PHYS 432 — Lab 5: Programmable Logic

5.1 Introduction

Note: this lab is probably too long. For full credit, you only need to do 1 of the first 2 major
sections (Sec. 5.2 or Sec. 5.3) along with Section 5.4 on FPGAs. The EEPROM section is
probably shorter, although the PAL section might be more useful if you want a simple state
machine in your project. These two sections share some circuitry, however, so if you have
time left, you might want to come back and finish the third section at the end.

In modern electronics, it is very uncommon to produce circuits entirely from discrete
component ICs. Modern devices make extensive use of some form of programmable logic,
where the specific functionality of a device is “programmed” in advance, and in many cases
can be changed. These programs are often called “firmware” to denote something slightly
more permanent than software, but not completely fixed either. In this lab, we will explore
several examples of programmable logic: an Electrically Erasable Programmable Read-Only
Memory (EEPROM), a multipurpose Programmable Array Logic device (PAL), and a Field
Programmable Gate Array (FPGA). Of these there, only the FPGA is in common use today,
but all three are good examples of programmable logic and can be useful for your projects.

We will be using the PCs in the electronics lab to program the chips. There is only one
station to program the PLDs, both chip programmers work for EEPROMS, while all 4 PCs
can be used to program the FPGAs. You can do the three sections of this lab in any order,
so try to plan with your other lab mates who is doing what, and please be respectful in
sharing the equipment. It is probably worth doing this lab with a partner to minimize the
number of different groups that need to use the PCs at once.

The intent of this lab is to give you a first look at these topics and demonstrate the
techniques for implementing programmable logic. To use these techniques in your project
will probably take some more work on your part to learn these topics better. More detailed
instructions for how to use the programming software, necessary files, and additional outside
documentation can be found on the course website under the Lab 5 “Programmable Logic”
link.

Please be careful inserting/extracting these chips from your breadboards!.
The chips are very large, and in some cases are rather antiquated and hard to replace.

5.2 EEPROM Look-up Table

In this section, we will use a Read-Only Memory (ROM) to create an arbitrary binary
function to drive 8 LEDs. We will use the AT28C16 ROM (you can also use the AT28C64
if we run out) which contains 2048 bytes of storage (2k x 8 bits = 16 kbits of memory). A
ROM is similar in some ways to a MUX. An address is used to select one of the 2048 bytes
stored in the ROM, and the output data lines are set to the contents of the selected memory
location. The memory is filled in advance with data programmed from a PC, with one 8-bit
number stored in each of the 2048 locations.

5.2.1 4-bit counter

We will use a 4-bit counter (7493) to select the first 16 addresses of the EEPROM, and use
the data in the EEPROM to light up patterns on 8 LEDs. Using the pin-out diagram in
Figure 1, wire up the 7493 and make sure you can get a proper counting sequence with the
4 output bits. Note, this is in the same family as the 7490 decade counter you explored last
week, so you should drive CKA with a debounced button, output QA should be connected to
CKB, and the two RO reset lines should be wired to ground.

SN5493A, SN54LS93 .. . J OR W PACKAGE
SN7493 . . . N PACKAGE
SN74LS93 ... D OR N PACKAGE

{TOP VIEW)
cks (v UaQcka
Ro{1) (2 13 NC
RO(2) (3 123 Qa
NC (Ja 1 Qp
Vee Us 10:] GND
NC gs o[] Q8
NC (7 g[J Qc

Figure 1: Pin Diagram for 7493 4-bit counter.

5.2.2 EEPROM programming

Once you are convinced your counter is giving a proper 4-bit binary counting sequence, find
one of the AT28C16 ROM chips and go to one of the chip programmers. The GQ-4x4 is
the best to use, as it can’t be used to program PAL chips. The software to drive this is
called USBPrg and can be found on the desktop with a big GQ logo. The smaller TL8661I
also works, and uses the Xgpro software. The use of these tools is basically the same. The
programming software will present a spreadsheet-like interface where the contents of each
address location can be specified. We will only use the first 16 locations, so it is easy enough
to just enter these by hand.

Select the correct chip by part number in the programmer and check the figure to see how
to install the chip into the programming socket. Close the latch to make electrical contact
with the chip, and you should be ready to program. You can enter data values directly into
the spreadsheet-like display. Since we only have a few entries, this direct entry is probably
the easiest. A longer pattern can be saved in a file and opened by the software.

