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The vibrational spectrum of HCPphosphaethyneis studied and analyzed in terms of a 1:2
resonance effective Hamiltonian. The parameters of the model Hamiltonian are determined by
fitting 361 out of the first 370 energy levels obtained from diagonalization of the full Hamiltonian,
which is based on a newly calculated potential-energy surface with near spectroscopic accuracy. It
is demonstrated that all features characteristic of the approach to the-BEH isomerization,

such as the strong mixing between the bending and CP-stretching motions, the appearance of
“isomerization states” (large amplitude bending motipnat intermediate energies, and the
diagnostically significant appearance of a zig—zag pattern in the energy spacings between
neighboring levels within each polyad, are quantitatively reproduced by the effective Hamiltonian.
The semiclassical analysis of the model Hamiltonian for specific combinations of the HC-stretch
and polyad quantum numbers explains all of the observed features of the full Hamiltonian in terms
of stable and unstable periodic orbits. In particular, the birth of the isomerization states is found to
be related to a saddle-node bifurcation of the classical phase space. The connection with the
“polyad phase sphere” representation of quantum polyads is also discusse200®American
Institute of Physicg.S0021-960600)00809-§

I. INTRODUCTION classical and semiclassical theories, it was pointed ‘out
that the appearance of the isomerization states is associated
The potential-energy surfac’ES of phosphaethyne with a saddle nodéSN) bifurcation of the periodic orbits
(HCP) in its ground electronic state has received much atten¢tPQg of the classical Hamiltonian, which is due to the Fermi
tion in the last few years, both from the experimetitéénd  resonance between the bending and the CP stretching
theoretical®° points of view. The reason is that some un- motion< and takes place at 13800 chabove the quantum
usual features observed in the stimulated emission pumpirlground state. When p|otted on the same diagram1 isomeriza-
(SEP spectra at about 20000 crh above the ground tion states are seen to lie exactly on top of the family of

staté > might well be signatures for the isomerization pro- stable POs born at this bifurcation, both of them following
cess leading from HCP to CPH. Indeed, the calculafiéfis  ¢josely the isomerization pathway.

have shown the existence of two distinct families of bending |t was furthermore shown in Ref. 9 that all the details
states: One with wave functions confined to small bendingypserved in the quantum spectrum do have a dynamical con-
angles and the other one sampling all of the isomerizatiofent, and that this content is most readily understood through
pathway from HCP to CPH. The members of this later fam+he semiclassical analysis of an effective resonance Hamil-
lly are called “isomerization” states in order to distinguish tonjan with parameters obtained by fitting the quantum spec-
them from the “normal” states belonging to the first family. tym_ It is only through the gathering of all the different
The family of normal states starts at low energies and perjeces—namelyi) a large amount of experimental dafi)
sists well above the isomerization saddle at about 24 40Qy,ct calculation on aab initio PES (i) the study of the

—1 . 1
cm * above the ground state. In contrast, the family of¢|agsical phase space for thie initio PES, andiv) the semi-
isomerization ste}tles starts abruptly at intermediate energig§assical study of the effective Hamiltonian—that a precise
(about 15000 cm” above the ground statand can be fol- hqerstanding of the highly excited vibrational dynamics of
lowed up to the isomerization saddle. In agreement with cp is possible.
The above mentioned work on the isomerization states
3Electronic mail: marc.joyeux@Uujf-grenoble.fr of HCP and their connection with a classical bifurcatidr,
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however, relies on a preliminary PéSNhiCh, although  TABLE I. The fitted molecular constants of HCP in Eq8.1), (2.2), and
qualitatively correct, is not sufficiently precise for quantita- (2.4) and the corresponding uncertaintiese times the standard deviatjon

tive predictions and direct comparison with experiments. Uncertainty
Since the publication of Ref. 7, Schinke and co-workers havearameter Value (ci) (cm™)
const.ructe_d a completely new surface, the det.a|ls of which ) 3343 1005 o852
are given in Ref. 10. The fundamental frequencies calculate§ 6977797 0.7516
from this new surface now agree to better than 4 tmith wz 1301.0838 0.6911
the observed ones and the overtone and combination freq, —55.0161 0.2892
quencies to better than 20 cfhup to 20 000 cmt above the X1 —16.8174 0.1186
zero-point energy. The study of the classical phase spacgs _4'32;3 0'1838
using this surface confirms that a classical bifurcation coin—)):22 :2'2460 8'8233
cides with the appearance of isomerization st&téSHow- x§§ _5.8619 0.0541
ever, many quantum features differ substantially from those,,, 0.23345 0.005 20
observed in the first PES, as can be checked from a compa#izzz2 —0.00562 0.000 14
son between Refs. 6, 7, and 9 on one side and Refs. 10 arfd 36115 0.1585

. . Ky 0.805 60 0.04376
11 and the present article on the other side. The dynamics IRy 0.067 27 0.008 45
therefore, expected to be also very different. Owing to the, —0.22067 0.010 97

fact that HCP is so far an almost unique system in the study
of isomerization, because of the considerable amount of ex-

perimental data and theow) accurate global PES, it was for the off diagonal Fermi coupling. Unlike in Refs. 8 and 9,

felt that a semiclassical study dealing with the new surfac : 15 .
Lo . he convention of spectroscopistsis used here for labeling
was worthwhile, in order to obtain a complete and coheren S ;
he normal modes, i.e., indexes 1, 2, and 3 refer respectively

ription of this pr ical molecule. .

desc pto 0 ¢ IS P oto'gyp cal mo ecug . ... to the CH stretch, the bend and the CP stretch. The vibra-
This article is organized as follows: A brief description .. .
. . S ) . tional angular momenturd’, which results from the degen-
of the Fermi resonance effective Hamiltonian, which will be . . . :
. . : racy of the bending motion, is assumed to be zero in Egs.

used throughout the paper, is presented in Sec. Il. Section | . . .

