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Anomaly detection

Anomaly detection basics

The Standard Model (SM) is
known to be incomplete

No particles Beyond the Standard
Model (BSM) have yet been
found
There remains a vast space of
models with no dedicated
search

Machine learning opens doors for
model-independent anomaly
detection
Many techniques have recently
been developed, e.g.

CWoLa [1, 2], SALAD [3],
ANODE [4]

Figure: Snapshot of the
current landscape of anomaly
detection methods. From [4]
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The problem of false positives

The problem

Sensitivity of new ML methods rivals or exceeds traditional
anomaly searches
Beginning to see application in data

ATLAS analysis using CWoLa was first ML-based anomaly
hunt [5]

Problem
False positives pose a significant challenge for certain ML anomaly
detection methods as sensitivity increases

We need new techniques to mitigate this behavior
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The problem of false positives

Example: CWoLa

Train supervised classifier to
distinguish between two groups of
mixed (unlabeled)
background/signal
Classifier effectively learns to
distinguish between signal and
background
For bump hunt, groups determined
by course binning in invariant dijet
mass
Use ‘signal’-tagging to emphasize
significance of signal
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Figure 1. An illustration of the CWoLa framework. Rather than being trained to directly classify
signal (S) from background (B), the classifier is trained by standard techniques to distinguish data as
coming either from the first or second mixed sample, labeled as 0 and 1 respectively. No information
about the signal/background labels or class proportions in the mixed samples is used during training.

Theorem 1. Given mixed samples M
1

and M
2

defined in terms of pure samples S and B

using Eqs. (2.3) and (2.4) with signal fractions f
1

> f
2

, an optimal classifier trained to

distinguish M
1

from M
2

is also optimal for distinguishing S from B.

Proof. The optimal classifier to distinguish examples drawn from pM1 and pM2 is the likelihood

ratio LM1/M2
(~x) = pM1(~x)/pM2(~x). Similarly, the optimal classifier to distinguish examples

drawn from pS and pB is the likelihood ratio LS/B(~x) = pS(~x)/pB(~x). Where pB has support,

we can relate these two likelihood ratios algebraically:

LM1/M2
=

pM1

pM2

=
f
1

pS + (1� f
1

) pB
f
2

pS + (1� f
2

) pB
=

f
1

LS/B + (1� f
1

)

f
2

LS/B + (1� f
2

)
, (2.6)

which is a monotonically increasing rescaling of the likelihood LS/B as long as f
1

> f
2

, since

@LS/B
LM1/M2

= (f
1

� f
2

)/(f
2

LS/B � f
2

+ 1)2 > 0. If f
1

< f
2

, then one obtains the reversed

classifier. Therefore, LS/B and LM1/M2
define the same classifier.

An important feature of CWoLa is that, unlike the LLP-style weak supervision in Sec. 2.2,

the label proportions f
1

and f
2

are not required for training. Of course, this proof only

guarantees that the optimal classifier from CWoLa is the same as the optimal classifier from

fully-supervised learning. We explore the practical performance of CWoLa in Secs. 3 and 4.

The problem of learning from unknown mixed samples can be shown to be mathematically

equivalent to the problem of learning with asymmetric random label noise, where there have

been recent advances [32, 40]. The equivalence of these frameworks follows from the fact that
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Figure 1. An illustration of the CWoLa framework. Rather than being trained to directly classify
signal (S) from background (B), the classifier is trained by standard techniques to distinguish data as
coming either from the first or second mixed sample, labeled as 0 and 1 respectively. No information
about the signal/background labels or class proportions in the mixed samples is used during training.

Theorem 1. Given mixed samples M1 and M2 defined in terms of pure samples S and B

using Eqs. (2.3) and (2.4) with signal fractions f1 > f2, an optimal classifier trained to

distinguish M1 from M2 is also optimal for distinguishing S from B.

