
PHYS 391 – Lab 3: Brownian Motion

Key Concepts

• Brownian Motion and Diffusion

• Video Analysis Techniques

• Statistical Description of Data

• Least-Squares Fitting

3.1 Introduction

The random motion of small particles when suspended in a liquid or gas has been recognized at least as
long ago as 60 BC when the Roman Lucretius described this in the poem On the Nature of Things and used
this as evidence for the existence of atoms. The name Brownian motion comes from the Scottish botanist
Robert Brown, who made detailed observations of the motion of pollen in liquids under a microscope. In
1905, Einstein published a paper on Brownian motion (in addition to papers on special relativity and the
photoelectric effect) providing a model for the phenomenon based on the kinetic theory of heat which tied
together the Boltzmann constant, Avogadro’s number, and gave some of the first hard evidence for the
existence of atoms (in the modern sense of the word).

3.2 Goals of this Lab

This lab will analyze Brownian motion. By measuring the diffusion coefficient of micron-sized silicon spheres,
a direct measurement of the Boltzmann constant will be inferred, thus testing the model of Brownian motion
proposed by Einstein. You will hand in your own ipython notebook with markdown boxes for discussion
prompted in the following sections.

3.3 Theory

3.3.1 A Statistical Description of a Random Walk

Our model for Brownian motion is the constant collisions of silicon micro-spheres with water molecules. In
one dimension, each collision can be approximated as an impulse which causes the particle to either move
left or right with equal probability. For a series of n random steps, the probability of observing k steps to
the left (and n− k steps to the right) is equivalent to the probability of flipping heads on a coin k times out
of n trials. This is also sometimes called a Random Walk. The probability of observing k out of n discrete
events is described by the Binomial distribution

n!

k!(n− k)!
pk(1− p)n−k

where p is the probability of a single discrete outcome and (1-p) is probability of the other discrete outcome.
For an equally likely process (p = 0.5) like flipping a coin or a 1D random walk, this probability reduces to

n!

k!(n− k)!

1

2n

which in the limit of large n can be approximated very well by a Gaussian distribution with mean µ = n/2
and σ =

√
n/2.
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3.3.2 Relating Variance to the Diffusion Constant

If we want to think about the net displacement of our particle in one dimension ∆x = (x2 − x1) over some
time interval ∆t = (t2 − t1), the model predicts this displacement will follow a Gaussian distribution with
mean µ = 0 and some characteristic width σ2

x = 2D∆t where D is defined as the diffusion constant, which
is simply a parameter which characterizes this motion for a given particle. The factor of 2 is included by
convention. Even though in reality each collision imparts a varying amount of momentum to the object, the
many collisions in any short time period can be viewed as an ensemble with an average value and variance,
and the model of a random walk with a constant mean step size δ occurring every fixed time period τ still

works well. Using the variance of the binomial distribution given above, one can then derive D = δ2

2τ .
Observing Brownian motion, then, should lead to the following two results which are to be verified

in this lab. The average displacement in any one dimension is ∆x = 0, which is to say on average the
particle doesn’t go anywhere, as it is equally probable to move in one direction or the other. The average
squared displacement (∆x)2 = σ2

x = 2D∆t (see 1) however is non-zero, which is to say that the particle
does on average travel some absolute distance from where it started, and that distance, given by the average
RMS displacement, increases with time as

√
2D∆t. The motion of any specific particle can not be predicted,

but if you were to look at the average motion of a series of particles, you should observe this characteristic
statistical behavior. This notion of the statistical characteristics of a large ensemble of particles is central to
the entire premise of thermodynamics and statistical mechanics.

For more dimensions, we should analyze the displacement in r rather than the 1D displacement in x. Since
the motion in each dimension is uncorrelated, and r2 = x2+y2+z2, we immediately arrive at (∆r)2 = 6D∆t
in 3 dimensions, and (∆r)2 = 4D∆t in 2 dimensions.

