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The vibrational spectrum of HCP~phosphaethyne! is studied and analyzed in terms of a 1:2
resonance effective Hamiltonian. The parameters of the model Hamiltonian are determined by
fitting 361 out of the first 370 energy levels obtained from diagonalization of the full Hamiltonian,
which is based on a newly calculated potential-energy surface with near spectroscopic accuracy. It
is demonstrated that all features characteristic of the approach to the HCP↔CPH isomerization,
such as the strong mixing between the bending and CP-stretching motions, the appearance of
‘‘isomerization states’’ ~large amplitude bending motion! at intermediate energies, and the
diagnostically significant appearance of a zig–zag pattern in the energy spacings between
neighboring levels within each polyad, are quantitatively reproduced by the effective Hamiltonian.
The semiclassical analysis of the model Hamiltonian for specific combinations of the HC-stretch
and polyad quantum numbers explains all of the observed features of the full Hamiltonian in terms
of stable and unstable periodic orbits. In particular, the birth of the isomerization states is found to
be related to a saddle-node bifurcation of the classical phase space. The connection with the
‘‘polyad phase sphere’’ representation of quantum polyads is also discussed. ©2000 American
Institute of Physics.@S0021-9606~00!00809-6#
en

n-
pi

o-

in
in
tio
m
h

y.
e

40
o
gi

it

iated

mi
hing

riza-
of
g

ils
con-
ugh
mil-
ec-
t

ise
of

tes
I. INTRODUCTION

The potential-energy surface~PES! of phosphaethyne
~HCP! in its ground electronic state has received much att
tion in the last few years, both from the experimental1–5 and
theoretical1,6–9 points of view. The reason is that some u
usual features observed in the stimulated emission pum
~SEP! spectra at about 20 000 cm21 above the ground
state3–5 might well be signatures for the isomerization pr
cess leading from HCP to CPH. Indeed, the calculations6,7,9

have shown the existence of two distinct families of bend
states: One with wave functions confined to small bend
angles and the other one sampling all of the isomeriza
pathway from HCP to CPH. The members of this later fa
ily are called ‘‘isomerization’’ states in order to distinguis
them from the ‘‘normal’’ states belonging to the first famil
The family of normal states starts at low energies and p
sists well above the isomerization saddle at about 24
cm21 above the ground state. In contrast, the family
isomerization states starts abruptly at intermediate ener
~about 15 000 cm21 above the ground state! and can be fol-
lowed up to the isomerization saddle. In agreement w

a!Electronic mail: marc.joyeux@ujf-grenoble.fr
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classical and semiclassical theories, it was pointed out6,7,9

that the appearance of the isomerization states is assoc
with a saddle node~SN! bifurcation of the periodic orbits
~POs! of the classical Hamiltonian, which is due to the Fer
resonance between the bending and the CP stretc
motions9 and takes place at 13 800 cm21 above the quantum
ground state. When plotted on the same diagram, isome
tion states are seen to lie exactly on top of the family
stable POs born at this bifurcation, both of them followin
closely the isomerization pathway.

It was furthermore shown in Ref. 9 that all the deta
observed in the quantum spectrum do have a dynamical
tent, and that this content is most readily understood thro
the semiclassical analysis of an effective resonance Ha
tonian with parameters obtained by fitting the quantum sp
trum. It is only through the gathering of all the differen
pieces—namely~i! a large amount of experimental data,~ii !
exact calculation on anab initio PES,~iii ! the study of the
classical phase space for theab initio PES, and~iv! the semi-
classical study of the effective Hamiltonian—that a prec
understanding of the highly excited vibrational dynamics
HCP is possible.

The above mentioned work on the isomerization sta
of HCP and their connection with a classical bifurcation,6,7,9
2 © 2000 American Institute of Physics
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however, relies on a preliminary PES,7 which, although
qualitatively correct, is not sufficiently precise for quantit
tive predictions and direct comparison with experimen
Since the publication of Ref. 7, Schinke and co-workers h
constructed a completely new surface, the details of wh
are given in Ref. 10. The fundamental frequencies calcula
from this new surface now agree to better than 4 cm21 with
the observed ones and the overtone and combination
quencies to better than 20 cm21 up to 20 000 cm21 above the
zero-point energy. The study of the classical phase sp
using this surface confirms that a classical bifurcation co
cides with the appearance of isomerization states.10,11 How-
ever, many quantum features differ substantially from th
observed in the first PES, as can be checked from a com
son between Refs. 6, 7, and 9 on one side and Refs. 10
11 and the present article on the other side. The dynamic
therefore, expected to be also very different. Owing to
fact that HCP is so far an almost unique system in the st
of isomerization, because of the considerable amount of
perimental data and the~now! accurate global PES, it wa
felt that a semiclassical study dealing with the new surf
was worthwhile, in order to obtain a complete and coher
description of this prototypical molecule.

