Day 4

Impedance
Homework

56
Chapter 1. Resistors

The resistance to ground in this circuit is given by taking resistors R and $R + R_e$ in parallel, with the result in series with a resistor R. Equating these two results, we have

$$R + R_e = R + R(R + R_e)^2.$$ \hspace{1cm} (1.123)

Simplifying this and defining $R = R_e/R$, we can write this equation as

$$R^2 + R = 0.$$ \hspace{1cm} (1.124)

This equation has one positive root, namely

$$R = 5 + \frac{1}{2},$$ \hspace{1cm} (1.125)

which is called the inverse golden mean. Thus,

$$R_e = 5 + \frac{1}{2} R,$$ \hspace{1cm} (1.126)

or the total resistance to ground from the point V is given by the golden mean times R, or

$$R + R_e = 5 + \frac{1}{2} R,$$ \hspace{1cm} (1.127)

Problem 1.12

Consider the circuit below, with 3 cascaded voltage dividers (not all the same).

(a) Compute V_{out}.

(b) Compute the current in each one of the resistors in the circuit, assuming no load connected to V_{out}.

Solution 1.12

(a) Replacing the first divider by the Thévenin equivalent, we obtain the following equivalent circuit:

7. Find the Thévenin equivalent of the circuit shown below. Note that the arrow indicates a current source, which is just a device that provides the constant current indicated. [Ex. 1.38, H&H]
Question 1

Find the amplitude of the transfer function for this circuit and find the high and low frequency limits.
Bode Plot

Log-Log plot of Amplitude vs. Frequency

This is a Low-pass filter

Because the integrator “passes” low frequencies without attenuation, and “rolls off” high frequencies, it is called a low-pass filter.

2.3.6 Example Problem: Alternate Scaling

What is the scaling of -3 dB/octave, expressed in dB/decade?

Solution. This is still a scaling of -3 dB. A decade is a factor of 10, which means a factor of 10 reduction in amplitude, or $20 \log_{10} (1/10) = -20 \text{ dB}$, so -20 dB/decade.

2.3.7 Example Problem: High-Pass Filter

Consider the differentiator from Section 2.2.2.

In doing this problem you should see why this is also called a high-pass filter.

(a) Compute $\tilde{T}(\omega)$. (b) Compute $\tilde{T}(\epsilon)$. (c) Work out the low- and high-frequency asymptotics of $\tilde{T}(\omega)$. (d) Find $f_{3 \text{ dB}}$.

Solution. (a) Using the voltage-divider formula again,

$$\tilde{T}(\omega) = \frac{\tilde{V}_{\text{out}}}{\tilde{V}_{\text{in}}} = \frac{R}{R + \omega C} = \frac{1}{1 + \omega RC}.$$

(2.48)
Question 2

Find the input and output impedance of this circuit
Inductors
Question

What would this do?

Use your *qualitative* understanding of impedance...
Ringing
Resistors

Size generally correlated to power capability
Colors specify nominal resistance
Resistor Fun

What resistance is this?
Resistor Fun

What resistance is this?

Green
5

Blue
6

Orange
3
Resistor Fun

What resistance is this?

Green 5
Blue 6
Orange 3

\[R = 56 \times 10^3 = 56 \, \text{k}\Omega \]

(5% accuracy)
Resistor Fun

How about these?
Resistor Fun

How about these?

Yellow 4
Purple 7
Brown 1

\[R = 47 \times 10^1 = 470 \ \Omega \]
Oscilloscope

200 MHz, 100 MHz, 70 MHz, 50 MHz Bandwidth Models

2- and 4-channel Models

Up to 2 GS/s Sample Rate on All Channels

2.5k point Record Length on All Channels

Advanced Triggers including Pulse Width Trigger and Line-selectable Video Trigger

Ease-of-Use Features

- 16 Automated Measurements, and FFT Analysis for Simplified Waveform Analysis
- Built-in Waveform Limit Testing
- Automated, Extended Data Logging Feature
- Autoset and Signal Auto-ranging
- Built-in Context-sensitive Help
- Probe Check Wizard
- Multiple-language User Interface

5.7 in. (144 mm) Active TFT Color Display

Small Footprint and Lightweight – Only 4.9 in. (124 mm) Deep and 4.4 lb.

Connectivity

- USB 2.0 Host Port on the Front Panel for Quick and Easy Data Storage
- USB 2.0 Device Port on Rear Panel for Easy Connection to a PC or Direct Printing to a PictBridge®-compatible Printer

Includes National Instrument’s LabVIEW SignalExpress™ TE Limited Edition and Tektronix OpenChoice® Software for Connecting Your Bench

Lifet ime Warranty

*1 Limitations apply. For terms and conditions, visit www.tektronix.com/lifetimewarranty.