU(3)_L\right]^2 = N_c$.

• The matching is via Goldstone bosons: $SU(3)_L \times SU(3)_R \rightarrow SU(3)_V$ Witten, 1983

- The option $Q^T \in \mathbb{Z}$ is **not** the most general one.
- In 2014 it was realized that $Q^T \in \mathbb{Q}$ leads to new generalized anomalies.

Gaiotto, Kapustin, Seiberg, Willett, 2014

• Generalized 't Hooft anomalies can play many important roles.

8

• We consider a *SU*(*N*_c) Yang-Mills theory with fermions in some irr. rep. *R*

• Define the theory: we sum over *SU*(*N*_c) gauge connections

$$Z = \underbrace{\int \left[DA_{\mu} \right] \left[D\lambda \right] \left[D\overline{\lambda} \right]}_{\text{sum over } SU(N_{c}) \text{ connections}} e^{-S}$$

Main question

• Given YM theory with fermions in Irr. rep., what is the most **general background** we can turn on?

 $Z \rightarrow Z$ [background = source]

• The background has to be **compatible** with the theory. In general:

$$Q^{\scriptscriptstyle T}_{\scriptscriptstyle \mathrm{background}} \in \mathbb{Q}$$

10

• The background: manifold (metric) + G-bundle (gauge connections)

 General Lore: Examine all possible anomalies due to gauging internal + spacetime (continuous and discrete) symmetries.

• As an example, we discuss turning on a background in the center of $G = SU(N_c)$.

$$Z_{N_{c}} = e^{i\frac{2\pi k}{N_{c}}} I_{N_{c} \times N_{c}} \qquad k = 0, 1, 2, \dots, N_{c} - 1$$

• Depending on the representation, the fermions may not see the full Z_{N_c} . E.g., adjoints.

1-form 't Hooft anomaly

12

- We take a manifold **M** with fermion λ in Rep. *R* of a group *G* defined on a collection of covers $\{U_i\}$ of **M**.
- We also take transition functions g_{ij}^{R} of G on the overlap $U_{ij} = U_i \cap U_j$: $\lambda_i = \left(g_{ij}^{R}\right)^{-1} \lambda_j$
- The cocycle condition $g_{ii}^R g_{ik}^R g_{ki}^R = 1$ on $U_i \cap U_j \cap U_k$.

 U_{i}

 U_{\cdot}

• Side note: a similar construction on the lattice

$$\chi_x^* \left(U_{x,\mu} \right)^n \chi_{x+\mu}$$

1-form 't Hooft anomaly

14

• We consider the center elements:

$$Z_{N_{c}}: g_{ij} \sim e^{i\frac{2\pi k}{N_{c}}}I, \quad k = 0, 1, ..., N_{c} - i\frac{2\pi k}{N_{c}}$$

• In Rep. *R*: $g_{ij}^{R} \sim e^{i\frac{2\pi k}{N_{c}}n}I$.

• If $gcd(N_c, n) = p > 1$, then the faithful Rep. is $SU(N_c) / Z_p$ and the cocycle condition:

$$g_{ij}^{R}g_{jk}^{R}g_{ki}^{R} = 1$$
 $g_{ij}g_{jk}g_{ki} = e^{i\frac{2\pi}{p}n_{ijk}}$

 $\gamma \pi$

• For adjoint fermions and **M** to be a 4-torus.

• An explicit background is constructed as follows: gauge connection in the 1-2 plane (similar expression in the 3-4 plane)

New 't Hooft anomaly
• Then

$$F_{12} = -\frac{2\pi m_{12}}{L^2} \overrightarrow{H}.\overrightarrow{v_1}, F_{34} = -\frac{2\pi m_{34}}{L^2} \overrightarrow{H}.\overrightarrow{v_1}, Q^T = \frac{1}{32\pi^2} \int_{T^4} F_{\mu\nu} \widetilde{F^{\mu\nu}} = m_{12}m_{34} \left(1 - \frac{1}{N_c}\right)$$

$$\overrightarrow{H}.\overrightarrow{v_1} = -\frac{1}{N_c} + \text{integer}$$

• There is an anomaly between <u>the discrete chiral</u> <u>symmetry</u> $Z_{2N_cN_f}$ and <u>the center background</u> Z_{N_c} . $Z \rightarrow e^{-i\frac{2\pi}{N_c}Z}$

17

• For $SU(N_c = 2)$ and $N_f = 2$ there are 3 scenarios:

(1) $SU(2)_f \times Z_8 \rightarrow SO(2) \times Z_2$

M.A., Poppitz, 2018 Cordova, Dumetriscu, 2018 Bi, Senthil, 2018

(2) $SU(2)_f \times Z_8 \rightarrow SU(2)_f \times Z_4 \times TQFT$

(3) CFT

Currently under investigation by the lattice groups at Jena and MIT.

(4) (excluded) $SU(2)_f \times Z_8 \rightarrow SU(2)_f \times Z_8 \times TQFT$

Proposed by: Bi, Senthil, 2018

M. Anber; Generalized 't Hooft anomalies

Excluded by: Wan, Wang, 2018 Cordova, Ohmori, 2019

2/20/2020

18

- In scenario (2) the 0 form anomalies are matched via composite massless fermions $\sim \lambda \lambda \lambda$ transforming in fund. of $SU(2)_f$. M.A., Poppitz, 2018
- The breaking $Z_8 \to Z_4$ is probed via $\langle \lambda \lambda \lambda \lambda \rangle \neq 0$, while $\langle \lambda \lambda \rangle = 0$ matching the new anomaly.

19

- When you **couple the axions** to a gauge theory, new phenomena happen in the IR (a new anomaly in the color-flavor-baryon-number backgrounds).
- Deconfinement on axion domain walls.
- Modifying models of natural inflation.

Hadronic physics is important!

M.A., Poppitz 2020 M.A., Baker 2020

M. Anber; Generalized 't Hooft anomalies

bre

Modifying models of natural inflation

24

• Hadronic DOF play an important role in models of axion inflation

M.A., Baker 2020