. . .1) and(2.2), as was done in the previous theoretical works
contains a recount of the features observed in the exact quan-

tum spectrum and which are closely reproduced by the resoo—n HCP where only the nonrotating moleculz<0) was

. ’7’9 . . . .
nance Hamiltonian. It will be the goal of the remainder of theswdlecﬁ Without this assgmpthn, slightly more cpmplex
. o : : -“expressions must be usd:: The fifteen parameters: Three
article to extract the dynamical information contained in

these features through the semiclassical study of the resgy 2% ONeY, onez and fourk were fitted against 361 out

nance Hamiltonian: The birth and gradual arrangement off the first 370 levels obtained from exact quantum calcula-

. o . o _“tions on the new PE®. These levels have up to 30 quanta in
isomerization states along the isomerization pathway are f|r% e bendina dearee of freedom and 6 quanta in the CH
discussed in Sec. IV in terms of classicsthble periodic g deg q

) . . . : tretch. Numerical values for the parameters can be found in
orbits. Then, quantizing trajectories are analyzed in Sec. . _
) . . . L Table 1. The rms error for the 361 levels is 7.7 chand the
in order to understand the interleaving of isomerization and

normal states at the bottotne., low-energy regionof quan- maximum error 35.6 crri.
o ergy reg g . The Fermi resonance in Ed2.2) destroys one good
tum polyads. At last, the patterns in the energy spacings .
.quantum number, so that there remain only two good quan-

between neighboring levels, which are most useful to experiy ' imbers in addition to the vibrational angular momen-

mentalists, .are.dlscu.ssed in Sec. VI in terms of the classm%ﬁm/. These are the number;, of quanta in the CH stretch
unstableperiodic orbits.
and the so-called polyad numbé&, where

Il. THE FERMI RESONANCE HAMILTONIAN P=v,+2v3. (2.3

The explicit matrix elements for the Fermi resonancelhe Fermi resonance only couples levels of the basis of
HamiltonianH in the basis of harmonic-oscillator products harmonic-oscillator products with the same values paind

(nondegenerate for modes 1 and 3, doubly degenerate fé For even values oP, there are P/2)+1 levels with the
mode 2 are taken to be, respectively same values for; andP. Such a subset of levels is called a

polyad and will be denoteflv,,P], as in Refs. 5 and 11.
Individual levels can be further characterized by their posi-
tion i inside the polyad. The convention thatO at the top
of the polyad and =P/2 at the bottom is used throughout
+ Yoo+ Zyoda . ' ;

22272 1 f2222°2 this article, as in Refs. 5 and 11.
n=v,+3 Ny=v,+1, nNz=vs+3, 2.0 Let us finally mention that the resonance Hamiltonian, in
addition to energy values, is also able to reproduce with great
accuracy the features observed in #ie initio wave func-

<01102103|H|01102103>:zi wini+i2<j Xjjnin;

for the Dunham diagonal expansion and:

1o tions. For example, the wave functions for the 12 states of
(v1,02,05H|v1,v2+2,03—1)=—n,N3 k+2 kini |, polyad [v,,P]=[0,22] are plotted in Fig. 1 for the reso-
nance Hamiltonian. The basis functions are taken again as
1 (2.2 . ) .
Ni=v.+t3 Nr=v,+2, Nz=vgy, harmonic-oscillator product&@ doubly degenerate oscillator
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FIG. 1. Plot in the ¢,,q3) plane of the wave functions of the 12 levels, which belong to pofyadP]=[0,22]. The horizontal axig|, (bend ranges from

0 to 8 and the vertical axig, (CP stretchfrom —6 to 6. This polyad spans the energy range from 13 425 to 13 948 above the ground state. The three
stable periodic orbitgr], [B], and[SN] are also plotted[r] merges into the vertical; axis and cannot be clearly distinguisheNote the coincidence of
eigenstates 0, 10, and 11 with orbi®], [r], and[ SN], respectively.

is taken for the bending degree of freedoiThis figure com-  +K,J), with trivial, linear relations between the parameters
pares very well with Fig. 10 of Ref. 11, which shows someandk; of Eq. (2.4) and the parametei§é andK; . The impor-
wave functions for the new PES. On the other hand, theant point is that this coupling does not depend on the angles
expression for the classical Hamiltonian can be written in they, and ¢, which implies thatl; and| are constants of mo-

form tion. It is now well understodd°that their values are also
action integrals of the system and that the Einstein—
H=2 wili+ X, Xijlilj+Yaod 3+ 220043 Brillouin—Keller (EBK) quantization rule¥ dealing with
! 1=l these two action integrals are
+21,132c042¢,— @3)| k+ >, kili>. (2.4) hi=vit3
! |=P+2. @7

The (I,¢,) are action-anglelike sets of conjugate coordi-

nates, such that In other words, each level belonging to the polyad,P] is

associated with a semiclassical quantizing trajectory with

k= V2l cosgpy, constants of motiorh; and| equal, respectively, to,+1/2
T e (2.5 andP+2. Examples of these trajectories will be seen below
k=" V2l sing(1<k<3). in the phase space portraits of Figs. 5 and 6 and in the es-

The classical study is greatly simplified when Eg8.4) is  sentially equivalent polyad phase sphere representation in
expressed in terms df;, and of new conjugate variables Fig. 7(a). The third action integral of the system, which will
(1,6) and (@, ) obtained from (,,¢,) and (3,¢3) through  be calledJ, can be obtained by computing a simple integral
the following canonical transformation: derived from the expression of energy in coordinates
(I1,¢1), (1,0), and Q,#) [see Eqs(2.13 and(2.14) in Ref.

