Breakout Reminder

- For each new question/breakout session
- Previous leader is now the reporter
- Next person in alphabetical order is the new leader
- Agree on Leader and Reporter at the start
- Can divide up the work in any way the group decides, can have different people try different approaches

Error Prop. Reminder

- Valid for independent random errors (Chap. 3)
- Addition/subtraction

$$
\delta(x+y)=\sqrt{(\delta x)^{2}+(\delta y)^{2}}
$$

- Multiplication/division

$$
\frac{\delta(x y)}{x y}=\sqrt{\left(\frac{\delta x}{x}\right)^{2}+\left(\frac{\delta y}{y}\right)^{2}}
$$

- Exponentiation

$$
\frac{\delta\left(x^{n}\right)}{x^{n}}=n \frac{\delta x}{x}
$$

- General

$$
\delta[f(x, y)]=\sqrt{\left(\frac{\partial f}{\partial x} \delta x\right)^{2}+\left(\frac{\partial f}{\partial y} \delta y\right)^{2}}
$$

Question 1

You need to measure the volume of a cylinder. Your lab group measured the diameter as $x=1.20 \pm 0.12 \mathrm{~cm}$, and the length as $y=10.0 \pm 0.5 \mathrm{~cm}$.

- Find the measured volume of the cylinder (including uncertainty): $V=\pi / 4 x^{2} y$
- If you wanted to improve your accuracy, which dimension should you try to measure better?

Question 2

You want to find $\cos (\theta)$ and you have measured the angle $\theta=5 \pm 15$ degrees

- Do the error propagation using the general formula
- Does this answer make sense? Why or why not?
- How else might you evaluate the best value and uncertainty for $\cos (\theta)$?