This article is organized as follows: A brief descriptio
of the Fermi resonance effective Hamiltonian, which will
used throughout the paper, is presented in Sec. II. Sectio
contains a recount of the features observed in the exact q
tum spectrum and which are closely reproduced by the re
nance Hamiltonian. It will be the goal of the remainder of t
article to extract the dynamical information contained
these features through the semiclassical study of the r
nance Hamiltonian: The birth and gradual arrangemen
isomerization states along the isomerization pathway are
discussed in Sec. IV in terms of classicalstable periodic
orbits. Then, quantizing trajectories are analyzed in Sec
in order to understand the interleaving of isomerization a
normal states at the bottom~i.e., low-energy region! of quan-
tum polyads. At last, the patterns in the energy spaci
between neighboring levels, which are most useful to exp
mentalists, are discussed in Sec. VI in terms of the class
unstableperiodic orbits.

II. THE FERMI RESONANCE HAMILTONIAN

The explicit matrix elements for the Fermi resonan
HamiltonianH in the basis of harmonic-oscillator produc
~nondegenerate for modes 1 and 3, doubly degenerate
mode 2! are taken to be, respectively

^v1 ,v2 ,v3uHuv1 ,v2 ,v3&5(
i

v ini1(
i< j

xi j ninj

1y222n2
31z2222n2

4,

n15v11 1
2, n25v211, n35v31 1

2, ~2.1!

for the Dunham diagonal expansion and:

^v1 ,v2 ,v3uHuv1 ,v212 ,v321&52n2n3
1/2S k1(

i
kini D ,

~2.2!
n15v11 1

2, n25v212, n35v3,
Downloaded 14 Dec 2001 to 128.223.22.131. Redistribution subject to A
.
e
h
d

e-

ce
-

e
ri-
nd
is,
e
y
x-

e
t

III
n-

o-

o-
f

st

,
d

s
i-
al

for

for the off diagonal Fermi coupling. Unlike in Refs. 8 and
the convention of spectroscopists1–5 is used here for labeling
the normal modes, i.e., indexes 1, 2, and 3 refer respecti
to the CH stretch, the bend and the CP stretch. The vib
tional angular momentuml , which results from the degen
eracy of the bending motion, is assumed to be zero in E
~2.1! and~2.2!, as was done in the previous theoretical wor
on HCP where only the nonrotating molecule (J50) was
studied.6,7,9 Without this assumption, slightly more comple
expressions must be used.12,13 The fifteen parameters: Thre
v, six x, oney, onez, and fourk were fitted against 361 ou
of the first 370 levels obtained from exact quantum calcu
tions on the new PES.10 These levels have up to 30 quanta
the bending degree of freedom and 6 quanta in the
stretch. Numerical values for the parameters can be foun
Table I. The rms error for the 361 levels is 7.7 cm21 and the
maximum error 35.6 cm21 .

The Fermi resonance in Eq.~2.2! destroys one good
quantum number, so that there remain only two good qu
tum numbers in addition to the vibrational angular mome
tum l . These are the number,v1, of quanta in the CH stretch
and the so-called polyad number,P, where

P5v212v3 . ~2.3!

The Fermi resonance only couples levels of the basis
harmonic-oscillator products with the same values ofv1 and
P. For even values ofP, there are (P/2)11 levels with the
same values forv1 andP. Such a subset of levels is called
polyad and will be denoted@v1 ,P#, as in Refs. 5 and 11
Individual levels can be further characterized by their po
tion i inside the polyad. The convention thati 50 at the top
of the polyad andi 5P/2 at the bottom is used throughou
this article, as in Refs. 5 and 11.

Let us finally mention that the resonance Hamiltonian,
addition to energy values, is also able to reproduce with g
accuracy the features observed in theab initio wave func-
tions. For example, the wave functions for the 12 states
polyad @v1 ,P#5@0,22# are plotted in Fig. 1 for the reso
nance Hamiltonian. The basis functions are taken again
harmonic-oscillator products~a doubly degenerate oscillato

TABLE I. The fitted molecular constants of HCP in Eqs.~2.1!, ~2.2!, and
~2.4! and the corresponding uncertainties~one times the standard deviation!.

