
PHYS 391 – Poisson Distribution

Derivation from probability for rare events
This follows the arguments I was presenting in class. In the following we

can use ν and n to indicate the probability that ν events will occur in n
trials (or n individual nuclei in the case of radioactive decay). Equivalently,
we could make the substitution of n → t and think of this as describing the
probability that some ν events will occur within a given time t. Both cases
are governed by the Poisson distribution. The following will use the notation
for probability where Pn(ν) is the probability of observing ν events out of n
trials. Because n is very large, we can consider this a continuous variable.

Starting with the probability of observing one event in a small sample ∆n,

P∆n(1) = λ∆n, (1)

with the assumption that ∆n is small enough such that P∆n(2) ≈ 0, we can
then write the probability for observing no events as the joint probability

Pn+∆n(0) = Pn(0)P∆n(0)

= Pn(0)[1− P∆n(1)]

= Pn(0)[1− λ∆n].

Collecting terms leads to

Pn+∆n(0)− Pn(0) = −λ∆nPn(0),

which in the limit of small ∆n gives us the differential equation

lim
∆n→0

∆Pn(0)

∆n
=
dPn(0)

dn
= −λPn(0).

This differential equation has a well-known solution given by

Pn(0) = e−λn, (2)

and we can identify the product λn as the mean number of events expected
from n trials which we usually write as µ. In other words, Pn(0) = e−µ.
In the notation typically used in the Binomial distribution, λ = p, or the
probability of a given outcome occurring in one trial, which makes sense
from the definition given in Equation 1.

To continue, we consider the probability of observing one event in a sample
n + ∆n, which can either occur by having one event in n and zero in ∆n or
vice versa:

Pn+∆n(1) = Pn(1)P∆n(0) + Pn(0)P∆n(1) (3)

= Pn(1)(1− λ∆n) + Pn(0)λ∆n.
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This can be rearranged as

Pn+∆n(1)− Pn(1) = −λ(Pn(1)− Pn(0))∆n,

or again in the limit of small ∆n,

dPn(1)

dn
= −λ(Pn(1)− Pn(0)).

This recursive differential equation can be seen to be solved by Pn(1) =
λne−λn by explicitly taking the derivative with respect to n. Written in the
more familiar form, this gives Pn(1) = µe−µ.

Equation 4 can be generalized to any number of observed events ν where
there are two ways to achieve this outcome, either ν events in n trials followed
by zero in ∆n, or ν− 1 events in n trials followed by one in ∆n. Because the
probability of two events in ∆n is vanishingly small, we don’t need to worry
about any other terms. The equivalent of Equation 4 then can be written as

Pn+∆n(ν) = Pn(ν)P∆n(0) + Pn(ν − 1)P∆n(1)

= Pn(ν)(1− λ∆n) + Pn(µ− 1)λ∆n.

which leads to the general equation

dPn(ν)

dn
= −λ(Pn(ν)− Pn(ν − 1)). (4)

The solution to this equation is the Poisson distribution

Pn(ν) =
nνλν

ν!
e−nλ,

which gives the more familiar form with the replacement µ = nλ.
Derivation from the Binomial distribution

Not surprisingly, the Poisson distribution can also be derived as a limiting
case of the Binomial distribution, which can be written as

Bn,p(ν) =
n!

ν!(n− ν)!
pν(1− p)n−ν.

To show this, we need two results in the limit of large n and small p.
The first is to show that

(1− p)n−ν ≈ e−np. (5)

This can be shown by taking the log of both sides and showing that they are
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approximately equal in the large n, small p limit:

ln[(1− p)n−ν] = −np
(n− ν) ln (1− p) = −np

(n− ν)(−p) = −np (since p� 1)

−np = −np (sincen� ν)

The second is to show that

n!

(n− ν)!
≈ nν. (6)

This certainly makes sense, since for n = 100, ν = 2, the value 100!/98! =
100× 99 is very close to 1002. To prove this we start with Stirlings approxi-
mation which says

ln

[
n!

(n− ν)!

]
= n lnn− n− (n− ν) ln(n− ν) + (n− ν). (7)

Because n � ν, we can make the approximation that ln(n − ν) = lnn +
ln(1− ν/n) = lnn− ν/n. Making this replacement into Equation 7 gives

ln

[
n!

(n− ν)!

]
= n lnn− n− (n− ν)(lnn− ν/n) + (n− ν)

= ν lnn− ν2/n

= ν lnn,

which confirms Equation 6.
So making these two replacements from Equation 5 and Equation 6 into

the Binomial distribution gives

Bn,p(ν) =
n!

ν!(n− ν)!
pν(1− p)n−ν

≈ nν
1

ν!
pνe−np

≈ µν

ν!
e−µ,

where we have identified that µ = np from the original Binomial distribution.
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