3.3.3 Relating the Diffusion Constant to Thermal Energy

The diffusion constant D depends on the size and shape of the diffusing particle, plus the nature of the
medium it is suspended in. By thinking about drag forces, Einstein derived the relationship

Df = kBT

where f if the drag coefficient relating the drag force to the velocity through the fluid (Fdrag = fv) and kBT
is the usual Boltzmann factor from statistical mechanics. One might think of this expression as relating the
thermal kinetic energy of the particles to the energy lost to diffusion through the medium (likely through
collisions with it). The Stokes formula gives the drag coefficient for a sphere in terms of the viscosity of the
fluid and the radius of the sphere, R, as

f = 6πηR

where η is the viscosity of the fluid at temperature T . At room temperature, water has a nominal viscosity
of η = 1.0 × 10−3 Pa s in SI units2. In practice, then, measuring the diffusion of a particle of known size
from Brownian motion allows for a direct measurement of the Boltzmann constant kB .

3.3.4 Measure Long-term Motion of a Single Particle (instead)

To observe and quantitatively characterize Brownian motion in the lab, we would really like to measure the
average RMS motion of many different particles as a function of time. That is to say, we want to measure a
large number of random walks and calculate the RMS displacement on average since any one random walk
may deviate significantly from the average. In practice, this approach is rather tedious and involves a huge
amount of time and labor collecting data. Since the net displacement of a single particle over two different
time intervals is independent, an equivalent prescription is to track a single particle for a long time and
compare the size of the individual displacements over each time slice ∆t. The use of a computer-controlled
camera to take pictures at regular time intervals makes this technique particularly convenient.

1Remember, σ2
x = (∆x)2 − (∆x)2, but in this case the mean displacement ∆x = 0.

2The units are Pascal seconds, or pressure multiplied by time
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3.4 Observing Brownian Motion

Your TA will show you a video captured with an OMAX microscope displaying a slide containing deionized
water with silicon microspheres in suspension. The diameter of these microspheres will be posted on the lab
website, along with the frame rate of the video. You can assume that the solution was at room temperature
when the data was recorded. There should be enough spheres that you can easily see several in the microscope
frame, but not so many that they can’t be distinguished. The visible motion in the video is in the horizontal
plane. Vertical diffusion will cause the small beads to move out of the focal plane, and this does happen,
causing individual particles to disappear and reappear over time. The focal depth of our microscope is wide
enough that this isn’t a significant problem.

The general procedure for recording data is to start with a lower magnification (x10) to get things mostly
centered before switching to the higher magnification (x40 or x100) that will be used. The microscope has
an adjustable light along with a translational stage and a focus mechanism that has been used to find the
beads and generate a reasonable contrast in the video.

Discuss with your TA and peers ideas for what kind of systematic effects may have impacted the video
capture.

3.4.1 Video Capture

The video capture was performed using a command-line tool imagesnap that takes pictures automatically
at a given interval, and then these images are merged into a movie using tlassemble. Several time-lapse
movies with reasonable periods (data was taken at both ∆t = 1 and 5 seconds) and magnifications were
taken over a long enough time to get at least 100 frames. Note that the frame rate in the final movie is not
necessarily the actual data sampling rate. In many cases, the movie was sped up so that the movie could be
watched in a shorter amount of time. Your TA will assist you in analyzing one of the data videos. Make sure
to check the resolution – it should be 640x480, which is the default camera resolution used by imagesnap.

3.4.2 Data Extraction

To do any meaningful statistical analysis, we need to measure the position of a particle undergoing Brownian
motion. To convert the movie from the microscope into position measurements, we will use the trackpy

package in python.
Your TA will take you through the provided Jupyter notebook with the basics of this process. Together

as a group you will adjust the particle tracking parameters to identify the microspheres (and not just noise)
and finally extract the trajectory of one (or a few) microspheres to analyze further into a text file. Once you
have vectors of x and y positions (or ∆x and ∆y) your TA will save these data to a file and provide it to
you so you can read it back for further analysis later.

Do make sure to include a description of the relevant parameter settings for the video you used, along
with a figure of the final particle trajectory which you analyzed.

3.4.3 Calibration Slide

In order to determine the length scale of the movie taken by the camera, a calibration image needs to be
taken of some object of known length. A video capture of a Motic calibration slide was also taken; the length
scale is 10 microns / division. There isn’t any information on the accuracy of this calibration target, and we
will assume the uncertainty is negligible.

A Jupyter notebook is provided that demonstrates how to read in this calibration image and display it
in matplotlib. The images are naturally recorded by pixels, but we need to convert each pixel to a physical
location with a known length scale. Use the calibration image to find a calibration factor to convert pixels
into a physically meaningful length. Because we are looking at small objects, microns (µm) are probably
the most convenient length unit to use. It is best to take data that will allow you to check the x and y
calibration independently, so you should have at least two points separated by a known distance in x, and
two other points separated by a known distance in y.