I=1,+2l3, 9]. The third EBK quantization rule then states that the quan-
J=2l3, tizing trajectories are those which satisfy E8.7) and for
(2.6) which, in addition,J is half-integral(positive or negative

0= ¢z, An alternate way to find quantizing trajectories correspond-

ing to the quantum energy levels, without numerical propa-
¢3 . . . .

Y= 5 %2 gation, is to solve directly by quadrature for the classical

trajectories that have the same energy as the quantum levels
Inserting the transformations of E(R.6) into Eq.(2.4), the  of the spectroscopic Hamiltonian. This approach has been
nonlinear coupling becomes-0)J*?cos(2))(K+K;l;+K,l  explored extensively by Kellman and co-workéfs®* The
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correspondence between classical and quantum mechaniappearance of isomerization states happens earlier as a func-
ensures that this is a good approximation, at least not totion of P and that the interleaving of isomerization and nor-
close to separatrices. In this study, the difference in energynal states completely ceases with=2.
between levels obtained in the two approaches is not larger The goal of the remainder of this article is to extract the
than 1.3 cm? for polyad[v,,P]=[0,22]. It should be noted dynamical information contained in these observations using
that in the work of Kellmaret al,}’~1%21-24he phase space the formalisms of periodic orbit$PO9 and semiclassical
description involves a spherical surface, the “polyad phaseuantization. Following the pioneering work of
sphere.” The phase sphere description is completely equivaGutzwille”®=2” and Heller’®?° there have been several nu-
lent to the one described above, when it is realized that onmerical applications, which have demonstrated the impor-
goes from one to the other simply by transforming from atance of POs in understanding the localization of quantum
cylindrical, or Mercator representation, to an equivalent repwave functions, which in turn is helpful for understanding
resentation on the sphere. The phase sphere representatiosjpectral pattern® >3 The key idea is that classical stable
displayed in Fig. 7 below with more detail about its topologi- POs form the “backbones” of quantum wave functions, or,
cal properties. in other words, that they are approximately parallel to the
nodal and antinodal lines of the wave functions. Therefore, a
classical bifurcation, that is, a poifibere in the E,l,l,)
ll. THE FEATURES OBSERVED IN THE QUANTUM spaceé where the number and/or the stability properties of the
SPECTRUM POs change abruptly, might be expected to be associated
with clear-cut changes in the behavior of the wave functions.

the wave functions obtained from the new surfit¥ are In particular, a _tangen(or saddle-pod)ebifurcaﬁon corre-
recounted in this section, before the dynamical content igponds to the simultaneous creati@s dest.r_uct|0|)1 of one
extracted in the next three sections. stable and one unstable PO, so that families of wave func-
For the polyads with ;=0 the wave functions show the tions with nc_JdaI lines oriented along the .corresponding
usual, lowP-behavior up toP=14: They evolve regularly stgblg PO mlght be expecteq t0 appéar to dlsap'pearat.
from a wave function withP/2 nodes along a line almost this bifurcation. Moreover, since the CH stretching motion

parallel to thegs axis (the CP stretch coordinagtat the bot- (mode 3 does not part|C|pat_e m_the Fermi resonance, the
tom of the polyads to another wave function w2 nodes POs for the resonance Hamiltonian of Sec. Il ne_ed only be
along another line approximately parallel to tieaxis (the searched for in the reduced subspapg, 03.02.9s) instead

bend coordinateat the top of the polyads. In contrast, statescF))]c the dfuII S|>]f—d|mer]:3|oqal sp;]ac%fas was ShOV\Im n F ef. h9,
with qualitatively different wave functions have definitely rocedures for performing the bifurcation analysis for the

come into existence @ =18 (see Fig. 10 of Ref. 11 The spectroscopic Hamiltgonian are gles_cribedzin detail in earlier
first state with a clearly new wave function is the secondwork3s5Of Joyewet al, Jostet al,” Lietal, anq Jacobson
lowest one {(=P/2—1=8) in this polyad and is located at et aI: and the reader is referred to these articles for more
11159 cm* above the ground state. This new class of wavedeta'ls' ) )

functions still contains a significant contribution of CP- . Each one of _the next three sectlc_)ns W'”. explore a par-
stretch, which however decreases steadily with increasin cular s_emlclassmal feature and derive a different class of
polyad number. Above polyaB® =22, the new wave func- formation from the quantum spectrum.
tions are almost pure bend and closely follow the minimum

energy path leading from HCP to CPH. A second isomerizalsv_l'_i_l-_ré‘SBLE e L I AR S Lo
tion state appears in the same polyrd 22; the two isomer-

ization states are the lowest=P/2=11) and the third low- Stable POs and bifurcations are discussed in this section,
est one (=P/2—2=9) in the polyad, while the second in order to understand why isomerization states appear close
lowest one (= P/2—1=10) displays motion along the CP to the bottom of the polyads and why their wave functions
stretching coordinate. These features are closely reproducedrange themselves only gradually along the isomerization
by the resonance effective Hamiltonian, as can be verified ipathway, as described in the previous section.

