Limiting false positives in model-independent anomaly detection

Kees Benkendorfer Reed College

In collaboration with Luc Le Pottier (Michigan) and Benjamin Nachman (Berkeley Lab) Based in part on arXiv:2009.02205

> 22 September 2020 PacNW Theory Workshop

Outline	Motivation	Limiting false positives	Conclusion	References
•	00000	000000	00	

1 Motivation

- Anomaly detection
- The problem of false positives
- **2** Limiting false positives
 - Solution: SALAD
 - Solution: SA-CWoLa
 - Results

3 Conclusion

Outline	Motivation	Limiting false positives	Conclusion	References
0	●0000	000000	00	
Anomaly detection				

Anomaly detection basics

- The Standard Model (SM) is known to be incomplete
 - No particles Beyond the Standard Model (BSM) have yet been found
 - There remains a vast space of models with no dedicated search
- Machine learning opens doors for model-independent anomaly detection
- Many techniques have recently been developed, e.g.
 - CWoLa [1, 2], SALAD [3], ANODE [4]

Figure: Snapshot of the current landscape of anomaly detection methods. From [4]

Outline	Motivation	Limiting false positives	Conclusion	References
0	0000	0000000	00	
The problem of f	false positives			
The pro	blem			

- Sensitivity of new ML methods rivals or exceeds traditional anomaly searches
- Beginning to see application in data
 - ATLAS analysis using CWoLa was first ML-based anomaly hunt [5]

Problem

False positives pose a significant challenge for certain ML anomaly detection methods as sensitivity increases

We need new techniques to mitigate this behavior

 Outline
 Motivation
 Li

 0
 00000
 0

Limiting false positives

Conclusion

References

Example: CWoLa

,

- Train supervised classifier to distinguish between two groups of mixed (unlabeled) background/signal
- Classifier effectively learns to distinguish between signal and background
- For bump hunt, groups determined by course binning in invariant dijet mass
- Use 'signal'-tagging to emphasize significance of signal

Figure: CWoLa schematic: see e.g. [6]

Outline O	Motivation 00000	Limiting false positives	Conclusion 00	References
The problem of false	e positives			
Example:	CWoLa			

- Using the 2020 LHC Olympics dataset for prototyping
- Simulation of an LHC-like detector
- Signal is $W' \rightarrow XY$ with $m_{W'} = 3.5 \text{ TeV}, m_X = 500 \text{ GeV},$ and $m_Y = 100 \text{ GeV}$
 - Event with two jets (sprays of hadronic particles)
- Jet masses artificially correlated to M_{JJ} by taking $m_j \mapsto m_j + 0.1 M_{JJ}$
- Classifier trained between 'signal region' (SR) and 'sideband' (SB)

Outline	Motivation	Limiting false positives	Conclusion	References
0	0000	000000	00	
The problem of false po	ositives			
Example:	CWoL a			

- CWoLa classifier trained on several jet features
 - Jet mass, N-subjettiness ratio τ_{21}
- Classifier able to infer M_{JJ} from correlations
- SR and SB come from different regions in $M_{JJ} \implies$ classifier tags full SR as 'signal'-like
 - Note: ATLAS result in [5] trained only on jet masses and performed explicit decorrelation to avoid this problem

Result: severe distribution sculpting

Figure: Sculpting of the M_{JJ} distribution by a CWoLa classifier

Outline	Motivation	Limiting false positives	Conclusion	References
0	00000	•••••••	00	
Strategy				

- Techniques exist to modify data (e.g. explicit decorrelation) to mitigate the problem
 - Can be finicky in practice
 - Might cause sensitivity reduction by removing information

Goal

It would be nice to have false positive mitigation built into the anomaly detection method itself

Two potential solutions:

- Eliminate *M_{JJ}* differences by comparing SR to itself
 SALAD
- **2** Penalize the classifier for learning M_{JJ}
 - SA-CWoLa

 Outline
 Motivation
 Limiting false positives
 Conclusion
 References

 o
 00000
 00000
 00
 00

- Idea: eliminate SR/SB differences by only looking at SR
- Introduce a simulated dataset (Herwig++)
- Reweight simulation to look like data in sidebands using NN
- Extend reweighting to signal region in simulation
- Train classifier to distinguish simulation signal region and data signal region