Proof. The optimal classifier to distinguish examples drawn from pM1 and pM2 is the likelihood

ratio LM1/M2
(~x) = pM1(~x)/pM2(~x). Similarly, the optimal classifier to distinguish examples

drawn from pS and pB is the likelihood ratio LS/B(~x) = pS(~x)/pB(~x). Where pB has support,

we can relate these two likelihood ratios algebraically:

LM1/M2
=

pM1

pM2

=
f1 pS + (1� f1) pB
f2 pS + (1� f2) pB

=
f1 LS/B + (1� f1)

f2 LS/B + (1� f2)
, (2.6)

which is a monotonically increasing rescaling of the likelihood LS/B as long as f1 > f2, since

@LS/B
LM1/M2

= (f1 � f2)/(f2LS/B � f2 + 1)2 > 0. If f1 < f2, then one obtains the reversed

classifier. Therefore, LS/B and LM1/M2
define the same classifier.

An important feature of CWoLa is that, unlike the LLP-style weak supervision in Sec. 2.2,

the label proportions f1 and f2 are not required for training. Of course, this proof only

guarantees that the optimal classifier from CWoLa is the same as the optimal classifier from

fully-supervised learning. We explore the practical performance of CWoLa in Secs. 3 and 4.

The problem of learning from unknown mixed samples can be shown to be mathematically

equivalent to the problem of learning with asymmetric random label noise, where there have

been recent advances [32, 40]. The equivalence of these frameworks follows from the fact that
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Figure 1. An illustration of the CWoLa framework. Rather than being trained to directly classify
signal (S) from background (B), the classifier is trained by standard techniques to distinguish data as
coming either from the first or second mixed sample, labeled as 0 and 1 respectively. No information
about the signal/background labels or class proportions in the mixed samples is used during training.

Theorem 1. Given mixed samples M1 and M2 defined in terms of pure samples S and B

using Eqs. (2.3) and (2.4) with signal fractions f1 > f2, an optimal classifier trained to

distinguish M1 from M2 is also optimal for distinguishing S from B.

Proof. The optimal classifier to distinguish examples drawn from pM1 and pM2 is the likelihood

ratio LM1/M2
(~x) = pM1(~x)/pM2(~x). Similarly, the optimal classifier to distinguish examples

drawn from pS and pB is the likelihood ratio LS/B(~x) = pS(~x)/pB(~x). Where pB has support,

we can relate these two likelihood ratios algebraically:

LM1/M2
=

pM1

pM2

=
f1 pS + (1� f1) pB
f2 pS + (1� f2) pB

=
f1 LS/B + (1� f1)

f2 LS/B + (1� f2)
, (2.6)

which is a monotonically increasing rescaling of the likelihood LS/B as long as f1 > f2, since

@LS/B
LM1/M2

= (f1 � f2)/(f2LS/B � f2 + 1)2 > 0. If f1 < f2, then one obtains the reversed

classifier. Therefore, LS/B and LM1/M2
define the same classifier.

An important feature of CWoLa is that, unlike the LLP-style weak supervision in Sec. 2.2,

the label proportions f1 and f2 are not required for training. Of course, this proof only

guarantees that the optimal classifier from CWoLa is the same as the optimal classifier from

fully-supervised learning. We explore the practical performance of CWoLa in Secs. 3 and 4.

The problem of learning from unknown mixed samples can be shown to be mathematically

equivalent to the problem of learning with asymmetric random label noise, where there have

been recent advances [32, 40]. The equivalence of these frameworks follows from the fact that
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Figure: CWoLa schematic:
see e.g. [6]
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The problem of false positives

Example: CWoLa

Using the 2020 LHC Olympics
dataset for prototyping
Simulation of an LHC-like detector
Signal is W ′ → XY with
mW ′ = 3.5 TeV, mX = 500 GeV,
and mY = 100 GeV

Event with two jets (sprays of
hadronic particles)

