
PIC Software UART Routines
© 2005 by Datadog Systems Author John Massa

UARTs

A UART (Universal Asynchronous Receive/Transmit) is a hardware or software mechanism which
enables a microcontroller to receive/send serial communications, usually with RS232 hardware.

RS232

RS232 (Revised Standard 232) is a hardware standard specifying the connector pins and the
voltage levels used by some serial communication devices, such as the ASR33 teletype machine
first used circa 1941. This standard is still popular today, although the original 25-pin connector
was replaced by IBM with a 9-pin miniature ‘D’ connector, which is today’s ‘de facto’ standard.
The voltage levels describe a ‘MARK’ (i.e.: A logic 1) and a ‘SPACE’ (i.e.: A logic 0). A MARK is
the idle signal level and is any voltage between –3 Volts and –15 Volts. A SPACE is the high
signal level and is any voltage between +3 Volts and +15 Volts.

RS232 Protocol

The RS232 protocol is a serial method of sending one single ‘frame’ at a time. A frame is defined
as a ‘start-bit’, a 7-bit ASCII character, a ‘parity-bit’ and one or more ‘stop-bits’. ASCII is the
American Standard Code for Information Interchange. A frame may be sent immediately following
the previous frame, or sent sometime later, as in the case of a slow typist. See the frame below
containing the character ‘A’. Note: The character ‘A’ has the same bits as the hexadecimal value
h’41’ and/or the binary value b’01000001’:

Figure 1 – The top drawing is the character ‘A’ as it is received from, or sent to, an RS232
connector. The bottom drawing is the same signal sent to, or received from, a level-changing
inverter, such as the popular MAX232 chip. See the drawing below.

The Parity-Bit

A parity-bit is appended to the 7-bit ASCII character for error detection purposes. There are four
types of parity: 1) Odd parity (O), where the parity-bit is added, or not, to make the total number
of bits in the frame ‘odd’. 2) Even parity (E), where the parity-bit is added, or not, to make the total
number of bits even. 3) Parity stuck ‘on’, is where the parity bit is always a logic ‘1’. 4) Parity
‘none’ (N) is where the parity bit is always a logic ‘0’. This latter convention is popular today, and
more modern methods of error detection replace parity, such as using a ‘check-sum’ character
following 255 frames, or a Cyclic Redundancy Character (CRC) after a larger number of frames.

PIC Software UART Routines (Continued)

Listed below are five PIC UART software routines to use with PIC microprocessors that have no
hardware UART:

1) INCH This routine inputs RS232 directly from the RS232 connector, through a 22K Ohm
resistor. This method is used where economy is a higher priority then reliability. Any PIC I/O
pin can be used.

2) INCH_N This routine inputs RS232 from a level-changing inverter such as the MAX232.
This method is used with far (~10-Meter) distances where electrical noise may be problem.
Any PIC I/O pin can be used.

3) OUTCH This routine outputs RS232 directly to the RS232 connector. This method is used
where economy is a higher priority than reliability. Any PIC output pin can be used.

4) OUTCH_N This routine outputs RS232 to a level changing inverter such as the MAX232.
This method is used with far (~10-Meter) distances where electrical noise may be a problem.
Any PIC output pin may be used.

5) BAUD This routine sets the Baud-rate to standard speeds.

These five software routines are listed below. The I/O pins are named after the PIC10F names.
You need to rename these I/O pins to match other models of PIC microcontrollers, such as to
PORTA,1 and etc. Also, change the Baud-rate constant in the BAUD routine to suit the Baud-
rate required by your specific application. Use a ‘straight-thru’ cable to connect to your PC, do
not use a ‘null-modem’ cable. Short the RS232 connector pins 1, 7 & 8 and 6 & 4 as shown.

Remember that while transmitting or receiving a character, the software UART totally consume
the PIC resources. And the only time you have to store a received character or to go get a
character to transmit, is the time between the last frame’s ‘stop-bit’ and the next frame’s ‘start-bit’.
Work-arounds include: Using slow Baud-rates, placing a delay between frames,, or sending a
group of frames as a ‘packet’. With packets, you immediately store each incoming character in a
separate RAM location until the entire packet is received, before attempting to process any of
them.

Also remember to set the tristate register TRIS so that the PIC’s RX pin is an input and that the
PIC’s TX pin is an output.

These routines have been successfully tested with Baud-rates as high as 38.4 Kbaud.

Figure 2 – Illustrating which PIC software UART routines to use with which circuits.