Parameter Value (cm21)
Uncertainty

~cm21)

v1 3343.1225 1.6852
v2 697.7797 0.7516
v3 1301.0838 0.6911
x11 255.0161 0.2892
x12 216.8174 0.1186
x13 24.3375 0.1838
x22 25.3477 0.0829
x23 24.6460 0.0439
x33 25.8619 0.0541
y222 0.233 45 0.005 20
z2222 20.005 62 0.000 14
k 3.6115 0.1585
k1 0.805 60 0.043 76
k2 0.067 27 0.008 45
k3 20.220 67 0.010 97
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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FIG. 1. Plot in the (q2 ,q3! plane of the wave functions of the 12 levels, which belong to polyad@v1 ,P#5@0,22#. The horizontal axisq2 ~bend! ranges from
0 to 8 and the vertical axisq3 ~CP stretch! from 26 to 6. This polyad spans the energy range from 13 425 to 13 948 cm21 above the ground state. The thre
stable periodic orbits@r #, @B#, and@SN# are also plotted~@r # merges into the verticalq3 axis and cannot be clearly distinguished!. Note the coincidence of
eigenstates 0, 10, and 11 with orbits@B#, @r #, and@SN#, respectively.
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is taken for the bending degree of freedom!. This figure com-
pares very well with Fig. 10 of Ref. 11, which shows som
wave functions for the new PES. On the other hand,
expression for the classical Hamiltonian can be written in
form

H5(
i

v i I i1(
i< j

xi j I i I j1y222I 2
31z2222I 2

4

12I 2I 3
1/2cos~2w22w3!S k1(

i
ki I i D . ~2.4!

The (I k ,wk) are action-anglelike sets of conjugate coord
nates, such that

qk5A2I k coswk ,
~2.5!

pk52A2I k sinwk~1<k<3!.

The classical study is greatly simplified when Eq.~2.4! is
expressed in terms ofI 1 and of new conjugate variable
(I ,u) and (J,c) obtained from (I 2 ,w2) and (I 3 ,w3) through
the following canonical transformation:

I 5I 212I 3 ,

J52I 3 ,
~2.6!

u5w2 ,

c5
w3

2
2w2 .

Inserting the transformations of Eq.~2.6! into Eq. ~2.4!, the
nonlinear coupling becomes (I -J)J1/2cos(2c)(K1K1I11K2I
Downloaded 14 Dec 2001 to 128.223.22.131. Redistribution subject to A
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1K3J), with trivial, linear relations between the parameterk
andki of Eq. ~2.4! and the parametersK andKi . The impor-
tant point is that this coupling does not depend on the an
w1 and u, which implies thatI 1 and I are constants of mo
tion. It is now well understood14,15 that their values are also
action integrals of the system and that the Einstei
Brillouin–Keller ~EBK! quantization rules16 dealing with
these two action integrals are

I 15v11 1
2

~2.7!
I 5P12.

In other words, each level belonging to the polyad@v1 ,P# is
associated with a semiclassical quantizing trajectory w
constants of motionI 1 and I equal, respectively, tov111/2
andP12. Examples of these trajectories will be seen bel
in the phase space portraits of Figs. 5 and 6 and in the
sentially equivalent polyad phase sphere representatio
Fig. 7~a!. The third action integral of the system, which w
be calledI, can be obtained by computing a simple integ
derived from the expression of energy in coordina
(I 1 ,w1), (I ,u), and (J,c) @see Eqs.~2.13! and~2.14! in Ref.
9#. The third EBK quantization rule then states that the qu
tizing trajectories are those which satisfy Eq.~2.7! and for
which, in addition,I is half-integral~positive or negative!.
An alternate way to find quantizing trajectories correspo
ing to the quantum energy levels, without numerical prop
gation, is to solve directly by quadrature for the classi
trajectories that have the same energy as the quantum le
of the spectroscopic Hamiltonian. This approach has b
explored extensively by Kellman and co-workers.17–24 The
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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correspondence between classical and quantum mech
ensures that this is a good approximation, at least not
close to separatrices. In this study, the difference in ene
between levels obtained in the two approaches is not la
than 1.3 cm21 for polyad@v1 ,P#5@0,22#. It should be noted
that in the work of Kellmanet al.,17–19,21–24the phase spac
description involves a spherical surface, the ‘‘polyad ph
sphere.’’ The phase sphere description is completely equ
lent to the one described above, when it is realized that
goes from one to the other simply by transforming from
cylindrical, or Mercator representation, to an equivalent r
resentation on the sphere. The phase sphere representa
displayed in Fig. 7 below with more detail about its topolog
cal properties.