Jet masses artificially correlated to
MJJ by taking mj 7→ mj + 0.1MJJ

Classifier trained between ‘signal
region’ (SR) and ‘sideband’ (SB)
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The problem of false positives

Example: CWoLa

CWoLa classifier trained on several jet features
Jet mass, N-subjettiness ratio τ21

Classifier able to infer MJJ from correlations
SR and SB come from different regions in MJJ =⇒ classifier
tags full SR as ‘signal’-like

Note: ATLAS result in [5] trained only on jet masses and
performed explicit decorrelation to avoid this problem

Result: severe distribution sculpting
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Figure: Sculpting of the MJJ distribution by a CWoLa classifier
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Strategy

Techniques exist to modify data (e.g. explicit decorrelation) to
mitigate the problem

Can be finicky in practice
Might cause sensitivity reduction by removing information

Goal
It would be nice to have false positive mitigation built into the
anomaly detection method itself

Two potential solutions:
1 Eliminate MJJ differences by comparing SR to itself

SALAD
2 Penalize the classifier for learning MJJ

SA-CWoLa
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Solution: SALAD

SALAD

Idea: eliminate SR/SB
differences by only looking
at SR
Introduce a simulated
dataset (Herwig++)
Reweight simulation to look
like data in sidebands using
NN
Extend reweighting to signal
region in simulation
Train classifier to distinguish
simulation signal region and
data signal region
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Figure: τ21 of the leading jet in data,
simulation, signal, and reweighted
simulation (‘Sim. + DCTR’)
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Solution: SA-CWoLa

SA-CWoLa

Modification to CWoLa
Idea: penalize classifier for distinguishing SR and SB in a
simulated dataset

Use normal ‘binary cross-entropy’ loss function in data and
negative binary cross-entropy in simulation

Loss function minimized by picking out signal, and only signal

LSA-CWola[f ] = −
∑

i∈SR,data
log(f (xi)) −

∑
i∈SB,data

log(1 − f (xi))

+ λ

 ∑
i∈SR,sim.

log(f (xi)) +
∑

i∈SB,sim.
log(1 − f (xi))


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Solution: SA-CWoLa

SA-CWoLa limits MJJ sculpting

Classifier trained on jet masses and N-subjettiness ratio τ21 of
leading two jets
SA-CWola exhibits much less bump sculpting than CWoLa

3000 4000 5000
mjj [GeV]

104

Nu
m

be
r o

f e
ve

nt
s 80%

CWoLa

3000 4000 5000
mjj [GeV]

104

40%

3000 4000 5000
mjj [GeV]

100

101

102

103

104
20%

3000 4000 5000
mjj [GeV]

100

101

102

103

104

10%

3000 4000 5000
mjj [GeV]

100

101

102

103

1%

3000 4000 5000
mjj [GeV]

104

Nu
m

be
r o

f e
ve

nt
s 80%

SA-CWoLa

3000 4000 5000
mjj [GeV]

103

104

40%

3000 4000 5000
mjj [GeV]

103

104 20%

3000 4000 5000
mjj [GeV]

103

10%

3000 4000 5000
mjj [GeV]

102

1%

Figure: Sculpting of the MJJ distribution by CWoLa classifier (top) and
SA-CWoLa (bottom)
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Results

False positive results
No signal injected, shifted to correct for natural SR deficit
‘Optimal CWoLa’ is CWoLa trained on SR vs SR + signal
(instead of SB vs SR + signal)
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Results

Signal sensitivity results: pure performance

2σ signal injected
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Results

Signal sensitivity results: with background estimation

2σ signal injected
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Conclusion

Limiting false positives is increasingly important as we start
applying ML anomaly detection techniques in data
Currently-used techniques require method-external techniques
to correct for this

Can be unwieldy
Might hurt signal sensitivity

SALAD and SA-CWoLa are promising techniques that are
intrinsically robust

We may not need to sacrifice signal sensitivity to prevent false
positives
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