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Motivation
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Anomaly detection

Anomaly detection basics

m The Standard Model (SM) is
known to be incomplete

m No particles Beyond the Standard
Model (BSM) have yet been
found

m There remains a vast space of
models with no dedicated
search

m Machine learning opens doors for
model-independent anomaly
detection

m Many techniques have recently
been developed, e.g.

m CWola [1, 2], SALAD [3],
ANODE [4]

background (SM) model independence

autoencoders

Some searches LDA
(train signal ANODE
versus data) CWola

SALAD

Most searches  Music (CMS)
(train with General Search
simulations) (ATLAS)

signal model independence

Figure: Snapshot of the
current landscape of anomaly
detection methods. From [4]
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The problem of false positives

The problem

m Sensitivity of new ML methods rivals or exceeds traditional
anomaly searches
m Beginning to see application in data
m ATLAS analysis using CWola was first ML-based anomaly
hunt [5]

Problem
False positives pose a significant challenge for certain ML anomaly
detection methods as sensitivity increases

We need new techniques to mitigate this behavior
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The problem of false positives

Example: CWola

Train supervised classifier to
distinguish between two groups of
mixed (unlabeled)
background/signal

Classifier effectively learns to
distinguish between signal and
background

For bump hunt, groups determined
by course binning in invariant dijet
mass

Use ‘signal’-tagging to emphasize
significance of signal
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Figure: CWola schematic:
see e.g. [6]
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The problem of false positives

Example: CWola

m Using the 2020 LHC Olympics
dataset for prototyping

=
o
&

m Simulation of an LHC-like detector SB. SR isBi --- Fit(kSp=0.69)
~~~~~~ Background

m Signal is W' — XY with 10t - sional

myyr = 3.5 TeV, myx = 500 GeV, £ e

and my = 100 GeV Sl b e

m Event with two jets (sprays of &
hadronic particles) Y102

m Jet masses artificially correlated to

M, by taking mj — m; + 0.1M, 19550 3000 500 400045005000

m Classifier trained between ‘signal
region’ (SR) and ‘sideband’ (SB)
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https://lhco2020.github.io/homepage/
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The problem of false positives

Example: CWola

Number of events

m CWol.a classifier trained on several jet features
m Jet mass, N-subjettiness ratio 751

m Classifier able to infer M, from correlations

References

m SR and SB come from different regions in M;; = classifier

tags full SR as ‘signal’-like
m Note: ATLAS result in [5] trained only on jet masses and
performed explicit decorrelation to avoid this problem

m Result: severe distribution sculpting

CWola

3000 4000 5000 3000 4000 5000 3000 4000 5000 3000 4000 5000 3000 4000
m;; [GeV] m; [GeV] m; [GeV] m; [GeV: m; [GeV]

Figure: Sculpting of the M, distribution by a CWola classifier

5000
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Limiting false positives
°

Strategy

m Techniques exist to modify data (e.g. explicit decorrelation) to
mitigate the problem

m Can be finicky in practice
m Might cause sensitivity reduction by removing information

It would be nice to have false positive mitigation built into the
anomaly detection method itself

Two potential solutions:
Eliminate M}, differences by comparing SR to itself
m SALAD
Penalize the classifier for learning M,
m SA-CWola
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Solution: SALAD

SALAD

m |dea: eliminate SR/SB

Background in SR

4.0

differences by only looking s Data
at SR - Sim.
) £30 1 Sim. + DCTR
m Introduce a simulated 225 £ signal
dataset (Herwig++) 820
N
m Reweight simulation to look gL
. . . . 21.0
like data in sidebands using 205
NN 00 e
0.0 0.2 0.4 0.6 0.8 1.0

m Extend reweighting to signal %

region in simulation ) o
Figure: 71 of the leading jet in data,

m Train classifier to distinguish simulation, signal, and reweighted
simulation signal region and simulation (‘Sim. + DCTR’)
data signal region
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Solution: SA-CWolLa

SA-CWola

m Modification to CWola

m |dea: penalize classifier for distinguishing SR and SB in a
simulated dataset

m Use normal ‘binary cross-entropy’ loss function in data and
negative binary cross-entropy in simulation

m Loss function minimized by picking out signal, and only signal

Lspcwoalfl=— > log(f(xi))— > log(l—f(x))

i€SR,data i€SB,data
+A[ D log(f(x))+ > log(l—f(x))
i€SR,sim. ieSB,sim.
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Solution: SA-CWolLa

SA-CWola limits M}, sculpting

m Classifier trained on jet masses and N-subjettiness ratio 11 of
leading two jets
m SA-CWola exhibits much less bump sculpting than CWola

CWola
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Figure: Sculpting of the M, distribution by CWoLa classifier (top) and
SA-CWola (bottom)
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Results

False positive results

m No signal injected, shifted to correct for natural SR deficit
m '‘Optimal CWolLa' is CWola trained on SR vs SR + signal
(instead of SB vs SR + signal)
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Results

Signal sensitivity results: pure performance

m 20 signal injected
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Results

Signal sensitivity results: with background estimation

D000e

m 20 signal injected

SR excess [units of o]
Bo v N WA~ 0 o N

iting false positives Conclusion
oo

SA-CWola
—— SALAD

— Optimal CWola |

-6

10— 107* 1073 1072 107!
NN background efficiency

100

References

13/16



Conclusion
(1)

Conclusion

m Limiting false positives is increasingly important as we start
applying ML anomaly detection techniques in data
m Currently-used techniques require method-external techniques
to correct for this
m Can be unwieldy
m Might hurt signal sensitivity
m SALAD and SA-CWola are promising techniques that are
intrinsically robust
m We may not need to sacrifice signal sensitivity to prevent false
positives
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