Fig. 1. The number of isomerization states continues to in-  The search for bifurcations gives the total actloas a
crease withP and there are readily five of them in polyad function of I,. Bifurcations, therefore, appear as curves,
P=232, which have respective positions 16, 15, 14, 13, which divide the (4,l) plane into distinct regions, each re-
and 11. The level with =12, which is located between two gion being characterized by a different number of POs. Ow-
isomerization states, is again a pure CP-stretching staténg to the EBK quantization rules in E¢R.7), this bifurca-
Moreover, in the same energy range above polia€l18, tion diagram can be plotted in the {,P) plane in order to

the plot of the energy gaps between neighboring levels insidenable an easier comparison with the quantum results; how-
a given polyad displays some kind of zig—zag pattern. Thiever,v,andP are allowed to assume continuous real values.
pattern differs again markedly from the simple minimum Such a plot appears in Fig. 2, where the solid line, represent-
which was observed for the first surface and was shown to bimg the SN bifurcation, divides thel () plane into two

a fingerprint of the classical bifurcation in the quantum spec+egions, containing two and four periodic orbits, respectively
trum. To conclude this brief summary of the exact quantumithe dashed line depicts the quantum numhgrand P for
calculations, let us mention that fer,=1 andv,=2 the the highest polyads included in the fit, and the analysis is,
main features are the same as#gr=0, except that the first therefore, valid only below this lineln contrast to the cal-

The principal features, which are evident in the plots of
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FIG. 2. Plot in the ¢,,P) plane of the bifurcation diagram of the periodic * ~ _500[ FORBIDDEN .
orbits of HCP. The solid line indicatesth_e saddle-n@atetangenk bifurca- . 55 5 1;0 ? —600 b
tion. The stabld SN] and the unstablgSN] periodic orbits appear at the g —700L L L L L : L SN
bifurcation. The two types of stable periodic orbits] and[B], exist both 3 288 F (b) FORBIDDEN . ]
below and above the bifurcation. The dashed line is the upper energy limit =0 200k R
of the fitted polyads and the validity of the analysis can be assured only vi= 200k $ i_[S_N_]_;_ ]
below this line. 20F £/1000 ' ' 0 S S
16 _a00k [r] ‘]
12 -400f [sN] .
culations with the first PE8/% a single tangentor saddle- (a) oor FORBIDDEN i
node bifurcation is found in the range of fitted polyads. The f - -1000[ y
“U” shape of this line can easily be interpreted in terms of 51 —=2 —=8 ~t0p ]
the detuning of the zero-order levels from exact Fermi reso- o 5 10 15 20 25 30
nance. Indeed, it seems to be a general result that as the polyad number P

zero-order resonance condltlo(here ;=w3) is ap- FIG. 3. (left): Plot of the energies of the periodic orbits of HCP relative to
proached more closely, the lower is the polyad number aghe quantum-mechanical ground state as a function of the quantum polyad

which the first tangent bifurcation appears. The energy gapumberP for v;=0 (bottom), v,=1 (middle) and v, =2 (top). (right):

between the |eve|a)(1 0 1) and (} 2 O) Computed from the Same as in the left column, but with an energy scale expanded around the
o Lol energy of the stable periodic orfjit]. Solid lines mark the energies of the

zero-order Dunham expansion alone, is equal_t67'3’ stable periodic orbit$r], [B], and[ﬂ\l] and the dashed line shows the

_38'9’ —8.7, 20.6, 49.9, 79.2, and 108.5 cifor U1 in- energy of the unstable periodic orbBN]. The cross Iabel_eSNindicates
creasing from 0 to 6. Exact resonance therefore occurs SOM@r saddle-nodéor tangent bifurcation at whic SN] and[ SN] are created

where betweew,=2 andv,=3, that is, in the same range simultaneously. The classically allowed region as well as the energy levels

of values ofv; where the bifurcation curve reaches its mini- of the quantum polyads always lie between the energies of the two outer-
mum (P— _ 2) most stable periodic orbits. The five columns of dots in the three panels on

. . the right represent the energy levels of the pol P]=[0,14], [0,22],
The search for the SN bifurcation helps to put |OW€I’[0‘30]? [1,24%, and[2,20]. v polyads