III. THE FEATURES OBSERVED IN THE QUANTUM
SPECTRUM

The principal features, which are evident in the plots
the wave functions obtained from the new surface,10,11 are
recounted in this section, before the dynamical conten
extracted in the next three sections.

For the polyads withv150 the wave functions show th
usual, lowP-behavior up toP514: They evolve regularly
from a wave function withP/2 nodes along a line almos
parallel to theq3 axis ~the CP stretch coordinate! at the bot-
tom of the polyads to another wave function withP/2 nodes
along another line approximately parallel to theq2 axis ~the
bend coordinate! at the top of the polyads. In contrast, stat
with qualitatively different wave functions have definite
come into existence atP518 ~see Fig. 10 of Ref. 11!. The
first state with a clearly new wave function is the seco
lowest one (i 5P/22158) in this polyad and is located a
11 159 cm21 above the ground state. This new class of wa
functions still contains a significant contribution of CP
stretch, which however decreases steadily with increas
polyad number. Above polyadP522, the new wave func-
tions are almost pure bend and closely follow the minim
energy path leading from HCP to CPH. A second isomeri
tion state appears in the same polyadP522; the two isomer-
ization states are the lowest~ i 5P/2511) and the third low-
est one (i 5P/22259) in the polyad, while the secon
lowest one (i 5P/221510) displays motion along the C
stretching coordinate. These features are closely reprod
by the resonance effective Hamiltonian, as can be verifie
Fig. 1. The number of isomerization states continues to
crease withP and there are readily five of them in polya
P532, which have respective positionsi 516, 15, 14, 13,
and 11. The level withi 512, which is located between tw
isomerization states, is again a pure CP-stretching s
Moreover, in the same energy range above polyadP518,
the plot of the energy gaps between neighboring levels in
a given polyad displays some kind of zig–zag pattern. T
pattern differs again markedly from the simple minimu
which was observed for the first surface and was shown to
a fingerprint of the classical bifurcation in the quantum sp
trum. To conclude this brief summary of the exact quant
calculations, let us mention that forv151 and v152 the
main features are the same as forv150, except that the firs
Downloaded 14 Dec 2001 to 128.223.22.131. Redistribution subject to A
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appearance of isomerization states happens earlier as a
tion of P and that the interleaving of isomerization and no
mal states completely ceases withv152.

The goal of the remainder of this article is to extract t
dynamical information contained in these observations us
the formalisms of periodic orbits~POs! and semiclassica
quantization. Following the pioneering work o
Gutzwiller25–27 and Heller,28,29 there have been several nu
merical applications, which have demonstrated the imp
tance of POs in understanding the localization of quant
wave functions, which in turn is helpful for understandin
spectral patterns.30–33 The key idea is that classical stab
POs form the ‘‘backbones’’ of quantum wave functions, o
in other words, that they are approximately parallel to t
nodal and antinodal lines of the wave functions. Therefore
classical bifurcation, that is, a point@here in the (E,I ,I 1)
space# where the number and/or the stability properties of
POs change abruptly, might be expected to be associ
with clear-cut changes in the behavior of the wave functio
In particular, a tangent~or saddle-node! bifurcation corre-
sponds to the simultaneous creation~or destruction! of one
stable and one unstable PO, so that families of wave fu
tions with nodal lines oriented along the correspond
stable PO might be expected to appear~or to disappear! at
this bifurcation. Moreover, since the CH stretching moti
~mode 1! does not participate in the Fermi resonance,
POs for the resonance Hamiltonian of Sec. II need only
searched for in the reduced subspace (p2 ,p3 ,q2 ,q3) instead
of the full six-dimensional space, as was shown in Ref.
Procedures for performing the bifurcation analysis for t
spectroscopic Hamiltonian are described in detail in ear
works of Joyeuxet al.,9 Jostet al.,34 Li et al.,22 and Jacobson
et al.35 and the reader is referred to these articles for m
details.

Each one of the next three sections will explore a p
ticular semiclassical feature and derive a different class
information from the quantum spectrum.

IV. STABLE PERIODIC ORBITS AND ISOMERIZATION
STATES

Stable POs and bifurcations are discussed in this sec
in order to understand why isomerization states appear c
to the bottom of the polyads and why their wave functio
arrange themselves only gradually along the isomeriza
pathway, as described in the previous section.

