{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# PHYS 290 - Atrium Data\n", "This shows about 5 years of PHYS 290 atrium height measurements" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The data is in a simple text file. Lets read it in here and check that the results are OK." ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Height
01490.0
11570.0
21320.0
\n", "
" ], "text/plain": [ " Height\n", "0 1490.0\n", "1 1570.0\n", "2 1320.0" ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "import pandas as pd\n", "f = pd.read_csv('atrium.txt') # Read CSV file\n", "# Make sure data looks OK\n", "f[:3]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Make a histogram of this data to see what we have." ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAEKCAYAAAAfGVI8AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAFTFJREFUeJzt3X2QZXV95/H3R550BcOwtDo8OUiRREjWMQwUCcmumUgksBUwUQmhlKzsjuwuxFhRM4aqXeLGKsyqbLY2qzWWCBKVKMoCYkBE0bCrkIGdGQaR8DSWyBQzBo2QZNFhvvvHObNz6e2evj30ubf7nver6laf87vn3PP99XTPp8/T76SqkCT11/PGXYAkabwMAknqOYNAknrOIJCknjMIJKnnDAJJ6jmDQJJ6ziCQpJ4zCCSp5/YddwHDOPTQQ2vFihXjLkOSlpS77rrre1U1NddySyIIVqxYwfr168ddhiQtKUm+PcxyHhqSpJ4zCCSp5wwCSeo5g0CSes4gkKSeMwgkqecMAknqOYNAknrOIJCknlsSdxZLi9WKtTfO2L7l0jNGXIm099wjkKSeMwgkqecMAknqOYNAknrOIJCknjMIJKnnDAJJ6jmDQJJ6ziCQpJ4zCCSp5wwCSeq5zoIgyfOT3JlkY5J7k/xR235FkkeSbGhfK7uqQZI0ty4HnXsaWF1VTyXZD7g9yV+2772zqq7pcNuSpCF1FgRVVcBT7ex+7au62p4kae90eo4gyT5JNgDbgFuq6o72rfcm2ZTksiQHdFmDJGnPOg2CqnqmqlYCRwAnJfkZ4N3ATwMnAocAfzDTuknWJFmfZP327du7LFOSem0kVw1V1Q+A24DTqmprNZ4GPgacNMs666pqVVWtmpqaGkWZktRLXV41NJXk4Hb6BcBrgG8lWd62BTgL2NxVDZKkuXV51dBy4Mok+9AEzqer6vNJvpxkCgiwAbigwxokSXPo8qqhTcCrZmhf3dU2JUnz553FktRzBoEk9ZxBIEk9ZxBIUs8ZBJLUcwaBJPWcQSBJPWcQSFLPGQSS1HMGgST1nEEgST1nEEhSzxkEktRzBoEk9ZxBIEk9ZxBIUs8ZBJLUcwaBJPWcQSBJPddZECR5fpI7k2xMcm+SP2rbj05yR5IHkvxFkv27qkGSNLcu9wieBlZX1SuBlcBpSU4G3gdcVlXHAt8Hzu+wBknSHDoLgmo81c7u174KWA1c07ZfCZzVVQ2SpLl1eo4gyT5JNgDbgFuAh4AfVNWOdpFHgcNnWXdNkvVJ1m/fvr3LMiWp1zoNgqp6pqpWAkcAJwGvmGmxWdZdV1WrqmrV1NRUl2VKUq+N5KqhqvoBcBtwMnBwkn3bt44AHhtFDZKkmXV51dBUkoPb6RcArwHuA74CvL5d7Dzguq5qkCTNbd+5F9lry4Erk+xDEzifrqrPJ/kmcHWSPwb+N/DRDmuQJM2hsyCoqk3Aq2Zof5jmfIEkaRHwzmJJ6jmDQJJ6ziCQpJ4zCCSp5wwCSeo5g0CSes4gkKSeMwgkqecMAknqOYNAknrOIJCknjMIJKnnDAJJ6jmDQJJ6ziCQpJ4zCCSp5wwCSeo5g0CSeq7Lh9cfmeQrSe5Lcm+St7XtlyT5bpIN7ev0rmqQJM2ty4fX7wB+v6ruTnIQcFeSW9r3Lquq93e4bUnSkLp8eP1WYGs7/WSS+4DDu9qeJGnvjOQcQZIVwKuAO9qmC5NsSnJ5kmWjqEGSNLPOgyDJgcBngd+rqh8CHwKOAVbS7DF8YJb11iRZn2T99u3buy5Tknqr0yBIsh9NCHyiqj4HUFWPV9UzVbUT+Ahw0kzrVtW6qlpVVaumpqa6LFOSeq3Lq4YCfBS4r6o+ONC+fGCx1wGbu6pBkjS3Lq8aOgV4E3BPkg1t2x8C5yRZCRSwBXhrhzVIkubQ5VVDtwOZ4a0vdLVNSdL8dblHIE2MFWtvHHcJUmccYkKSes4gkKSeMwgkqecMAknqOYNAknpu3kGQZFmSf9ZFMZKk0RsqCJLcluRFSQ4BNgIfS/LBudaTJC1+w+4R/EQ7YNxvAB+rqhOA13RXliRpVIYNgn3bMYLeCHy+w3okSSM2bBC8B7gZeKiq/jrJy4EHuitLkjQqQw0xUVWfAT4zMP8w8JtdFSVNstmGq9hy6RkjrkRqDHuy+OVJbkiyPcm2JNclObrr4iRJ3Rv20NAngU8Dy4HDaPYOru6qKEnS6AwbBKmqq6pqR/v6c5rnCUiSlrhhh6H+SpK1NHsBBZwN3NjeV0BVPdFRfZKkjg0bBGe3X6c/TewtNMHw8gWrSJI0UsNeNeSJYUmaUEMFQZI3z9ReVR/fwzpHAh8HXgrsBNZV1Z+2h5P+AlhB88ziN1bV9+dXtiRpoQx7svjEgdcvAZcAvz7HOjuA36+qVwAnA/8+yXHAWuDWqjoWuLWdlySNybCHhi4anE/yE8BVc6yzFdjaTj+Z5D7gcOBM4NXtYlcCtwF/MJ+iJUkLZ2+fR/APwLHDLpxkBfAq4A7gJW1I7AqLF+9lDZKkBTDsOYIb2H3fwD7AK2huMBtm3QOBzwK/V1U/TDJUYUnWAGsAjjrqqKHWkSTN37CXj75/YHoH8O2qenSulZLsRxMCn6iqz7XNjydZXlVb2xFNt820blWtA9YBrFq1ypvXJKkjQx0aqqqvAt8CDgKWAT+aa500f/p/FLivqgYfYnM9cF47fR5w3XwKliQtrGEHnXsjcCfwBppnEtyR5PVzrHYK8CZgdZIN7et04FLg1CQPAKe285KkMRn20NDFwIlVtQ0gyRTwJeCa2VaoqtuB2U4I/Mp8ipQkdWfYIHjerhBo/S17f8WRNPFme+bA3qzjcwrUtWGD4KYkNwOfaufPBr7QTUmSpFEa9oaydyb5DeAXaQ73rKuqazutTJI0EnMGQZJ9gJur6jXA5+ZaXpK0tMx5nL+qngH+oR1WQpI0YYY9R/B/gHuS3AL8/a7GqvrdTqqSJI3MsEFwY/uC3UNNDDdWhLSE7M3VPtJSt8cgSHImcERV/Vk7fycwRRMGjhgqSRNgrnME76IZEmKX/YETaIaRvqCjmiRJIzTXoaH9q+o7A/O3tw+qfyLJCzusS5I0InPtESwbnKmqCwdmpxa+HEnSqM0VBHck+TfTG5O8lWYQOknSEjfXoaG3A/8jyW8Dd7dtJwAHAGd1WZgkaTT2GATtQHO/kGQ1cHzbfGNVfbnzyiRJIzHsWENfBvzPX5ImkENJS1LPGQSS1HMGgST1XGdBkOTyJNuSbB5ouyTJd6c9w1iSNEZd7hFcAZw2Q/tlVbWyffmUM0kas86CoKq+BjzR1edLkhbGOM4RXJhkU3voaNnci0uSujTqIPgQcAywEtgKfGC2BZOsSbI+yfrt27ePqj5J6p2RBkFVPV5Vz1TVTuAjwEl7WHZdVa2qqlVTU45vJ0ldGWkQJFk+MPs6YPNsy0qSRmPYR1XOW5JP0TzA5tAkjwL/EXh1kpU0TzjbAry1q+1LkobTWRBU1TkzNH+0q+1JkvaOdxZLUs91tkcgLQYr1t447hKkRc89AknqOYNAknrOIJCknjMIJKnnDAJJ6jmDQJJ6ziCQpJ4zCCSp5wwCSeo57yyWFrnZ7o7ecukZI65Ek8o9AknqOYNAknrOIJCknjMIJKnnDAJJ6jmDQJJ6ziCQpJ7rLAiSXJ5kW5LNA22HJLklyQPt12VdbV+SNJwu9wiuAE6b1rYWuLWqjgVubeclSWPUWRBU1deAJ6Y1nwlc2U5fCZzV1fYlScMZ9TmCl1TVVoD264tnWzDJmiTrk6zfvn37yAqUpL5ZtCeLq2pdVa2qqlVTU1PjLkeSJtaog+DxJMsB2q/bRrx9SdI0ow6C64Hz2unzgOtGvH1J0jRdXj76KeDrwE8leTTJ+cClwKlJHgBObeclSWPU2fMIquqcWd76la62KUmav0V7sliSNBoGgST1nEEgST1nEEhSzxkEktRznV01JI3SirU3jruERWO278WWS88YcSVaKtwjkKSeMwgkqecMAknqOYNAknrOIJCknjMIJKnnDAJJ6jmDQJJ6ziCQpJ4zCCSp5xxiQgtmT8M8LNTwBg4lsZvfCy0U9wgkqefGskeQZAvwJPAMsKOqVo2jDknSeA8N/XJVfW+M25ck4aEhSeq9cQVBAV9McleSNWOqQZLE+A4NnVJVjyV5MXBLkm9V1dcGF2gDYg3AUUcdNY4atYDm+7AUr4hZeF3/G/jgm6VrLHsEVfVY+3UbcC1w0gzLrKuqVVW1ampqatQlSlJvjDwIkrwwyUG7poFfBTaPug5JUmMch4ZeAlybZNf2P1lVN42hDkkSYwiCqnoYeOWotytJmpmXj0pSzxkEktRzBoEk9ZxBIEk9ZxBIUs/5PALN20Le9esdxJNvb/6Nx3WX8nzvvp4U7hFIUs8ZBJLUcwaBJPWcQSBJPWcQSFLPTfxVQ329CkAa1iRfubXYfv8XWz27uEcgST1nEEhSzxkEktRzBoEk9dzEnyxeKKO4TX6hHi4+7hNP0qjN9/dzsZ0g31M9o/h9do9AknpuLEGQ5LQk9yd5MMnacdQgSWqMPAiS7AP8GfBrwHHAOUmOG3UdkqTGOPYITgIerKqHq+pHwNXAmWOoQ5LEeILgcOA7A/OPtm2SpDFIVY12g8kbgNdW1b9u598EnFRVF01bbg2wpp39KeD+vdzkocD39nLdpcR+Thb7OVnG1c+XVdXUXAuN4/LRR4EjB+aPAB6bvlBVrQPWPdeNJVlfVaue6+csdvZzstjPybLY+zmOQ0N/DRyb5Ogk+wO/BVw/hjokSYxhj6CqdiS5ELgZ2Ae4vKruHXUdkqTGWO4srqovAF8Y0eae8+GlJcJ+Thb7OVkWdT9HfrJYkrS4OMSEJPXckgyCJJcn2ZZk80DbG5Lcm2RnklXTln93O5zF/UleO9C+qIe6mKWf/znJt5JsSnJtkoMH3pukfv6nto8bknwxyWFte5L817Yvm5L83MA65yV5oH2dN46+7MlM/Rx47x1JKsmh7fxE9TPJJUm+2/57bkhy+sB7E/Nz27Zf1NZ9b5I/GWhfvP2sqiX3Av458HPA5oG2V9Dcb3AbsGqg/ThgI3AAcDTwEM1J6n3a6ZcD+7fLHDfuvg3Rz18F9m2n3we8b0L7+aKB6d8FPtxOnw78JRDgZOCOtv0Q4OH267J2etm4+zZXP9v2I2kunvg2cOgk9hO4BHjHDMtO2s/tLwNfAg5o51+8FPq5JPcIquprwBPT2u6rqpluOjsTuLqqnq6qR4AHaYa5WPRDXczSzy9W1Y529hs092HA5PXzhwOzLwR2ncw6E/h4Nb4BHJxkOfBa4JaqeqKqvg/cApzWffXDm6mfrcuAd7G7jzCZ/ZzJRP3cAv8WuLSqnm6X2da2L+p+LskgmKfZhrSYhKEu3kLzVyNMYD+TvDfJd4Bzgf/QNk9UP5P8OvDdqto47a2J6mfrwvYw1+VJlrVtk9bPnwR+KckdSb6a5MS2fVH3sw9BkBnaag/tS0KSi4EdwCd2Nc2w2JLuZ1VdXFVH0vTxwrZ5YvqZ5J8AF7M75J719gxtS7KfrQ8BxwArga3AB9r2SevnvjSH7E4G3gl8OklY5P3sQxDMNqTFUENdLEbtCcJ/CZxb7QFIJrCfAz4J/GY7PUn9PIbmePHGJFtoar47yUuZrH5SVY9X1TNVtRP4CM0hEZiwftLU/bn2kN6dwE6acYYWdz/HfcJlb1/ACqaddGvbb+PZJ4uP59knaR6mOUGzbzt9NLtP0hw/7n7N1U+a48HfBKamLTdp/Tx2YPoi4Jp2+gyefRL1zrb9EOARmr/GlrXTh4y7X8P+3LbvbWH3yeKJ6iewfGD67TTHyyfx5/YC4D3t9E/SHPbJYu/n2L+Re/nN/xTN7uWPaRL1fOB17fTTwOPAzQPLX0xzZv5+4NcG2k8H/qZ97+Jx92vIfj7Y/nBtaF8fntB+fhbYDGwCbgAOb5cNzYONHgLu4dmh/5b2+/Mg8K/G3a9h+jnt/S3sDoKJ6idwVduPTTRjiw0GwyT93O4P/Hn7s3s3sHop9NM7iyWp5/pwjkCStAcGgST1nEEgST1nEEhSzxkEktRzBoEWhSSva0ff/OmBthVJfnsP6xyW5JoOalkxw4iSlyR5xxzrXZDkzXMs8ztJ/tss7/3hHtZLki8nedGePn8YSb40MMSDZBBo0TgHuJ3mGda7rABmDIIk+1bVY1X1+hHUNpSq+nBVffw5fMSsQUBzrfnGevZgfHvrKuDfLcDnaEIYBBq7JAcCp9DckDMYBJfSDOC1Icnb27+mP5PkBuCLg3+5T/9LO8nnk7y6nX4qyfuS3NX+NXxSktuSPNwO+jbfeo9JclP7eX+1ay9mcK8hyYntAGtfT/MMicE9jMPa9R/YNV59kkuBF7R9/cT/v1XOBa4bqOHN7edvTHJV23ZFkg8l+Urbt3/RDvB2X5IrBj7reprglQCDQIvDWcBNVfU3wBPZ/RCWtcBfVdXKqrqsbft54LyqWj2Pz38hcFtVnQA8CfwxcCrN3ejvmWWdYwYeorKBZuiAXdYBF7Wf9w7gv8+w/seAC6rq54Fnpr23Ejgb+Fng7CRHVtVa4B/bvp47w+edAtwFkOR4mrtUV1fVK4G3DSy3DFhNM4zDDTRDXB8P/GySlQDVDF99QJJ/Okvf1TNjeXi9NM05wH9pp69u5++eZdlbqmrYse53+RFwUzt9D/B0Vf04yT00h59m8lBVrdw1k+SS9uuBwC8An2kGlQSa8WMYWPZg4KCq+l9t0ydpBgnc5daq+rt22W8CL+PZQxHP5JCqerKdXk0z9tL3AKZ9P26oqmr79nhV3dNu5962rxva5bYBhwF/O8d21QMGgcaq/at0NfAzSYpmIK5K8q5ZVvn7Wdp38Ow93OcPTP+4do+lspNmPCqqameS+f4OPA/4wWBIzGCmoYUHPT0w/QzD/R7uSPK8akbvDLMPVbzrs3fy7O3snLad5wP/OMR21QMeGtK4vZ7mSVwvq6oV1Tx/4BHgF2kO4xw05OdsAVYmeV6SI9k9zPGCak/WPpLkDfD/ruZ55bRlvg88meTktum3GM6Pk+w3y3v30zzOEOBW4I27Du0kOWQ+fWjHx38pzfdMMgg0ducA105r+yzN1UKbaP4S3pjk7XN8zv+kCZB7gPcz+6GlhXAucH6SjcC9zPxowfOBdUm+TvMX/N8N8bnrgE2znCy+EXg1QFXdC7wX+GpbwwfnWf8JwDdq9yNP1XOOPip1IMmBVfVUO72WZtjlt82x2p4+bznNntOpC1DbnwLXV9Wtz/WzNBk8RyB144wk76b5Hfs28DvP5cOqamuSjyR50QLcS7DZENAg9wgkqec8RyBJPWcQSFLPGQSS1HMGgST1nEEgST1nEEhSz/1fgqBzI2msnHsAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "%matplotlib inline\n", "import matplotlib.pyplot as plt\n", "\n", "height = f['Height']\n", "num_bins = 50\n", "plt.hist(height, num_bins)\n", "plt.xlabel('Atrium Height (cm)')\n", "plt.ylabel('Groups')\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Find the mean of the distribution" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "1372.325278810409\n" ] } ], "source": [ "from statistics import mean\n", "print(mean(f['Height']))" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "71.47738104035705\n" ] } ], "source": [ "from statistics import stdev\n", "print (stdev(f['Height']))" ] }, { "cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "269\n", "4.358052837765947\n" ] } ], "source": [ "import math\n", "print (len(f['Height']))\n", "print (stdev(f['Height'])/math.sqrt(len(f['Height'])))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Height of the atrium is then: $1372\\pm4$ cm" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.5" } }, "nbformat": 4, "nbformat_minor": 2 }