limits to the energy at which isomerization states first appear.
Indeed, the SN bifurcation is found &=12.30 andE
=7744 cm?' above the quantum-mechanical ground statén Fig. 3 for v;=0 (bottom), v;=1 (middle), andv,=2
for v,=0, P=4.16, andE=5850 cm?! for v,=1, P (top) for values ofP increasing from—2 (1=0) up to the
=-0.21, andE=6176 cm* for v;=2, P=—1.81, andE  Vvalue of the highest fitted polyad, that B=30 (I =32). For
=8159 cm* for v;=3, andP=0.98 andE=12840 cm®  a given polyad[v,,P] the quantum energy levels all lie
for v,=4 (for values ofv, larger than four, the bifurcation close in energy, as do also the energy values of the POs.
does not occur inside the fitted polyad range so that polyadherefore, the full-scale plots displayed in the left part of this
with v,>4 are excluded from our discussjoNegative val- figure are difficult to interpret in detail. For clarity, the same
ues ofP for v;=2 andv;=3 mean that the bifurcation has information is plotted in the right part of the figure, but with
already taken place for the first quantum poly@@=0).  an energy scale expanded around the energy of the stable PO
Notice, however, that these numerical valuesRoare only ~ With zero energy in the bend € J), which is labeled with an
lower limits for the appearance of isomerization states belr] in the plots(the notation used to label the POs will be
causeP can assume only even integer values in quantunglescribed in the next paragraptror v;=0 and below the
mechanics. Moreover, a zero-point energy argunientbe bifurcation atP=12.30, there exists only one extra PO in
presented in Sec. \Vis responsible for the fact that clear addition to[r], a stable one labelefB]; The [r]- and
isomerization states first appear for valuesPofometimes [B]-type POs form the backbones of the lowest and highest
substantially higher than the value Bfat the bifurcation. members of each polyad, respectively. Two other POs, la-
More detailed information concerning POs is gainedbeled[ SN] and[SN], are created at the tangent bifurcation.
from the plot of their energy and their bend/CP—stretch charf SN] denotes the stable PO, along which the wave functions
acteristics. The plot of the energy values of the POs is givewf isomerization states are elongated, whelgall] stands
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for the unstable one. The agreement between classical POs 10— T LT T
and quantum nodal lines can be checked in Fig. 1, where the oof ! [r]
[r],[B], and[SN] POs are plotted on top of the wave func- 0.8F ![SN]
tions for polyad[v,,P]=[0,22]. Of fundamental impor- 0.7 |
tance is the fact that the classically allowed region, that is, 0.6 SN
the values oE for which a classical trajectory exists, always 0.51 (B]
lies between the two outermost POs for given values of 0.4r
0.3F
and P. For example, fow,=0 the energy of SN] crosses 0ok
the energy of r] at P=21.1, so that the classically allowed o1k [sN]
region lies betweeiir] and[B] from P=—-2 to P=21.1 o.oL
and betweefiSN] and[B] for values ofP larger than 21.1. o 1o
Similarly, the quantum states always lie between the same & ool e}y 3
outermost POs. For the sake of illustration, the quantum 2 osf /,/"" [SN]
states for polyadfv,,P]=[0,14], [0,22], [0,30], [1,24], and 5 oovf /
[2,20] are shown as columns of small black dots in the fig- f\ 0.6 [ vi=1
ure. Notice that the tangent bifurcation always takes place o 051 .
: ; + SN

close to the low-energy end of the classically allowed region Q, %41 (]
(that is, correspondingly, to the low-energy end of the quan- S 8‘2:
tum polyad and that thé SN] stable PO then rapidly defines o 0‘1 i [SN]
the low-energy border of the allowed regidris is the rea- ;g 0:0 r
son why perturbations in the spectrum and isomerization Y e s
states first appear near the low-energy end of the polyads 0:9 i [r]
and not near the top, where they were first searched for by 0.8F [5N]
experimentalists. We will return in more detail to this point o7k T T
in the next section. 0.6 e ]

The ratioJ/(P+2) for the POs is plotted in Fig. 4 for 05f and _
the same polyads as in Fig. 3, that is, for values pfanging 0.4 y
from 0 to 2 and values d? from —2 to 30. Recall thai [Eq. 031 ]
(2.6)] remains constant for all of the POs discussed in this 0.2F (5] ]
article>®* and that aJ/(P+ 2) ratio close to zero means that 0.1p [sN]
the PO is an almost pure bending motion, whereas a ratio 0-op R TR VAT e J

close to one describes a motion which remains in the neigh-
borhood of the CP-stretch aXiéstated in other words, ratios
equal to 0 and 1 define the two poles of the polyad phaseiG. 4. Plot of thel/(P+2) ratio at the periodic orbits of HCP as a func-
spherg. Figure 4 shows that the two stable POs, which existion of the quantum polyad numbe for v; =0 (bottom, v,=1 (middle),
forlow values ofP, have respective atios of 0 and L for the 102100 J(7. ) sbaye 2o b b o o
|9V‘(eSt possible value dt, P=—2 (1=0). _Therefore’ in that the energi)/ of the stable peg:iodic or.b[ns], [B], and[pSN] and the dashed
limit, they correspond to pure bending and pure CP-jpe represents thé/(P+2) ratio at the unstable periodic ortyi&N]. The
stretching motions. This is why they are labeled[Bg (B cross labeled SN indicates the saddle-n@atetangent bifurcation at which
stands for bendingand[r] (r is the Jacobi coordinate de- [SN] and[SN] are created simultaneously.

scribing the length of the CP bohd\ote that these labels

are the same as the ones used in the classical study of the

exact potential energy surfaces!! whereas they describe

subtly, but noticeably different objects: More precisely, thecreated with a very mixed character: At the bifurcation,
classical study is capable of finding ojrg and ond B] PO  J/(P+2) is equal to 0.46, 0.45, and 0.63 fioy=0, 1, and 2,

for each value of and these trajectories are periodic in therespectively. AsP increases, the CP-stretch contribution to
six-dimensional phase space built on the three Jacobi coofSN] steadily decreases, while in contrast, the bending con-
dinatesr, R, andy and their conjugate momenta; in contrast, tribution diminishes fof SN]. Most importantly, high values
the semiclassical study of the resonance effective Hamilof P andE are needed in order f{§SN] to become an almost
tonian leads to onfr] and ong B] PO for each value of; pure bending motion and to consequently follow the mini-
and P, and the trajectories are periodic in the four- mum energy path to isomerization: indeed, #EP + 2) ra-
dimensional space built o, d3, p>, andpz. Nonetheless, tio becomes smaller than 0.1 only ®&=21.0 andE

the same labels are used, because we think that this helps 012 835 cm* above the quantum ground state éqr=0, at
make the link between the two kinds of studies. Returning tcP=19.5 andE=14871 cm* for v;=1 and atP=17.0 and
Fig. 4, it is seen that thig'] PO remains a pure CP-stretching E=16 289 cm* for v;=2. This slow evolution of the stable
trajectory for all fitted polyads, while theB] PO acquires a PO born at the bifurcation towards a pure bending motion is
substantial CP-stretch contribution Bsncreases, with a ra- the reason why the new states only gradually arrange them-
tio J/(P+2) close to 0.4 for the highest studied polyads. Onselves along the isomerization pathway for the new suyface
the other hand, the stabJ&N] and unstabl¢§ SN] POs are in contrast with what happens for the previous surfac.