The search for bifurcations gives the total actionI as a
function of I 1 . Bifurcations, therefore, appear as curve
which divide the (I 1 ,I ) plane into distinct regions, each re
gion being characterized by a different number of POs. O
ing to the EBK quantization rules in Eq.~2.7!, this bifurca-
tion diagram can be plotted in the (v1 ,P) plane in order to
enable an easier comparison with the quantum results; h
ever,v1andP are allowed to assume continuous real valu
Such a plot appears in Fig. 2, where the solid line, repres
ing the SN bifurcation, divides the (I ,I 1) plane into two
regions, containing two and four periodic orbits, respectiv
~the dashed line depicts the quantum numbersv1 andP for
the highest polyads included in the fit, and the analysis
therefore, valid only below this line!. In contrast to the cal-
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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4166 J. Chem. Phys., Vol. 112, No. 9, 1 March 2000 Joyeux et al.
culations with the first PES,6,7,9 a single tangent~or saddle-
node! bifurcation is found in the range of fitted polyads. Th
‘‘U’’ shape of this line can easily be interpreted in terms
the detuning of the zero-order levels from exact Fermi re
nance. Indeed, it seems to be a general result that as
zero-order resonance condition~here 2v25v3! is ap-
proached more closely, the lower is the polyad numbe
which the first tangent bifurcation appears. The energy
between the levels (v1,0,1) and (v1,2,0), computed from the
zero-order Dunham expansion alone, is equal to267.3,
238.0, 28.7, 20.6, 49.9, 79.2, and 108.5 cm21 for v1 in-
creasing from 0 to 6. Exact resonance therefore occurs so
where betweenv152 andv153, that is, in the same rang
of values ofv1 where the bifurcation curve reaches its min
mum (P522).

The search for the SN bifurcation helps to put low
limits to the energy at which isomerization states first appe
Indeed, the SN bifurcation is found atP512.30 andE
57744 cm21 above the quantum-mechanical ground st
for v150, P54.16, and E55850 cm21 for v151, P
520.21, andE56176 cm21 for v152, P521.81, andE
58159 cm21 for v153, andP50.98 andE512840 cm21

for v154 ~for values ofv1 larger than four, the bifurcation
does not occur inside the fitted polyad range so that poly
with v1.4 are excluded from our discussion!. Negative val-
ues ofP for v152 andv153 mean that the bifurcation ha
already taken place for the first quantum polyad (P50).
Notice, however, that these numerical values forP are only
lower limits for the appearance of isomerization states
causeP can assume only even integer values in quant
mechanics. Moreover, a zero-point energy argument~to be
presented in Sec. V! is responsible for the fact that clea
isomerization states first appear for values ofP sometimes
substantially higher than the value ofP at the bifurcation.

More detailed information concerning POs is gain
from the plot of their energy and their bend/CP–stretch ch
acteristics. The plot of the energy values of the POs is gi

FIG. 2. Plot in the (v1 ,P) plane of the bifurcation diagram of the period
orbits of HCP. The solid line indicates the saddle-node~or tangent! bifurca-
tion. The stable@SN# and the unstable@SN# periodic orbits appear at the
bifurcation. The two types of stable periodic orbits,@r # and@B#, exist both
below and above the bifurcation. The dashed line is the upper energy
of the fitted polyads and the validity of the analysis can be assured
below this line.
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in Fig. 3 for v150 ~bottom!, v151 ~middle!, and v152
~top! for values ofP increasing from22 (I 50) up to the
value of the highest fitted polyad, that is,P530 (I 532). For
a given polyad@v1 ,P# the quantum energy levels all li
close in energy, as do also the energy values of the P
Therefore, the full-scale plots displayed in the left part of th
figure are difficult to interpret in detail. For clarity, the sam
information is plotted in the right part of the figure, but wit
an energy scale expanded around the energy of the stabl
with zero energy in the bend (I 5J), which is labeled with an
@r # in the plots~the notation used to label the POs will b
described in the next paragraph!. For v150 and below the
bifurcation atP512.30, there exists only one extra PO
addition to @r #, a stable one labeled@B#; The @r #- and
@B#-type POs form the backbones of the lowest and high
members of each polyad, respectively. Two other POs,
beled@SN# and@SN#, are created at the tangent bifurcatio
@SN# denotes the stable PO, along which the wave functi
of isomerization states are elongated, whereas@SN# stands