We will try the simple pattern shown in Table 1. The address and data values are shown
that should give the following pattern on a set of 8 LEDs. Enter this pattern into the first
16 memory locations and write this data to the chip. The programmer should automatically
verify that the data written matches the data read back from the chip, but you can also read
manually and check the pattern yourself.

PDIR, SOIC

Top View
A7 1 24 [1vCC
A6]2 23[1A8
A5[]3 22[1A9
Ad4]4 21 OWE
A3[]5 20 [0 OE
A2[]6 19 [1A10
A7 18 [1CE
A0C]8 17 Q1107
1700] 9 16 [11/06
/101] 10 15 [11/05
/02 O] 11 14 [0 1/04
GND 12 13 [11/03

Figure 2: Pin Diagram for the AT28C16 EEPROM.

Address | Data | Pattern
0x00 0x00 | 00000000
0x01 0x01 | 00000001
0x02 0x03 | 00000011
0x03 0x07 | 00000111
0x04 0xOF | 00001111
0x05 Ox1F | 00011111
0x06 0x3F | 00111111
0x07 Ox7F | 01111111
0x08 OxFF | 11111111
0x09 Ox7F | 01111111
0x0A 0x3F | 00111111
0x0B | Ox1F | 00011111
0x0C 0xOF | 00001111
0x0D 0x07 | 00000111
0x0E 0x03 | 00000011
0xOF 0x01 | 00000001

Table 1: Truth table to light up 4 LEDs in order. Note the address and data values are
written in hex.

5.2.3 LED display

Figure 2 shows the pin assignments for the AT23C16 EEPROM. To address 2048 locations
requires 11 address lines (indicated by A;). Since we stored patterns in only the first 16
locations, all but the lower 4 bits must be wired to ground (remember, TTL inputs tend to
float HI, so leaving them unwired will likely give you a different address than you mean) and
the 4-bit counter output should be wired to A3A;A;A,.

The data stored in the EEPROM will be output on the I/O lines. Hook these 8 outputs to
the LED indicators on the trainer board. You will also need to wire up the three control lines
appropriately. They are WE (write enable), OF (output enable), and C'E (chip enable).
We want to read (not write) the chip, and both the chip and output enable functions must
be asserted. Given that all three control lines are negative true, explain how to wire these
three pins to make this happen. You can connect them to DIP switches if you are not sure,
or read the data sheet.

Draw a high-level schematic of your final circuit (you do not need to include detailed pin
numbers) and verify that the LED pattern comes out as you expect as you cycle through
the counter states.

5.3 PAL Combinatoric Logic

Programming a complex combinatoric logic algorithm like a 7-segment decoder using discrete
components is a real pain. The first simple programmable devices called programmable array
logic (PALs) were PROM-like devices which allowed combinatoric logic to be specified via
a parameter file which could then be programmed into the chip by burning a set of internal
fuses. Modern devices can emulate simple PALs using flash memory, which allows them to be
reprogrammed, although they can also do much more as we will see later. In this section, we
will use a 16V8 PAL (the Lattice GAL 16V8 is the same) to implement an encoder algorithm
to light up four LEDs in the pattern shown in Tab. 2.

Inputs Outputs

Dy Dy Dy | Qs Qo Q1 Qo
0O 0O O|H H H H
0 0 1/ H H H L
0 1 0| H H L L
0 1 1/ H L L L
1 0O O|L L L L
1 0 1/ H L L L
1 1 0| H H L L
1 1 1/ H H H L

Table 2: Truth table to light up 4 LEDs in order.

5.3.1 CUPL file

There are a variety of languages which can be used to program PALSs, but one of the most
straightforward is a language called CUPL. Download the file 1edenc.pld from the web site,
which is a CUPL file, and write into your log book a brief description of what each line is
doing. Use material from class or posted on the website if you are unsure of the syntax.
Figure 3 shows the pin assignments for the 16V8 PLD. Note that some pins must be used as
inputs, while others can be defined to be either inputs or outputs. Annotate this diagram in
your log book to show which input and output signals go to which pins for our CUPL file.