polyad number P
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Quantizing trajectories for polyad [v1,P]=[0,12] ‘ ‘ Quantizing trajectories for polyad [v1,P]=[0,22]
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FIG. 5. The quantizing trajectories of HCP for polyfad, ,P]=[0,12]. The

upper panel is a plot of the third action integdads a function of the energy FIG. 6. Same as Fig. 5, but for polyad, ,P]=[0,22].
E relative to the quantum ground state. Quantizing trajectories associated

with quantum states, which correspond to half-integral value§,oére

shown as heavy black dots. The positioof the level inside the polyad is dbv h d in th | h b |
indicated close to each dd@ti=0 for the highest level in the polyad, represented by heavy dots in these panels. The number close

=PJ2 for the lowest one The energies of the periodic orbits are indicated 0 €ach dot is the positionof the level inside the polyad.
with vertical dot—dashed lines. The lower panel is a plot of the quantizing|ncidenta||y, it is noted that the agreement between the ener-
_trajectories. in'thel,w) surfgcg of_section. The positiorof the pqrreqund- gies of guantum states and quantizing trajectories is excel-
ing level Wlthln_ th(_e polyad is indicated clos_e to each quantizing traj_ectory.Ient the Iargest error for polya@v P]=[0,22] being
The stable periodic orbitr] is shown as a line located at=P+ 2, while ! arviL.t I e
the other periodic orbits appear as points in this surface of section. smaller than 1.3 cm'. The quantizing trajectories are also
plotted in the @, ) surface of section in the lower panels of
Figs. 5 and 6. These plots are symmetric with respect to the
V. QUANTIZING TRAJECTORIES AND THE =0 andy= /2 axes and periodic with a period equalto
INTERLEAVING OF NORMAL AND ISOMERIZATION In the (J,4) surface, theB], [SN], and[SN] POs only
STATES . L
appear as pointéecause of the periodicityB] appears as
Quantizing trajectories are studied in this section, in or-one point on both thé=0 and¢=7 axes, while the[r] PO
der to understand the interleaving of isomerization and norappears as a horizontal line locatedJat|=P+2. Each
mal states at the bottom of Fermi polyads. solid line in these plots further represents one quantizing
Plots of the third action integrdl as a function of en- trajectory, that is, one quantum state, except for the trajecto-
ergy are shown in the upper panels of Figs. 5 and 6 for theies looping aroundB], which appear as two lines symmet-
polyads [v4,P]=[0,12] and [v4,P]=[0,22], the former ric with respect toy/=m. The positioni of the level in the
polyad being located below the bifurcation ioy=0 and the polyad is indicated close to each quantizing trajectory, to
later one above it. Notice that these plots comprise either onghow its identification clearly. What happensR#creases
(before bifurcation or three branchegafter bifurcation. and approaches from below the value where the bifurcation
Each branch starts and stops at one of the POs, either staldecurs, is that a point with higher and higher derivatiak
or unstable(the energy values for these POs are indicatednost vertical tangehdevelops in the plot of=J(E). Such
with vertical dot—dashed lines in the upper panels of Figs. & point is clearly seen close te=5 in the upper panel of Fig.
and 6. The quantizing trajectories associated with the quan5. At the bifurcation, the tangent becomes exactly vertical
tum states correspond to half-integer valuesjoénd are and the plotJ=3(E) splits into two segments at this
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point. These are the two branches, which appear at negativ:

values ofJ in the upper panel of Fig. 6. The gap between the

two segments is vanishingly small at the bifurcation but in-

creases substantially #&becomes larger than the value at

the bifurcation. It should, however, be realized, that this

splitting into two branches does not result in the appearance

of a new kind of motion: Indeed, it is clearly seen in the

lower panels of Figs. 5 and 6 that the quantizing trajectories

with i=0 andi=1 for P=12 are topologically equivalent to

the trajectories withi =0 toi=7 for P=22. Similarly, the

guantizing trajectories with=2 to i=6 for P=12 are

equivalent to the trajectories with=8 andi=10 for P

=22. In contrast, above the bifurcation a third branch devel-

ops between the energies of the two POs which appear at th

bifurcation, namelyf SN] and[ SN]. At the bifurcation these

two POs are energetically degenerate, but then they separai

widely asP increases, anfiSN] rapidly defines the lower

border of the classically allowed region. Similaf\gN] and 14000

[SN] are created at the same point on e #/2 axis, but

then separate further and further Rsncreases. As can be

verified in the lower panel of Fig. 6, the quantizing trajecto-

ries located on this branch with positive valuesiodlo rep-

resent a new kind of motion, since they either loop around 13800 -

the[SN] PO (as fori=11) or spend most of the time close

to theJ=0 axis(as fori=9). Not surprisingly, these quan-

tizing trajectories with a new, predominantly bending type of

motion are those, which are associated with the quantunr

isomerization statetsee Fig. 1 13600 7
We are now in the position to discuss two further quan-

