
PHYS 391 
Day 17

• Aliasing

• Fast Fourier Transform

Lab 4

• 4.5 - Poisson Statistics

• 4.6 - Gaussian Statistics

• 4.7 - Inverse Square Law

• 4.8 - Attenuation Length

Any last questions

on what you are doing?

Linear Fits
• Must fit ln(R) vs. distance or thickness to extract the inverse power law or

attenuation length - careful with errors

• Showed examples of how to do this using polyfit back on Day 8 -
covariance matrix

• Note, by default polyfit will bootstrap the errors for you! So even if you
don’t pass errors to the fit, you will get reasonable errors returned from
your fit. To turn this off, include cov=‘unscaled’ in the arguments.

• Could also use equations in  
Chapter 8, or in a pinch could 
just ‘eyeball’ the slope uncertainty 
using the method from HW1

Creating Data
• Normal python setup

• Create simple waveform with νs >> ν0 cos(2⇡⌫0t) + 1

Note arguments to np.arange()

Aliasing
• Nyquist Limit: νs > 2 ν0

• What happens if we violate this?

νs = 10.5 Hz, ν0 = 10 Hz

Aliasing
• Really can’t tell what the ‘real’ frequency is

νs = 10.5 Hz, ν0 = 20.5 Hzνobs = 0.5 Hz

Nothing really to do aside from filter high frequencies: ν > νs/2
If you can adjust νs it is possible to detect aliased frequencies

Fast Fourier Transform
• Example function: sin(2⇡⌫0t) + 1 νs = 50 Hz, ν0 = 10 Hz

Fast Fourier Transform
• Example function: sin(2⇡⌫0t) + 1 νs = 50 Hz, ν0 = 10 Hz

FFT Complex Coeff.

As shown last week

FFT Complex Coeff.

• fft() takes as an argument just the array of function values

• Returns same length array of complex coefficients (must divide by n to get
amplitudes)

• Order of these coefficients (by index) is 0, 1, …, N/2, -N/2+1, …, -1 !

• Easiest to use fftfreq() to get array of actual frequencies for plotting

• Depends on Δt = 1/νs since Δν = 1/T = νs/N

• Δt in time series and Δν in FFT are linked!

Plotting

• Plot real/imaginary part of coefficient array vs. frequency
array

• Note use of np.real() and np.imag() to convert complex
number (could also just use ft1.real and ft1.imag)

• Also useful: np.abs() to get magnitude

Magnitude vs. Freq.
• This is the key part of your last homework

Complex form Magnitude

Array indexing is your friend, but must be careful 
about ν = 0 point. Can do this very ‘brute force’…

Amplitude 1 at 10 Hz