DIP
veLk [] 1 ~ 2 [] vee
1 [[] vora
1 GAL [] vora
1 [16V8 [] vora
1[5 [] vor@
1 [15 [] vo/Q
1 [[] vora
1] [] vora
1 [] vora
GND [] 10 11 [] vOE

Figure 3: Pin Diagram for the GAL16v8 PLD. Note some of the pins can be configured as
either inputs or outputs

The method used for specifying the algorithm in the provided file is common for encoders,
where each input pattern specifies a specific and unique output pattern. CUPL can also
specify any sort of combinatoric logic by simply defining the input and output pins, and
setting the output to be equal to some function of the input values. Write down what you
would need to add to this file to implement a three-input AND of pins 1-3 output on pin 15.

5.3.2 PLD programming

Go to the PC with the small TL866II programming box attached. The larger GQ-4x4
programmer will not program PAL or GAL devices correctly. This box is a general purpose
programmer which can be used to program a wide range of flash-based programmable logic,
including EEPROMs and even some microprocessors. Open the WinCUPL application and
load he ledenc.pld file. Compile this file following the instructions on the PLD Info web
page. If everything goes well, you should have a ledenc. jed file, which is the hardware-
specific JEDEC file to be loaded into the chip by the programmer. For historic reasons, it
is still common to call this a fuse map.

Place the PAL chip into the socket, with the notch facing up, towards the lever. Open
the Xgpro application which controls the programmer. Click the ‘Select IC” box and pick the

correct part (and vendor). The ‘Device Info’ tab at the bottom of the data entry area will
show you the correct orientation of the chip in the programmer socket. Load the ledenc. jed
file, make sure again that the device is set to the proper value for the chip you are using,
and write the file to the chip using the big red P button at the top. Please do not write the
LOCK bit. I don’t think this actually prevents the programmer from re-writing the chip,
but better to be sure. If all has gone well, the program should indicate success. If a chip
fails the validation step, try again. If it repeatedly fails, try a different chip. If you can’t get
the PLD to program properly, and there is nobody around to help, do the EEPROM section
instead.

5.3.3 PLD circuit

We will use a 4-bit counter (7493) and send the first 3 bits to the PLD. This is identical
to the circuit used in the EEPROM section. Using the pin-out diagram in Figure 1, wire
up the 7493 and make sure you can get a proper counting sequence with the 4 output bits.
Note, this is in the same family as the 7490 decade counter you explored last week, so you
should drive CKA with a button, output QA should be connected to CKB, and the two reset
lines should be wired to ground.

We will drive the PLD with the first 3 bits of the 4-bit counter (least-significant bits) and
view the results by connecting the PLD outputs to the LEDs on the trainer boards. Take
the PLD chip out of the programmer, and install it on the breadboard near the counter. Be
very careful when inserting these chips into the breadboard. Draw a high-level schematic
of your circuit (with a box for each chip and the main inputs and outputs shown). You do
not need to indicate the specific pin numbers unless you want to. When you wire up your
circuit, make sure the PLD can be easily removed, as you may need to program this more
than once.

Do you get the pattern you expect?

5.3.4 Registered PAL

Now, we will explore some of the more powerful features available on some more modern
PLDs. The ability to make arbitrary combinatoric logic goes a long ways towards simpli-
fying the implementation of state machines. The only remaining piece needed is a set of
data registers. A "registered” PAL provides exactly this functionality, and a PLD used in
"registered” mode emulates these devices.

Download the file ledcnt.pld and compare to ledenc.pld. This file will produce the
same output pattern, but also defines an internal state machine to provide the 3-bit counter,
such that the only needed input to the chip is a clock pulse. Describe in your log book what
the additional code found in ledcnt.pld does.

Compile and download this program to the chip, and modify your circuit such that
only the debounced button is being used as a clock input to pin 1 of the PLD. With the
outputs attached to the LEDs on the trainer board, check that all of the defined PLD output
pins are producing the expected output. In “registered” mode, pins 1 and 11 have specific
functionality. Pin 1, for example, must be the clock input. What does pin 11 do? (Hint:

look at the pinout diagram in Figure 3.) You must attach the proper voltage to pin 11 or
else your registered PAL outputs may not work properly!

Note that you can easily expand your own LED pattern state machine to more than 8
states, since it is easy to make a 4-bit (or more) counter internally in the PLD. Each output
pin has 8 product terms associated with it, so fairly complicated patterns are possible.