PIC Software UART Routines (Continued)

; **
; INCH ROUTINE
; THIS ROUTINE INPUTS RS232 DATA USING A 22K OHM RESISTOR, NO LEVEL-
; CHANGING INVERTER IS USED. GPIO,3 = RX (MARK = 0, SPACE = 1).
; THIS ROUTINE USES A 8-DATA BIT PER CHARACTER PROTOCOL.
; TO RECIEVE A CHARACTER, CALL inch. THE RECEIVED CHARACTER IS PLACED
; IN THE REG 'W' AND IN THE REG 'SERBUF'.
; CHARACTER WILL ECHO IF 'retlw 0' IS REM-ED OUT.
; VARIABLES USED: REG 'TEMP' AND REG 'SERBUF' BOTH VARIABLES ARE
; SHARED WITH THE 'outch' ROUTINE
; ROUTINES CALLED: 'half_baud' AND 'baud' FOR THE BAUD-RATE TIMING.
; **
inch
 btfss GPIO,3 ; SKIP ON START BIT = "SPACE" (+RS232)
 goto inch ; ELSE KEEP LOOKING FOR A START BIT
 movlw d'08' ; START SERIAL INPUT SEQUENCE
 movwf TEMP ; COLLECT 8 DATA BITS
 clrf SERBUF ; CLEAR SERIAL CHARACTER BUFFER
 call half_baud ; DELAY FOR ONE HALF BAUD TIME
 btfss GPIO,3 ; FALL THRU IF START BIT STILL = "SPACE"
 goto inch ; ELSE IT WAS JUST A NOISE SPIKE, LOOP
inch1
 call baud ; DELAY ONE BAUD-BIT TIME (= 1/BAUD-RATE)
 bcf STATUS,0 ; CLEAR THE CARRY BIT
 rrf SERBUF,F ; ROTATE CRY -> MSB, ROTATE MSB RIGHT
 btfss GPIO,3 ; IS INPUT = "SPACE" (+RS232) ?
 bsf SERBUF,7 ; ...SKIP IF YES, ELSE SET BIT TO LOGIC '1'
 decfsz TEMP,F ; EIGHT COUNTS YET?
 goto inch1 ; ...NO, GET ANOTHER BIT
 call baud ; DELAY FOR THE FIRST STOP BIT
 movf SERBUF,W ; Put the character in reg 'W'
 retlw 0 ; NOTE: REM THIS OUT IF YOU NEED AN "ECHO"
 ; ...AND FALL THROUGH TO THE 'OUTCH' ROUTINE
Continued on the next page

PIC Software UART Routines (Continued)

; **
; OUTCH ROUTINE
; THIS ROUTINE OUTPUTS RS232 DATA WITHOUT AN INVERTER
; THIS ROUTINE USES AN 8-DATA BIT PER CHARACTER PROTOCOL
; TO PRINT A CHARACTER, LOAD BYTE INTO REG 'W' and CALL OUTCH
; GPIO,2 = TX (MARK = 0, SPACE = 1) ; USE NO INVERTER ON THE OUTPUT.
; VARIABLES USED: 'TEMP' AND SHARE REG 'SERBUF' WITH THE ROUTINE 'inch'
; CALLS THE ROUTINE 'baud' FOR THE BAUD-RATE TIMING.
; **
outch ; THIS ROUTINE USES 8 DATA BITS
 movwf SERBUF ; SERBUF CONTAINS CHARACTER TO XMT
 movlw 8 ; THE CHARACTER HAS 8 BITS
 movwf TEMP
 bsf GPIO,2 ; SET START-BIT TO A "SPACE"
 call baud ; WAIT ONE BAUD TIME
outch1
 rrf SERBUF,F ; ROTATE THE FIRST BIT INTO CARRY
 btfss STATUS,0 ; TEST THE CARRY BIT
 bsf GPIO,2 ; IF BIT IS 0 SET OUTPUT PIN TO A "1" (SPACE)
 btfsc STATUS,0 ; TEST THE CARRY BIT AGAIN
 bcf GPIO,2 ; IF BIT IS 1 SET OUTPUT PIN TO A "0" (MARK)
 call baud ; ONE BAUD-BIT DELAY
 decfsz TEMP,F ; IF COUNT IS ZERO THEN XMIT A STOP BIT
 goto outch1 ; ...ELSE XMIT NEXT BIT

 rrf SERBUF,F ; ROTATE CARRY, GET THE MSB BACK INTO BIT 7
 bcf GPIO,2 ; SET PIN TO A "MARK"(-RS232) FOR THE STOP BIT
 call baud ; FIRST BAUD-BIT DELAY
 call baud ; SECOND BAUD-BIT DELAY
 retlw 0 ; RETURN WITH THE CHARACTER IN SERBUF

Continued on the next page.

PIC Software UART Routines (Continued)

; **
; BAUD ROUTINE @ 4 MHz
; BAUD RATE: CONSTANT:
; 1200 Baud D'137'
; 2400 Baud D'68'
; 4800 Baud D'34'
; 9600 Baud D'16'
; 19200 Baud D'8'
; 38400 Baud and up - use 'NOP' delays
; VARIABLES USED: REG 'COUNT'
; ROUTINES CALLED: NONE
; **
baud ; AT 2400 BAUD THE PERIOD IS 416.6 US
 ; CLK = 4MHz
 movlw D'68' ; 1 US (BAUD RATE CONSTANT)
 movwf COUNT ; 1 US
baud1
 decfsz COUNT,F ; 1 US (+ 1 US MORE IF SKIP)
 goto baud1 ; 2 US
 ; FALL THRU...AFTER 1+1+3x68+1 = 207 US
half_baud
 movlw D'68' ; 1 US
 movwf COUNT ; 1 US
hbaud1
 decfsz COUNT,F ; 1 US (+ 1 US MORE IF SKIP)
 goto hbaud1 ; 2 US
 retlw 0 ; ...AFTER 1+1+3x68+1 = 207 US (X2=414 US)

Continued on the next page.