tum observations, namely the first appearance of isomeriza, ¢y |

tion states atP and E values substantially larger than the

bifurcation values and, more interestingly, the interleaving of

normal states and isomerization states near the low-energ!3+%0

end of the polyads. For that purpose, it should be emphasize:

that the EBK quantization rule, which states that quantizing

trajectories have half-integer values @fapplies to each of

the branches when more than one of them is observed in thaG. 7. (a) Polyad phase sphere representation ofRke22 polyad. Each

plot of 3=3(E). Now, the branch supporting the new, bend- energy level obtained from the diagonalization of the Fermi resonance ef-

ing type of trajectories starts at=0 at the bifurcation and fective Haml'ltonlan. corresponds to a trajectory on the spherg. 'I_'he phase
space portraits of Figs. 5 and 6 are analogous to Mercator projections of the

develops to higher and higher positive valuesiods P in- phase sphere. However, the trajectories in Figs. 5 and 6 differ in that they
creases. Clearlyisomerization states appear for the first correspond to energy levels obtained from semiclassical quantization, rather

(even) value of P, for which the branch extends beyondhan direct matrix diagonalization; see text. Stable POs are indicated by
J=1/2. This is the reason why, far,=0, the first isomer- circles(the hatched circles represent points on the back of the spieeeX
T ) . ’ 1 ’ : indicates an unstable PO. The dashed line is the separdiyiseudopo-
ization state is observed in polyd= 16, whereas it could tential obtained by plotting the energy as a function of the anglef the

have been expected in poly&3= 14 (recall thatP=12.30 at  great circle on the sphere on which all the fixed poifats POs in the full

the bifurcatior). Moreover, as is confirmed in the lower phase spaoelje. All of the fixed points correspond to extrema of the
panel of Fig. 6, there are two coexisting branches in the plofseudopotential-

of 3=3(E) in the energy range betweé¢n] or [SN] and

[SN]. In other words, for each value of the energy lying almost degeneratérom the energetic point of viewfor all
between thg SN] and[r] or [SN] limits there exist two possible values o. This is the reason why no interleaving
trajectories, one with predominant bending behavior and anef normal and isomerization states is observed in the quan-
other with predominant CP-stretching behavitirthis en-  tum spectrum fov,=2: the energy region in which the two
ergy region is sufficiently broad, so that at least one quanbranches coexist is too narrow.

tizing trajectory exists on each branch within the range, then It is useful to relate the phase space portraits of Figs. 5
the inevitable result is an interleaving of normal and isomer-and 6 to the polyad phase sphere representation of Kellman
ization states the specific ordering depending on which and co-workers’~%21=2* Figure 7a) shows the phase
branch crosses a half-integer valueJodit which energy. On  sphere representation for tiee= 22 polyad, the phase space
the other hand, looking back at the upper right plot in Fig. 3,portrait of which was shown as Fig(§. From the phase
one notices that, fov;=2, the[r] and[SN] POs remain sphere point of view, the phase space portraits are Mercator

3900 -

13700 1
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projections of the phase sphere, with relations to the polyad 400 i T ' ' N
numbers and angles as follows: iy i[r] | |P=30, n
1 300 —i ; both branches '
"=z 200 |
F |
23— 1 100 - |
@' =arcco , (5.2 ' 2>
I of!
" 90 [
’ ~_~ 80 ~_
=5 T 70
g 60f
wherel’, 0’, andy/' are the radial coordinates defining each 2 28 3
point on the sphere, and J, ¢ have been defined in Eq. -~ agL
(2.6). M 20f
In the phase sphere representation, constraints on the 18 C
possible combinations of POs arise from the Poincare index + 90 [
theorem, which states: If an index is associated with each PO’ 80 55
according to its stability: & Zg b | higher branch
: 20 50F
1 if stable = a0k
Index={ —1 if unstable, (5.2) E gg -
0 if it is a cusp, ® 10 :—I |
0 |
then the sum over all POs of these indices is determined by ~ 90’ ' '
the topology of the phase space alone. Specifically, for a 2D 28 L | P=22,
(two-dimensional sphere we have: go [ [lower branch
50
. 40 -
> Indices=2. (5.3 30l [ =6~ Exact
20F | “B- Fermi
The two simplest kinds of bifurcation that satisfy the index 10 l |
theorem are the “cusp type,” at which a cusp PO first 05T 1z 10

appeary’?*Zand the “SN type,” in which a pair of stable—
unstable POs are created. In this paper, only the SN bifurca-
tion has been encountered, while the cusp type bifurcatiof!G. 8. Plot of the energy gap between levelndi+ 1 as a function of

has been obsenved In other systems, notably in substiudl YL P02 (0, 0, ard ) a2} (050 oo
methane moleculé$**and HOCI* In the phase sphere rep- resonance Hamiltoniafsquarels The dot—dashed vertical lines indicate the
resentation, it turns out that all the POs of the Fermi resopositions of the classical periodic orbits. See the text for a discussion of the
nance Hamiltonian lie on a great circle passing through théhree plots forP=22.

north (' =0) and south(¢/' =) poles of the sphere. On the

reduced one-dimensional subspace comprising the great

circle, the POs manifest themselves as extrema or inflectiopally distinct regions. The energy spacings are therefore an
points of the energy. Hence, they can be conveniently idenimportant means by which to decode information about the
tified by examining the “pseudopotential” in which the en- molecular dynamics from the spectrum. These kinds of pat-
ergy on the phase sphere is plotted vs the angle along therns have been considered by Svittkall’ for the most
great circle®® The pseudopotential for th®=22 polyad elementary version of the Fermi resonance Hamiltonian, i.e.,
sphere is sketched in Fig(l3, which illustrates how all of one which differs from the present study in that it includes
the fixed points in Fig. @) and 7a) lie at extrema. only second-order terms in the Dunham expansion for the
zero-order part of the Hamiltonian. The simplest of these
patterns is a minimum or “dip” in the spacings of adjacent
levels in a polyad, due to the presence of a classical separa-
trix.

