PHYS 391 - Poisson Distribution

Derivation from probability for rare events

This follows the arguments I was presenting in class. In the following we can use ν and n to indicate the probability that ν events will occur in n trials (or n individual nuclei in the case of radioactive decay). Equivalently, we could make the substitution of $n \rightarrow t$ and think of this as describing the probability that some ν events will occur within a given time t. Both cases are governed by the Poisson distribution. The following will use the notation for probability where $P_{n}(\nu)$ is the probability of observing ν events out of n trials. Because n is very large, we can consider this a continuous variable.

Starting with the probability of observing one event in a small sample Δn,

$$
\begin{equation*}
P_{\Delta n}(1)=\lambda \Delta n, \tag{1}
\end{equation*}
$$

with the assumption that Δn is small enough such that $P_{\Delta n}(2) \approx 0$, we can then write the probability for observing no events as the joint probability

$$
\begin{aligned}
P_{n+\Delta n}(0) & =P_{n}(0) P_{\Delta n}(0) \\
& =P_{n}(0)\left[1-P_{\Delta n}(1)\right] \\
& =P_{n}(0)[1-\lambda \Delta n]
\end{aligned}
$$

Collecting terms leads to

$$
P_{n+\Delta n}(0)-P_{n}(0)=-\lambda \Delta n P_{n}(0),
$$

which in the limit of small Δn gives us the differential equation

$$
\lim _{\Delta n \rightarrow 0} \frac{\Delta P_{n}(0)}{\Delta n}=\frac{d P_{n}(0)}{d n}=-\lambda P_{n}(0) .
$$

This differential equation has a well-known solution given by

$$
\begin{equation*}
P_{n}(0)=e^{-\lambda n}, \tag{2}
\end{equation*}
$$

and we can identify the product λn as the mean number of events expected from n trials which we usually write as μ. In other words, $P_{n}(0)=e^{-\mu}$. In the notation typically used in the Binomial distribution, $\lambda=p$, or the probability of a given outcome occurring in one trial, which makes sense from the definition given in Equation 1.

To continue, we consider the probability of observing one event in a sample $n+\Delta n$, which can either occur by having one event in n and zero in Δn or vice versa:

$$
\begin{align*}
P_{n+\Delta n}(1) & =P_{n}(1) P_{\Delta n}(0)+P_{n}(0) P_{\Delta n}(1) \tag{3}\\
& =P_{n}(1)(1-\lambda \Delta n)+P_{n}(0) \lambda \Delta n .
\end{align*}
$$

This can be rearranged as

$$
P_{n+\Delta n}(1)-P_{n}(1)=-\lambda\left(P_{n}(1)-P_{n}(0)\right) \Delta n,
$$

or again in the limit of small Δn,

$$
\frac{d P_{n}(1)}{d n}=-\lambda\left(P_{n}(1)-P_{n}(0)\right)
$$

This recursive differential equation can be seen to be solved by $P_{n}(1)=$ $\lambda n e^{-\lambda n}$ by explicitly taking the derivative with respect to n. Written in the more familiar form, this gives $P_{n}(1)=\mu e^{-\mu}$.

Equation 4 can be generalized to any number of observed events ν where there are two ways to achieve this outcome, either ν events in n trials followed by zero in Δn, or $\nu-1$ events in n trials followed by one in Δn. Because the probability of two events in Δn is vanishingly small, we don't need to worry about any other terms. The equivalent of Equation 4 then can be written as

$$
\begin{aligned}
P_{n+\Delta n}(\nu) & =P_{n}(\nu) P_{\Delta n}(0)+P_{n}(\nu-1) P_{\Delta n}(1) \\
& =P_{n}(\nu)(1-\lambda \Delta n)+P_{n}(\mu-1) \lambda \Delta n .
\end{aligned}
$$

which leads to the general equation

$$
\begin{equation*}
\frac{d P_{n}(\nu)}{d n}=-\lambda\left(P_{n}(\nu)-P_{n}(\nu-1)\right) \tag{4}
\end{equation*}
$$

The solution to this equation is the Poisson distribution

$$
P_{n}(\nu)=\frac{n^{\nu} \lambda^{\nu}}{\nu!} e^{-n \lambda}
$$

which gives the more familiar form with the replacement $\mu=n \lambda$.

Derivation from the Binomial distribution

Not surprisingly, the Poisson distribution can also be derived as a limiting case of the Binomial distribution, which can be written as

$$
B_{n, p}(\nu)=\frac{n!}{\nu!(n-\nu)!} p^{\nu}(1-p)^{n-\nu}
$$

To show this, we need two results in the limit of large n and small p.
The first is to show that

$$
\begin{equation*}
(1-p)^{n-\nu} \approx e^{-n p} \tag{5}
\end{equation*}
$$

This can be shown by taking the log of both sides and showing that they are
approximately equal in the large n, small p limit:

$$
\begin{aligned}
\ln \left[(1-p)^{n-\nu}\right] & =-n p \\
(n-\nu) \ln (1-p) & =-n p \\
(n-\nu)(-p) & =-n p(\text { since } p \ll 1) \\
-n p & =-n p(\text { since } n \gg \nu)
\end{aligned}
$$

The second is to show that

$$
\begin{equation*}
\frac{n!}{(n-\nu)!} \approx n^{\nu} \tag{6}
\end{equation*}
$$

This certainly makes sense, since for $n=100, \nu=2$, the value $100!/ 98$! $=$ 100×99 is very close to 100^{2}. To prove this we start with Stirlings approximation which says

$$
\begin{equation*}
\ln \left[\frac{n!}{(n-\nu)!}\right]=n \ln n-n-(n-\nu) \ln (n-\nu)+(n-\nu) \tag{7}
\end{equation*}
$$

Because $n \gg \nu$, we can make the approximation that $\ln (n-\nu)=\ln n+$ $\ln (1-\nu / n)=\ln n-\nu / n$. Making this replacement into Equation 7 gives

$$
\begin{aligned}
\ln \left[\frac{n!}{(n-\nu)!}\right] & =n \ln n-n-(n-\nu)(\ln n-\nu / n)+(n-\nu) \\
& =\nu \ln n-\nu^{2} / n \\
& =\nu \ln n
\end{aligned}
$$

which confirms Equation 6.
So making these two replacements from Equation 5 and Equation 6 into the Binomial distribution gives

$$
\begin{aligned}
B_{n, p}(\nu) & =\frac{n!}{\nu!(n-\nu)!} p^{\nu}(1-p)^{n-\nu} \\
& \approx n^{\nu} \frac{1}{\nu!} p^{\nu} e^{-n p} \\
& \approx \frac{\mu^{\nu}}{\nu!} e^{-\mu},
\end{aligned}
$$

where we have identified that $\mu=n p$ from the original Binomial distribution.