it
ly

FIG. 3. ~left!: Plot of the energies of the periodic orbits of HCP relative
the quantum-mechanical ground state as a function of the quantum po
number P for v150 ~bottom!, v151 ~middle! and v152 ~top!. ~right!:
Same as in the left column, but with an energy scale expanded aroun
energy of the stable periodic orbit@r #. Solid lines mark the energies of th
stable periodic orbits@r #, @B#, and @SN# and the dashed line shows th
energy of the unstable periodic orbit@SN#. The cross labeledSN indicates
the saddle-node~or tangent! bifurcation at which@SN# and@SN# are created
simultaneously. The classically allowed region as well as the energy le
of the quantum polyads always lie between the energies of the two ou
most stable periodic orbits. The five columns of dots in the three panel
the right represent the energy levels of the polyads@v1 ,P#5@0,14#, @0,22#,
@0,30#, @1,24#, and@2,20#.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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4167J. Chem. Phys., Vol. 112, No. 9, 1 March 2000 Isomerization states of HCP
for the unstable one. The agreement between classical
and quantum nodal lines can be checked in Fig. 1, where
@r #, @B#, and@SN# POs are plotted on top of the wave fun
tions for polyad @v2 ,P#5@0,22#. Of fundamental impor-
tance is the fact that the classically allowed region, that
the values ofE for which a classical trajectory exists, alway
lies between the two outermost POs for given values ofv1

and P. For example, forv150 the energy of@SN# crosses
the energy of@r # at P521.1, so that the classically allowe
region lies between@r # and @B# from P522 to P521.1
and between@SN# and@B# for values ofP larger than 21.1.
Similarly, the quantum states always lie between the sa
outermost POs. For the sake of illustration, the quant
states for polyads@v1 ,P#5@0,14#, @0,22#, @0,30#, @1,24#, and
@2,20# are shown as columns of small black dots in the fi
ure. Notice that the tangent bifurcation always takes pl
close to the low-energy end of the classically allowed reg
~that is, correspondingly, to the low-energy end of the qu
tum polyad! and that the@SN# stable PO then rapidly define
the low-energy border of the allowed region.This is the rea-
son why perturbations in the spectrum and isomerizat
states first appear near the low-energy end of the polya,
and not near the top, where they were first searched fo
experimentalists. We will return in more detail to this poi
in the next section.

The ratioJ/(P12) for the POs is plotted in Fig. 4 fo
the same polyads as in Fig. 3, that is, for values ofv1 ranging
from 0 to 2 and values ofP from 22 to 30. Recall thatJ @Eq.
~2.6!# remains constant for all of the POs discussed in t
article9,34 and that aJ/(P12) ratio close to zero means th
the PO is an almost pure bending motion, whereas a r
close to one describes a motion which remains in the ne
borhood of the CP-stretch axis9 ~stated in other words, ratio
equal to 0 and 1 define the two poles of the polyad ph
sphere!. Figure 4 shows that the two stable POs, which ex
for low values ofP, have respective ratios of 0 and 1 for th
lowest possible value ofP, P522 (I 50!. Therefore, in that
limit, they correspond to pure bending and pure C
stretching motions. This is why they are labeled as@B# ~B
stands for bending! and @r # ~r is the Jacobi coordinate de
scribing the length of the CP bond!. Note that these label
are the same as the ones used in the classical study o
exact potential energy surfaces,6,7,11 whereas they describ
subtly, but noticeably different objects: More precisely, t
classical study is capable of finding one@r # and one@B# PO
for each value ofE and these trajectories are periodic in t
six-dimensional phase space built on the three Jacobi c
dinatesr, R, andg and their conjugate momenta; in contra
the semiclassical study of the resonance effective Ha
tonian leads to one@r # and one@B# PO for each value ofv1

and P, and the trajectories are periodic in the fou
dimensional space built onq2, q3, p2 , andp3 . Nonetheless,
the same labels are used, because we think that this hel
make the link between the two kinds of studies. Returning
Fig. 4, it is seen that the@r # PO remains a pure CP-stretchin
trajectory for all fitted polyads, while the@B# PO acquires a
substantial CP-stretch contribution asP increases, with a ra
tio J/(P12) close to 0.4 for the highest studied polyads.
the other hand, the stable@SN# and unstable@SN# POs are
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created with a very mixed character: At the bifurcatio
J/(P12) is equal to 0.46, 0.45, and 0.63 forv150, 1, and 2,
respectively. AsP increases, the CP-stretch contribution
@SN# steadily decreases, while in contrast, the bending c
tribution diminishes for@SN#. Most importantly, high values
of P andE are needed in order for@SN# to become an almos
pure bending motion and to consequently follow the mi
mum energy path to isomerization: indeed, theJ/(P12) ra-
tio becomes smaller than 0.1 only atP521.0 and E
512 835 cm21 above the quantum ground state forv150, at
P519.5 andE514 871 cm21 for v151 and atP517.0 and
E516 289 cm21 for v152. This slow evolution of the stabl
PO born at the bifurcation towards a pure bending motion
the reason why the new states only gradually arrange the
selves along the isomerization pathway for the new surfa,
in contrast with what happens for the previous surface.6,7,9