Record the distances both in pixels (from Jupyter) and in actual length units. Make sure you have
an estimate for the uncertainty in your calibration procedure. Check whether your calibration (best is to
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report this in units of microns/pixel) appears to be the same in both directions. Make sure to provide this
information and any relevant discussion in your final Jupyter notebook.

3.5 Data Analysis

Everything up to this point you will do as a lab section, with your TA. From here on, everything can be done
in python. Students may collaborate, but the discussion in your notebook should be unique. It is easiest if
your analysis starts with the CSV file you exported above.

3.5.1 Data Calibration

The data you have collected is recorded as positions (in pixels) and time by the frame number. You will
need to calibrate this data into a proper length, and also make sure to keep track of the ∆t between frames
from the time-lapse video capture settings.

Write down clearly what calibration parameters you are using for positions and how you determined
these. Discuss how uncertain you think these length-scale calibrations might be, and explain whether you
have used a common calibration parameter for x and y, or separate calibrations for each.

3.5.2 Dispersion

We want to quantitatively measure the dispersion relation for Brownian motion. Read your raw data into
python, calibrate the data as necessary, and write a script which turns the N position values in x and y into
N − 1 displacement values where each displacement is ∆xi = xi − xi−1. A handy trick to do this without
looping over all values is to make two copies of the same data, remove the first element from one and the last
element from the other, then subtract the two arrays. Make displacement arrays for both x and y separately.

Make histograms of these arrays (∆x and ∆y), and analyze this data to find the mean and standard
deviation for each. For each direction, is the mean statistically consistent with zero? Is the standard deviation
for ∆x consistent with ∆y? Use what we have learned in class to be as quantitative here as possible. In
other words, how probable is it that the measured widths in x and y correspond to the same fundamental
value?

From your data, evaluate your best measured value for the dispersion constant D (including uncertainty).
Explain in detail how you arrived at this result from your experimental data (describing the combination
procedure and error propagation, for instance), and discuss which uncertainties dominate the final result.
Remember that your calibration scale uncertainty may also effect the uncertainty on D.

3.5.3 Boltzmann Constant

Using what we know from Stokes Law (given in the introduction) convert your measurement of D into
a measurement of the Boltzmann constant kB . To estimate the uncertainty on kB , explicitly write down
each value which is needed to compute kB (with uncertainty) and explicitly write out the error propagation
formula for δkB . In your error analysis, include any reasonable estimates of systematic uncertainties which
may be important (or argue why they are not important). Quantitatively compare your measured value to
the accepted value of kB = 1.38 × 10−23 J/K. You should quote how many standard deviations away your
result is from the accepted value, and you should also indicate how probable that discrepancy is.

3.5.4 Time Evolution

We also want to empirically verify the time dependence predicted by the dispersion relation given above. In
particular, we would like to see that the RMS displacement grows as

√
∆t. To avoid having to take more

movies with different ∆t intervals, instead we can analyze our data by making displacement measurements
over longer time intervals. If instead of calculating ∆xi = xi − xi−1 we calculate ∆xi = xi − xi−2, we have
effectively doubled the interval ∆t.

Measure the RMS displacement as you did before, but now do this separately for several different ∆t
intervals (at least four). Put these values into a table and include the uncertainties on σ2 in each case. Note
that in principle these data for different ∆t intervals are not strictly independent, but I suspect you won’t
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notice the difference. You should be able to demonstrate a linear relationship between the variance of your
displacement data and the time interval according to σ2 = 2D∆t.

Make a scatter plot of your data and perform a linear fit to the data. How does the value of D found
here (including an uncertainty) compare to the value of D that you measured in Section 3.5.2? Is there
any evidence of deviations from the expected linear behavior? Make sure you are really plotting the correct
things.

3.6 Final Thoughts

Brownian motion was one of the first phenomena which gave direct evidence for the atomic nature of matter.
By combining measurements of the Boltzmann constant in Brownian motion with PV measurements using
the ideal gas law, physicists were able for the first time to get a direct estimate of Avogadro’s number. Even
knowing the order of magnitude of Avogadro’s number was a major achievement at the time, and opened
the door to many modern concepts which all derived from the understanding of the atomic nature of matter.
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