Figure: τ_{21} of the leading jet in data, simulation, signal, and reweighted simulation ('Sim. + DCTR')

Outline O	Motivation 00000	Limiting false positives	Conclusion 00	References
Solution: SA-CW	oLa			
SA-CWo	bLa			

- Modification to CWoLa
- Idea: penalize classifier for distinguishing SR and SB in a simulated dataset
 - Use normal 'binary cross-entropy' loss function in data and negative binary cross-entropy in simulation
- Loss function minimized by picking out signal, and only signal

$$egin{split} \mathcal{L}_{\mathsf{SA-CWola}}[f] &= -\sum_{i\in\mathsf{SR},\mathsf{data}} \mathsf{log}(f(x_i)) - \sum_{i\in\mathsf{SB},\mathsf{data}} \mathsf{log}(1-f(x_i)) \ &+ \lambda \left(\sum_{i\in\mathsf{SR},\mathsf{sim.}} \mathsf{log}(f(x_i)) + \sum_{i\in\mathsf{SB},\mathsf{sim.}} \mathsf{log}(1-f(x_i))
ight) \end{split}$$

Outline O	Motivation 00000	Limiting false positives	Conclusion
Solution: SA-CWoLa			

SA-CWoLa limits M_{JJ} sculpting

- Classifier trained on jet masses and N-subjettiness ratio τ_{21} of leading two jets
- SA-CWola exhibits much less bump sculpting than CWoLa

Figure: Sculpting of the M_{JJ} distribution by CWoLa classifier (top) and SA-CWoLa (bottom)

Outline 0	Motivation 00000	Limiting false positives	Conclusion 00	References
Results				

False positive results

- No signal injected, shifted to correct for natural SR deficit
- 'Optimal CWoLa' is CWoLa trained on SR vs SR + signal (instead of SB vs SR + signal)

Outline 0	Motivation 00000	Limiting false positives	Conclusion	Referenc
Results				

Signal sensitivity results: pure performance

• 2σ signal injected

Outline O	Motivation 00000	Limiting false positives	Conclusion 00	References
Results				

Signal sensitivity results: with background estimation

2 σ signal injected

- Limiting false positives is increasingly important as we start applying ML anomaly detection techniques in data
- Currently-used techniques require method-external techniques to correct for this
 - Can be unwieldy
 - Might hurt signal sensitivity
- SALAD and SA-CWoLa are promising techniques that are intrinsically robust
 - We may not need to sacrifice signal sensitivity to prevent false positives

Outline 0	Motivation 00000	Limiting false positives	Conclusion ⊙●	References

Acknowledgments

- This work was supported in part by NSF PHY REU Grant 194992
- This research used resources of the National Energy Research Scientific Computing Center (NERSC), a U.S. Department of Energy Office of Science User Facility operated under Contract No. DE-AC02-05CH11231

Outline O	Motivation 00000	Limiting false positives	Conclusion 00	References
Referen	ces			

- Jack H. Collins, Kiel Howe, and Benjamin Nachman. Anomaly Detection for Resonant New Physics with Machine Learning. *Phys. Rev. Lett.*, 121(24):241803, December 2018.
- [2] Jack H. Collins, Kiel Howe, and Benjamin Nachman. Extending the Bump Hunt with Machine Learning. *Phys. Rev. D*, 99(1):014038, January 2019.
- [3] Anders Andreassen, Benjamin Nachman, and David Shih. Simulation Assisted Likelihood-free Anomaly Detection. arXiv:2001.05001 [hep-ex, physics:hep-ph, physics:physics, stat], January 2020.
- [4] Benjamin Nachman and David Shih. Anomaly Detection with Density Estimation. *Phys. Rev. D*, 101(7):075042, April 2020.
- [5] ATLAS Collaboration. Dijet resonance search with weak supervision using $\sqrt{s} = 13$ TeV *pp* collisions in the ATLAS detector. *arXiv:2005.02983 [hep-ex]*, May 2020.
- [6] Eric M. Metodiev, Benjamin Nachman, and Jesse Thaler. Classification without labels: Learning from mixed samples in high energy physics. J. High Energ. Phys., 2017(10):174, October 2017.