FIG. 4. Plot of theJ/(P12) ratio at the periodic orbits of HCP as a func
tion of the quantum polyad numberP, for v150 ~bottom!, v151 ~middle!,
andv152~top!. J/(P12) is equal to zero for a pure bending motion and
one for a pure CP-stretching motion. Solid lines depict theJ/(P12) ratio at
the energy of the stable periodic orbits@r #, @B#, and@SN# and the dashed
line represents theJ/(P12) ratio at the unstable periodic orbit@SN#. The
cross labeled SN indicates the saddle-node~or tangent! bifurcation at which
@SN# and @SN# are created simultaneously.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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V. QUANTIZING TRAJECTORIES AND THE
INTERLEAVING OF NORMAL AND ISOMERIZATION
STATES

Quantizing trajectories are studied in this section, in
der to understand the interleaving of isomerization and n
mal states at the bottom of Fermi polyads.

Plots of the third action integralI as a function of en-
ergy are shown in the upper panels of Figs. 5 and 6 for
polyads @v1 ,P#5@0,12# and @v1 ,P#5@0,22#, the former
polyad being located below the bifurcation forv150 and the
later one above it. Notice that these plots comprise either
~before bifurcation! or three branches~after bifurcation!.
Each branch starts and stops at one of the POs, either s
or unstable~the energy values for these POs are indica
with vertical dot–dashed lines in the upper panels of Figs
and 6!. The quantizing trajectories associated with the qu
tum states correspond to half-integer values ofI and are

FIG. 5. The quantizing trajectories of HCP for polyad@v1 ,P#5@0,12#. The
upper panel is a plot of the third action integralI as a function of the energy
E relative to the quantum ground state. Quantizing trajectories assoc
with quantum states, which correspond to half-integral values ofI, are
shown as heavy black dots. The positioni of the level inside the polyad is
indicated close to each dot~ i 50 for the highest level in the polyad,i
5P/2 for the lowest one!. The energies of the periodic orbits are indicat
with vertical dot–dashed lines. The lower panel is a plot of the quantiz
trajectories in the (J,c) surface of section. The positioni of the correspond-
ing level within the polyad is indicated close to each quantizing trajecto
The stable periodic orbit@r # is shown as a line located atJ5P12, while
the other periodic orbits appear as points in this surface of section.
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represented by heavy dots in these panels. The number c
to each dot is the positioni of the level inside the polyad
Incidentally, it is noted that the agreement between the e
gies of quantum states and quantizing trajectories is ex
lent, the largest error for polyad@v1 ,P#5@0,22# being
smaller than 1.3 cm21 . The quantizing trajectories are als
plotted in the (J,c) surface of section in the lower panels
Figs. 5 and 6. These plots are symmetric with respect to
c50 andc5p/2 axes and periodic with a period equal top.
In the (J,c) surface, the@B#, @SN#, and @SN# POs only
appear as points~because of the periodicity,@B# appears as
one point on both thec50 andc5p axes!, while the@r # PO
appears as a horizontal line located atJ5I 5P12. Each
solid line in these plots further represents one quantiz
trajectory, that is, one quantum state, except for the traje
ries looping around@B#, which appear as two lines symme
ric with respect toc5p. The positioni of the level in the
polyad is indicated close to each quantizing trajectory,
show its identification clearly. What happens asP increases
and approaches from below the value where the bifurca
occurs, is that a point with higher and higher derivative~al-
most vertical tangent! develops in the plot ofI5I(E). Such
a point is clearly seen close toi 55 in the upper panel of Fig
5. At the bifurcation, the tangent becomes exactly verti
and the plot I5I(E) splits into two segments at thi

ed

g

.