PIC Software UART Routines (Continued)

; **
; INCH_N
; THIS ROUTINE INPUTS RS232 DATA USING AN INVERTER, LIKE THE MAX232.
; THIS ROUTINE USES A 8-DATA BIT PER CHARACTER PROTOCOL
; GPIO,0 = RX (MARK = 1, SPACE = 0).
; TO RECIEVE A CHARACTER, CALL inch_n, THE RECEIVED CHARACTER IS PLACED
; IN THE REG 'W' AND IN THE REG 'SERBUF'.
; THE RECEIVED CHARACTER WILL ECHO IF 'RETLW 0' IS REM-ED OUT.
; VARIABLES USED: REG 'TEMP' AND REG 'SERBUF' BOTH VARIABLES ARE
; SHARED WITH THE 'outch_n' ROUTINE.
; ROUTINES CALLED: 'half_baud'AND 'baud' TO SET THE BAUD-RATE
; **
inch_n
 btfsc GPIO,0 ; SKIP ON START BIT = 1 (A "MARK")
 goto inch_n ; ELSE KEEP LOOKING FOR A START BIT
 movlw 8 ; START SERIAL INPUT SEQUENCE
 movwf TEMP ; COLLECT 8 DATA BITS
 clrf SERBUF ; CLEAR SERIAL CHARACTER BUFFER
 call half_baud ; DELAY FOR ONE HALF BAUD TIME
 btfsc GPIO,0 ; FALL THRU IF START BIT STILL = 1 (A "MARK")
 goto inch_n ; ELSE IT WAS JUST A NOISE SPIKE, KEEP LOOKING
inch_n1
 call baud ; DELAY ONE BAUD-BIT TIME (= 1/BAUD-RATE)
 bcf STATUS,0 ; CLEAR THE CARRY BIT
 rrf SERBUF,F ; ROTATE CRY -> MSB, ROTATE MSB RIGHT
 btfsc GPIO,0 ; IS IT A "MARK" ?
 bsf SERBUF,7 ; ...SKIP IF YES, ELSE SET BIT TO LOGIC '1'
 decfsz TEMP,F ; EIGHT COUNTS YET?
 goto inch_n1 ; ...NO, GET ANOTHER BIT
 call baud ; DELAY FOR THE STOP BIT
 movf SERBUF,W ; PUT THE RECEIVED CHARACTER IN REG 'W'
 retlw 0 ; NOTE: REM THIS OUT IF YOU NEED AN "ECHO"
 ; ...AND FALL THROUGH TO THE 'OUTCH' ROUTINE

Continued on the next page.

PIC Software UART Routines (Continued)

;***
; OUTCH_N
; THIS ROUTINE OUTPUTS RS232 DATA THROUGH AN INVERTER.
; THIS ROUTINE USES AN 8-DATA BIT PER CHARACTER PROTOCOL.
; TO PRINT A CHARACTER, LOAD BYTE INTO REG 'W' AND CALL outch_n.
; GPIO,1 = TX (MARK = 1, SPACE = 0) ; USE INVERTER ON THE OUTPUT
; VARIABLES USED: REG 'TEMP' AND SHARE REG 'SERBUF' WITH THE ROUTINE
; 'inch_n'
; CALLS THE ROUTINE 'baud' TO SET THE BAUD-RATE TIMING.
;***
outch_n ; THIS ROUTINE USES 8 DATA BITS
 movwf SERBUF ; SERBUF CONTAINS CHARACTER TO XMT
 movlw 8 ; THE CHARACTER HAS 8 BITS
 movwf TEMP
 bcf GPIO,1 ; SET START-BIT TO A "SPACE"
 call baud ; WAIT ONE BAUD TIME
outch_n1
 rrf SERBUF,F ; ROTATE THE FIRST BIT INTO CARRY
 btfss STATUS,0 ; TEST THE CARRY BIT
 bcf GPIO,1 ; IF BIT IS 0 SET OUTPUT PIN TO A "0" (SPACE)
 btfsc STATUS,0 ; TEST THE CARRY BIT AGAIN
 bsf GPIO,1 ; IF BIT IS 1 SET OUTPUT PIN TO A "1" (MARK)
 call baud ; ONE BAUD-BIT DELAY
 decfsz TEMP,F ; IF COUNT IS ZERO THEN XMIT A STOP BIT
 goto outch_n1 ; ...ELSE XMIT NEXT BIT

 rrf SERBUF,F ; ROTATE CARRY, GET THE MSB BACK INTO BIT 7
 bsf GPIO,1 ; SET PIN TO A 1 (A "MARK") FOR THE STOP BIT
 call baud ; FIRST BAUD-BIT DELAY
 call baud ; SECOND BAUD-BIT DELAY
 retlw 0 ; RETURN WITH THE CHARACTER IN SERBUF

Continued on the next page

For sample source code and further information, please see the Nano-Lab 1002 project manual.

Datadog Systems
www.Datadog.com

© 2005

END