5.4 FPGAs

Field Programmable Gate Arrays (FPGAs) are the modern evolution of programmable-logic
devices. We will be programming a Lattice ICE40LPSK FPGA installed on a TinyFPGA
BX board. This board provides some power management and a USB connection, but the
pins on the BX board are directly connected to (some) of the pins on the FPGA, so we have
rather direct access to these pins in dual-inline package.

Warning: the FPGA on the BX board uses 3.3V! For this lab, do not hook the board
up to any external power supplies! The BX board will power the chip safely from the
USB connection, so simply use this. You can connect the BX pins as outputs to circuits
expecting 5V, but please don’t try to put 5V logic signals into the BX board, as you could
burn out an input pin.

Figure 4 shows the pin assignments of the BX board. Note there are two ground pins
and a regulated 3.3V output that you can use to power your breadboard. For this lab, you
should only need a ground connection.

TinyFPGA BX
tinyfpga.com
GND | [* * "Rl ¥ Vin (3.5-5.5v)
pinl A2 [FW ° * T] GND
- n-l -
. ‘ pin2 Al "._:3'. 3.3v (100ma)
Differential I03A pin3 B1 H-F r%‘. A6 pin24
pind €2 [LRSIl] 86 pin23
Differential 10 3B pin5 C1 3 p¥L J A7 pin22
: R
pin6 D2 .6‘_ __21. B7 pin21

Differential I010A pin7 D1 [YAtadl LY) A8 pin20
ping E2 [L] 1'“ LY Y88 pin1o
Differential IO 10B pin9 E1 .9rp5A BLY J A9 pini8

Differential I0 26A pin10 G2 [FUj= _&7. C9 pinl7
pin1l H1 "_ :16' D8 pinl6 Global Buffer GBIN2
* \ .t
pin12 J1 [F¥] FLY] 09 pinis

Differential 0268 pin13 H2 [Feim EETY | HO pinls

Figure 4: Pin Diagram for the BX TinyFPGA board.

5.4.1 Programming Test

Take a BX board, carefully plug it into your breadboard, but don’t make any other connec-
tions for the moment. Hook it up via a USB cable to one of the PCs and find the Windows
command line (likely in the Utilities directory). Download the files seconds.v along with
pins.pcf and apio.ini from the website into a new directory. From the command line,
navigate to this directory (cd to change directory, dir to list what is in a given directory)

7

and once you are there, type the following command to synthesize the bytestream file for
the FPGA:

apio build

This may produce a large number of warnings about unused ports, but it should finish with
a line that says SUCCESS and there should now be a file hardware.asc in the same directory.
You can try the build command again, and if everything is fine, it should return quickly
with the SUCCESS line (the up-arrow will retrieve the last command entered at the command
line).

Now, we can try to download the firmware to the BX board. Push the black button
at the bottom of the BX board to put the board into programming mode. One of the two
red LEDs on the board should be constantly on (indicating power) and the other should be
slowly fading in and out. This signals that the board is ready to be programmed. Test that
the PC can find the board with the following command:

tinyprog -1

If the response says no bootloaders were found, try again. When this works, you should see
information about the FPGA such as FPGA: ice401p8k-cm81.
Type the following command to download the bytestream file to the FPGA:

tinyprog -p hardware.bin

Again, you may need to do this a few times, but when this succeeds you will see clear
evidence of something being downloaded and the message Success! at the end. The FPGA
should automatically switch to run mode, and the LED should now be crisply flashing on/off
approximately once per second. Congratulations, you have programmed an FPGA!

5.4.2 First Verilog

Open the file seconds.v with a text editor and look at the contents. All Verilog files have a
top module that represents the connections in/out of the FPGA. The 16 MHz system clock
is one input CLK and the board LED is an output LED. The code here is very simple. The
CLK is an input to a secondcounter block that decrements a 24-bit counter and toggles the
output value (wired to LED) after 8M counts. The hex number 7A1200 is where the count
starts, and it resets every time it gets to zero. Change this number to something slightly
smaller (around a factor of 2 different), save the file, and reprogram the chip using:

apio build
tinyprog -p hardware.bin

Don’t forget to activate the BX bootloader by pressing the black button before downloading
the bytestream file. You should now see the LED flashing more quickly. If it appears
constantly on, it is probably flashing faster than your eye can follow.

5.4.3 Counter and Decoder Logic

Create a second directory and download the file buttontest.v and also copy the pins.pcf
and apio.ini files.

