
PHYS432 – Lab 6: Arduino

Parts List

• Arduino Nano

• Other: Button, LED, 1 kΩ resistor, 10k potentiometer, LCD display

6.1 Introduction

In this lab, we will explore the Arduino microprocessor platform. The Arduino is really
a set of board designs along with a development environment intended to remove some
of the technical complexity that historically surrounded developing microprocessor appli-
cations. For the board we are using, the Arduino Nano, the actual microprocessor is an
ATMEL ATMega328p, although the Arduino programming environment hides almost all of
the processor-specific details.

This lab is much less of an investigation of some specific concepts on their own, and much
more a set of examples for how to do things we have previously discussed in the Arduino
platform. Each section is matched to one of the tasks listed on the course website. I have
tried to avoid repeating text in this writeup, so you will need to read through the tasks on
the course website as you proceed through this lab.

To help you find the specific questions that I would like to see answered, I have put them
in bold font.

6.2 Arduino IDE

If you have not done so already, work through the Arduino IDE section. Note that you do
not need to put your Nano into the breadboard to complete this preparatory task. Please
don’t skip this part, as it is important to verify that your development environment and
communication with your Nano board is working before you start with the rest of the lab.
Describe the computer you are using to talk to your Arduino, especially the
operating system. Also mention if you are using the web-based development
environment, or downloaded the IDE to your computer. Finally, specify whether
you needed to select ATMega328P or ATMega328P (Old Bootloader) to talk to
your board.

6.3 Task 1: Digital Input and Output

This task introduces the techniques for reading and writing digital information through the
Arduino digital I/O pins. Work through Task 1 and make sure you can get your LED to
light when you press the button.

As a test to see if the Arduino inputs act like TTL or CMOS gates, change the line
pinMode(BUTTON IN, INPUT PULLUP); to pinMode(BUTTON IN, INPUT);. Now what hap-
pens when you push and release the button?

1



6.4 Task 2: Serial Console

This task introduces communication over the USB serial link from the Arduino to the pro-
gramming computer. Work through Task 2 and make sure you can see text messages on the
Serial Monitor being sent back from the Arduino.

Given that the serial port can send approximately 9600 bits per second, how
many lines of text do you expect you would see per second if the Arduino were
able to saturate the serial port bandwidth? Try this out by removing the delay()

call from the loop() block and let the processor write data as fast as it can. How many
lines (or characters) per second do you actually observe?

It may be difficult to read the numbers as the text is scrolling by, but you can always
unplug the board after some time to stop the text scrolling by. Also, there is a clear button
on the Serial Monitor which can be helpful for this. You don’t need to be very precise here.
An order-of-magnitude estimate of the rate is enough.

6.5 Task 3: Analog to Digital Conversion

This task introduces how to use the internal ADC in the Arduino to digitize analog voltages.
With the ADC reference voltage set to +5 V, what is the expected voltage resolution

of each bit of the ADC? In other words, what is the smallest change in voltage
that the ADC can detect? Set the potentiometer to give a voltage around 2.5 V and
watch how the successive readings from the ADC vary. How much noise does there
appear to be on the voltage reading? In other words, do the ADC readings
fluctuate up/down by several bits, or are the fluctuations at or smaller than one
bit? You may find it easier for these investigations to use a fixed delay time rather than a
delay that is proportional to the ADC reading.

If we want to improve the ADC precision, we need to reduce the dynamic range. Select the
internal 1.1 V reference and repeat the exercise above. What is the single-bit precision
with the 1.1 V reference? Don’t forget to change the maximum voltage range in the
sketch so that the ADC readings are calibrated correctly. Again, set the analog voltage level
to approximately the midpoint of the ADC range (around 0.5V) and observe the fluctuations
as the input voltage is kept constant. Now how much does the ADC reading fluctuate?
How large are these fluctuations in millivolts? You will have to estimate this based
on the fluctuations you see scrolling by. How does this compare to the noise level we
saw on the AD557 DAC in Lab 5? In other words, is the Arduino doing much
better, much worse, or about the same as our Lab 5 SAR ADC?

6.6 Task 4: Liquid Crystal Display

Carefully wire up your LCD display following the instructions on the website under Task
4. After uploading the sketch to the Arduino, adjust the potentiometer as described on the
website to set the contrast properly. Describe whether you just needed to turn the
potentiometer all the way up, or whether you needed to find some other setting
to make the characters legible.

We specify text as a string data type, but this is really just an array of 8-bit unsigned
numbers encoded using the ASCII standard. If you wanted to write a degree symbol, what
is the ASCII value for this character? Try writing this character to the LCD display
using something like lcd.print(number) where number is the actual number (no quotes)

2



you found in the ASCII standard for the degree symbol. Does this work?. You can also
try explicitly converting the number to a char type first with lcd.print(char(number)).
What does this give you? Look up the character set in Table 4 (page 17) of the Hitachi
HD44780 manual linked from the Task 4 page. What number is actually used for the
degree symbol, or at least something that might look like the degree symbol? In
the table this is specified as a high and low bit pattern, but you should be able to convert
this to a decimal number. You can also specify hex numbers in the Arduino IDE using the
0x radix. So in other words, 0x12 would specify the decimal value 18 (16+2). Using the
value you found in table 4, do you get a degree symbol on the LCD?

6.7 Task 5: Button Debouncing

This task is optional, and you only need to do this part of the lab if you are interested. If
you do, however, I am curious about how your board and button behaves.

Work through Task 5. Before debouncing your button how frequently do you get
bounces? In other words, when you use the task5a sketch, does your switch bounce all
the time, rarely, or never? When there are bounces, you can get a sense for how many by
looking at how far the counter increments on each physical button press. Do you usually
just see one extra count, or many?

After implementing the button code in the task5b sketch, does your switch still
occasionally bounce?

6.8 Wrapping Up

You now have seen some basic functionality from the Arduino Nano. These functions should
be the building blocks of your final (mini-)project. Don’t be afraid to try things out, and
remember there are lots of Arduino examples available on the internet that may give you
other ideas or solutions for how to do specific things.

3


