PHYS 391 Day 18

- FFT Quiz
- Windowing

Overview

- HW5 and Lab 5 both explore aspects of the FFT
- Discrete frequency coefficients
- Nyquist limit, and aliasing
- New today: windowing

Conceptual Questions

What is the primary reason for the following features of the discrete Fourier transform?

- Finite frequency components: Δν
- Nyquist limit/aliasing

Sampling Parameters

If we sample a waveform at 1 kHz for 0.5 seconds,

- How many total data points will we have?
- What is the Nyquist Limit?
- What frequency spacing will we have in our Fourier coefficients?

Aliasing

If we sample a waveform at 1 kHz for 0.5 seconds,

- What frequency will a 300 Hz signal appear to have?
- What frequency will a 600 Hz signal appear to have?
- What frequency will a 900 Hz signal appear to have?
- What frequency will a 1200 Hz signal appear to have?

Square Waves

We take an FFT of a square wave. The first peak in the spectrum is at 120 Hz with magnitude of 1 V.

- Where is the second peak (next highest frequency)?
- What is the amplitude of this second peak?
- Where is the 3rd peak?

You don't need to worry about aliasing here...

Fourier Transform

 $v_s = 50 \text{ Hz}, v_0 = 10 \text{ Hz}$

Fourier Transform

 $v_s = 50 \text{ Hz}, v_0 = 10.5 \text{ Hz}$

"Frequency Leakage"

Home Movies

Windowing - Conceptual

Sharp transitions lead to high frequencies

Windowing - Wikipedia

Spectral leakage caused by "windowing"

Hamming Window

Multiply time-series data by 'window'

```
import scipy.signal.windows as win
n = len(y1)
window = win.hann(n)
ywindowed = y1 * window
ft1 = np.fft.fft(ywindowed)/n
```


Normalized

$$v_s = 50 \text{ Hz}, v_0 = 10 \text{ Hz}$$

Must correct for overall attenuation of window

```
norm = sum(window) / n
ywindowed = y1 * window / norm
```

More Movies

Window comparisons

Boxcar or Rectangular Window

+10 dB = x10 in power or x20 in amplitude

Window comparisons

Hann Window

+10 dB = x10 in power or x20 in amplitude

Window comparisons

Flat Top Window

+10 dB = x10 in power or x20 in amplitude

Flattop

Freq. Resolution

 $v_s = 50 \text{ Hz}, v_0 = 10.5 \text{ Hz}, T = 3s$

Noise

Can you find the signal in here?

Noise

How about in the Fourier Transform?