In Sec. IV, the shapes of quantum wave functions have A separatrix is a phase space structure that contains an
been interpreted in terms of the properties of steblePOs  unstable PO. The simple minimum in the level spacings is
of the classical Hamiltonian. In this section, patterns of theassociated, in the work of Svitadt al,>” with an unstable
energy spacing between adjacent levels within a quanturRO, which in the reduced phase of the sphere appears as a
polyad will instead be connected to thmstableclassical fixed point, lying at a cusp on the separatfix Ref. 17, the
POs. dip occurs in the region classified as “zone Il dynamics” by

The unstable POs are not only dynamically important inXiao and KellmaA®2%. More complicated phase space struc-
themselves, but they also define the structures called separares, e.g., those formed after a SN bifurcation, which in-
trices, which divide the classical phase space into dynamivolve more than one PO, can give rise to more complex

positioni in the polyad

VI. UNSTABLE POs AND PATTERNS IN THE GAP
BETWEEN NEIGHBORING LEVELS
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FIG. 9. Energy level patterns of tHe= 22 polyad, plotted according to the procedure of Svitalal. (Ref. 36 compared with the similar procedure of Fig.

8. The energy spacing between appropriately chosen pairs of levels is plotted as a function of the average energy of the two levels(® stopaithe
levels chosen in order of energy, resulting in a “zig—zag” or “interleaving fath) shows the levels chosen after sorting by the assignment procedure of
Xiao and Kellman(Refs. 23 and 24(c) and (d) show the levels sorted by the slightly different procedure of Fig. 8bjn(c), and(d) the “zig—zag” is
replaced by a single dip, indicating the presence and location of the separatrix.

spectral pattern¥’ a fact of which we will make use shortly. plot of on the low-energy side @S N], and more precisely
In_Ii_ght of_Ref. 17, Ishikaweet al® noted the presence of a between[SN] and [r] (if [r] has an energy greater than
minimum in the energy level spacings of the complete poly{sN]) or [SN] and[SN] (if [SN] has an energy greater than

ads resulting from a fit of their incomplete experimental datf{r])_ A similar situation was considered by Svitakal” for
for HCP to a version of the Fermi resonance Hamiltonian,[he case of Xiao and Kellmaris24“zone III” dynamics. If

Here We,W'”h con?de(; the _presefncr(]a and meaning of Su,cl%ne considers the adjacent level separations along each
patterns in the refined version of the spectroscopic Hamil, oo, separately, then the minimum spacing is still clearly

tonian we have developed in this paper. eqident. This is illustrated in Fig. 8: The bottom plot shows

The link between the clas§ ical phase space s.tructure aNfle spacings between adjacent levels of polpad22 when
guantum spectral patterns arises from the following consid-

erations:(i) The classical frequency* associated with the only the lower branclinegative values d) is considered on

third action integralJ goes logarithmically to zero at the the '0‘(’;"9”?;93’ side _OES:\I])' Iln ;)gher (\:/jvor”dsk,] thle p?ly?d is
unstablg SN] PO3 (ii) the slope ofi=13(E) is just 1k* treated as if it contains levels=10 and all the levels from

(iii) quantum states are associated through the EBK quant‘-:8 down t0i=0, the It_evels =9 andi=11 (V\_’h_'Ch bel_ong
zation rule with equally spaced, half-integer valuesjof t© the higher brandhbeing excluded. The minimum in the
Therefore, the energy gap between two neighboring level{Vel spacing is quite clear and occur$ 8N]. Similarly, the
within a polyad decreases as these levels approach the uRénultimate plot in Fig. 8 displays the energy spacings be-
stable PO. Consequently, if a single branch exists in the pldiveen the levels of polyad®=22, when only the higher

of 3=7J(E) on both sides O[W, then the unstable PO is branch is considered on the low-energy sid¢ ®N], that is,
responsible for a minimum in the spacings between adjacevhen the levels=8 andi =10 are excluded. Here again, the
levels. This phenomenon is the spectral minimum noted byninimum is clear. The point is that one must consider the
Svitaket all’ This is precisely what happens in the spectrumtwo branches simultaneously because both are present in the
based on the fit by Ishikawat al. of an effective Hamil-  spectrum. Since these two branches are pardlktauseo®
tonian model to experimental dataAs noted above, in the is the same for the two branch8s this results in a zig—zag
present model for HCP, the spectral situation is more comin the plot of the adjacent level spacings, as can be seen in
plex above the SN bifurcation. Two branches coexist in thehe second highest plot of Fig. 8. This zig—zag is simply due
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to the fact that two families of level spacinds[i+1] ACKNOWLEDGMENTS
—E[i] coexist: The first family is associated with odd values
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zig—zag behavior takes place over the entire energy rang
where two trajectories with the same value of energy coexis : " . :
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