Open buttontest.v and look at the inputs and outputs defined in the top module. Note
we now have to additional inputs on pins 2 and 13, and 8 additional outputs on pins 14-21.
The USBPU is a special output pin that disables the USB data connection while the FPGA
is running, and can be safely ignored.

Write in your log book all of the defined modules you find in this file. There should be
3 plus the top module. Each of these modules is instantiated in the top module and has
inputs/outputs connected up. Draw a high-level schematic of this logic. Each module should
be a block, and the names of the input/output connections should be labeled.

You don’t need to understand the button debouncing module, but the counter8 and
displaydecoder blocks should be understandable. Briefly describe what each of these blocks
is doing. Synthesize this file using apio build as before and make sure the command ends
in success.

5.4.4 FPGA Circuit

You should wire the ground connections on both sides of the BX board to the rails on your
breadboard, as we will use these. We will hook up a simple tactile switch between Pin 2
and ground to provide an input source. Do not use the debounced switches from the trainer
board!. A second tactile switch from Pin 13 to ground will provide a reset signal. Normally, a
switch to ground wouldn’t provide a logic signal without a pull-up resistor. To avoid external
pull-up resistors, each input pin on the FPGA has an optionally programmable internal pull-
up resistor that is specified for these two pins in the pins.pcf file. So by pressing the switch,
the input pin will be grounded (LO) while when the switch is released the pull-up resistor
will set the input pin to HI.

For the output, connect one LED between each of pins 14-21. I would recommend using
individual LEDs from the drawer, or the bargraph LED arrays. Usually, you should always
use a current-limiting resistor when driving an LED from a digital logic pin, but the FPGA
output pins can only supply 8 mA each, so the LEDs are safe. If you decide to use the LEDs
on the trainer board, you will need to provide a ground connection between the BX board
and the trainer. Do not make any other power connections!

Looking at the Verilog file, try to understand which end of the LED array is the most
significant bit (MSB) and least significant bit (LSB) in the internal LEDreg bit array.

Write down what you expect to see on the LEDs as you press the main button. Will
the LEDs count a binary sequence, or do something more interesting? What do you expect
to see when you press the reset button? Be specific (i.e. what LED pattern should you see
after reset?)

Now synthesize and program the FPGA with the following commands:

apio build
tinyprog -p hardware.bin

Once this succeeds, play around with the buttons and explain what you actually see
compared to your expecations.

5.4.5 Button Debouncing

Debouncing switches is a necessary step in using buttons with digital logic. While the trainer
board provides external circuitry to do this, it is more common to use ‘bare’ switches and
debounce them internally with programmable logic. Find the place in the top module where
the 8-bit counter is instantiated. Comment out this line and uncomment the line below
where the counter is driven directly from PIN_2. Synthesize and download this new logic
and describe how things are now different. How many steps does the LED pattern shift for
each button press?
Put the code back the way it was originally when you are done with this section.

5.4.6 LED Decoding

Find the place in the top module where the displaydecoder block is created. Comment
out this line and uncomment the line below that just assigns the counter value to the LED
register. What pattern do you now expect to see on the output LEDs? Try it and check.
Which output pin is the LSB?

Put the code back the way you found it and look at the logic in the displaydecoder
block. The lut here is a look-up table very similar in functionality to the EEPROM-based
version in Section 5.2. If you have time, sketch out your own 16-step pattern in your log
book, determine the values needed to implement that pattern, and try it out by entering
those values in the initial block (that initializes the lut register array). Note that the
final line in this block

assign display = “lut[state[3:0]];

uses a bit-wise invert operation between lut and the display output returned by the de-
coder.

If you don’t have time to create your own pattern, remove this invert and change a couple
of the numbers in the lut assignment and check that when you reload the bytestream file
you see the changes that you expect.

Show the final result of this section to your TA and get this section signed off in you
logbook.

5.5 Conclusion

In this lab, we have seen a few examples of useful programmable logic which you can use
in your projects. FPGAs and PLDs can often both be used for designing all-in-one state
machines, and if the logic is simple enough, a PLD may be the easiest solution. This
simplicity of programming a PLD makes this a good choice, although extremely complicated
algorithms or state machines might not fit into the limited resources available on a given PLD
chip, and an FPGA then becomes a more viable option. If you simply need a complicated
function of many inputs, an EEPROM is a good choice.

10

