PHYS 391 — Poisson Distribution

Derivation from probability for rare events

This follows the arguments I was presenting in class. In the following we
can use v and n to indicate the probability that v events will occur in n
trials (or n individual nuclei in the case of radioactive decay). Equivalently,
we could make the substitution of n — ¢t and think of this as describing the
probability that some v events will occur within a given time ¢. Both cases
are governed by the Poisson distribution. The following will use the notation
for probability where P, (v) is the probability of observing v events out of n
trials. Because n is very large, we can consider this a continuous variable.

Starting with the probability of observing one event in a small sample An,

PAn(l) = )\An, (1)

with the assumption that An is small enough such that Pa,(2) =~ 0, we can
then write the probability for observing no events as the joint probability

Porian(0) = Py(0)Pan(0)
= Pu(0)[1 — Pan(1)]
= P,(0)[1 — \An)].
Collecting terms leads to
Poian(0) = Po(0) = —AARE,(0),
which in the limit of small An gives us the differential equation
AP,(0) dP,(0)

li = —A\P,(0).
A0 An dn (©)
This differential equation has a well-known solution given by
P, (0) = e, (2)

and we can identify the product An as the mean number of events expected
from n trials which we usually write as p. In other words, P,(0) = e *.
In the notation typically used in the Binomial distribution, A = p, or the
probability of a given outcome occurring in one trial, which makes sense
from the definition given in Equation 1.

To continue, we consider the probability of observing one event in a sample
n 4+ An, which can either occur by having one event in n and zero in An or
vice versa:

Pn+An(1) - Pn(l)PAn<O) + Pn(O)PAn(l) (3)
= P,(1)(1 — AAn) + P,(0)A\An.
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This can be rearranged as
Pn+An(1) - Pn(l) = _A(Pn(l) - PH(O))ATL,

or again in the limit of small An,

4P,(1)
dn
This recursive differential equation can be seen to be solved by P,(1) =

Ane ™ by explicitly taking the derivative with respect to n. Written in the
more familiar form, this gives P, (1) = pe™".

— —A(P,(1) — P,(0)).

Equation 4 can be generalized to any number of observed events v where
there are two ways to achieve this outcome, either v events in n trials followed
by zero in An, or v — 1 events in n trials followed by one in An. Because the
probability of two events in An is vanishingly small, we don’t need to worry
about any other terms. The equivalent of Equation 4 then can be written as

Poinn(v) = Py(v)Pan(0) + P, (v — 1) Pan(1)
= P,(v)(1 = AAn) + P,(p — 1)\An.

which leads to the general equation

dP,(v)
e —A(P,(v) — P,(v —1)). (4)
The solution to this equation is the Poisson distribution
n'\" _,
P,(v) = e A

which gives the more familiar form with the replacement p = nA.
Derivation from the Binomial distribution

Not surprisingly, the Poisson distribution can also be derived as a limiting
case of the Binomial distribution, which can be written as

n!

B,(v) = !p”(l —p)".

vliin —v)

To show this, we need two results in the limit of large n and small p.
The first is to show that

(1—p)" " =e™. (5)

This can be shown by taking the log of both sides and showing that they are



approximately equal in the large n, small p limit:

In[(1 =p)*™"] = —np

(n—v)In(l—p) = —np
(n —v)(=p) = —np (sincep < 1)
—np = —np (sincen > v)

The second is to show that

n!

O ~n’. (6)

This certainly makes sense, since for n = 100, = 2, the value 100!/98! =
100 x 99 is very close to 100?. To prove this we start with Stirlings approxi-
mation which says

In [(nf—'y),] —nlnn—n—(n—v)ln(n—v)+ (- o). (7)

Because n > v, we can make the approximation that In(n —v) = Inn +
In(1 —v/n) =Inn — v/n. Making this replacement into Equation 7 gives

!
In [ﬁ] = nlnn—n—(n—-v)(Inn—-v/n)+ (n—v)
= vinn —1*/n
= vinn,
which confirms Equation 6.

So making these two replacements from Equation 5 and Equation 6 into
the Binomial distribution gives

n!

B y(v) = mﬁ”(l—P)n_y
1
—~ v v, —np
~on—ple
~ /,L_Ve_u7
V!

where we have identified that u = np from the original Binomial distribution.