FIG. 6. Same as Fig. 5, but for polyad@v1 ,P#5@0,22#.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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point. These are the two branches, which appear at neg
values ofI in the upper panel of Fig. 6. The gap between
two segments is vanishingly small at the bifurcation but
creases substantially asP becomes larger than the value
the bifurcation. It should, however, be realized, that t
splitting into two branches does not result in the appeara
of a new kind of motion: Indeed, it is clearly seen in th
lower panels of Figs. 5 and 6 that the quantizing trajecto
with i 50 andi 51 for P512 are topologically equivalent to
the trajectories withi 50 to i 57 for P522. Similarly, the
quantizing trajectories withi 52 to i 56 for P512 are
equivalent to the trajectories withi 58 and i 510 for P
522. In contrast, above the bifurcation a third branch dev
ops between the energies of the two POs which appear a
bifurcation, namely@SN# and@SN#. At the bifurcation these
two POs are energetically degenerate, but then they sep
widely asP increases, and@SN# rapidly defines the lower
border of the classically allowed region. Similarly,@SN# and
@SN# are created at the same point on thec5p/2 axis, but
then separate further and further asP increases. As can b
verified in the lower panel of Fig. 6, the quantizing trajec
ries located on this branch with positive values ofI do rep-
resent a new kind of motion, since they either loop arou
the @SN# PO ~as for i 511) or spend most of the time clos
to theJ50 axis ~as for i 59!. Not surprisingly, these quan
tizing trajectories with a new, predominantly bending type
motion are those, which are associated with the quan
isomerization states~see Fig. 1!.

We are now in the position to discuss two further qua
tum observations, namely the first appearance of isomer
tion states atP and E values substantially larger than th
bifurcation values and, more interestingly, the interleaving
normal states and isomerization states near the low-en
end of the polyads. For that purpose, it should be emphas
that the EBK quantization rule, which states that quantiz
trajectories have half-integer values ofI, applies to each of
the branches when more than one of them is observed in
plot of I5I(E). Now, the branch supporting the new, ben
ing type of trajectories starts atI50 at the bifurcation and
develops to higher and higher positive values ofI as P in-
creases. Clearly,isomerization states appear for the fir
(even) value of P, for which the branch extends beyo
I51/2. This is the reason why, forv150, the first isomer-
ization state is observed in polyadP516, whereas it could
have been expected in polyadP514 ~recall thatP512.30 at
the bifurcation!. Moreover, as is confirmed in the lowe
panel of Fig. 6, there are two coexisting branches in the
of I5I(E) in the energy range between@r # or @SN# and
@SN#. In other words, for each value of the energy lyin
between the@SN# and @r # or @SN# limits there exist two
trajectories, one with predominant bending behavior and
other with predominant CP-stretching behavior.If this en-
ergy region is sufficiently broad, so that at least one qua
tizing trajectory exists on each branch within the range, th
the inevitable result is an interleaving of normal and isom
ization states, the specific ordering depending on whic
branch crosses a half-integer value ofI at which energy. On
the other hand, looking back at the upper right plot in Fig.
one notices that, forv152, the @r # and @SN# POs remain
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almost degenerate~from the energetic point of view! for all
possible values ofP. This is the reason why no interleavin
of normal and isomerization states is observed in the qu
tum spectrum forv152: the energy region in which the two
branches coexist is too narrow.

It is useful to relate the phase space portraits of Figs
and 6 to the polyad phase sphere representation of Kell
and co-workers.17–19,21–24 Figure 7~a! shows the phase
sphere representation for theP522 polyad, the phase spac
portrait of which was shown as Fig. 6~b!. From the phase
sphere point of view, the phase space portraits are Merc

FIG. 7. ~a! Polyad phase sphere representation of theP522 polyad. Each
energy level obtained from the diagonalization of the Fermi resonance
fective Hamiltonian corresponds to a trajectory on the sphere. The p
space portraits of Figs. 5 and 6 are analogous to Mercator projections o
phase sphere. However, the trajectories in Figs. 5 and 6 differ in that
correspond to energy levels obtained from semiclassical quantization, r
than direct matrix diagonalization; see text. Stable POs are indicated
circles~the hatched circles represent points on the back of the sphere!; the X
indicates an unstable PO. The dashed line is the separatrix.~b! Pseudopo-
tential obtained by plotting the energy as a function of the angleu8 of the
great circle on the sphere on which all the fixed points~or POs in the full
phase space! lie. All of the fixed points correspond to extrema of th
pseudopotential.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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projections of the phase sphere, with relations to the pol
numbers and angles as follows:

I 85
1

4
,

u85arccosS 2J2I

I D , ~5.1!

c85
c

2
,

whereI 8, u8, andc8 are the radial coordinates defining ea
point on the sphere, andI, J, c have been defined in Eq
~2.6!.

In the phase sphere representation, constraints on
possible combinations of POs arise from the Poincare in
theorem, which states: If an index is associated with each
according to its stability:

Index5H 1 if stable

21 if unstable,

0 if it is a cusp,

~5.2!

then the sum over all POs of these indices is determined
the topology of the phase space alone. Specifically, for a
~two-dimensional! sphere we have:

( Indices52. ~5.3!

The two simplest kinds of bifurcation that satisfy the ind
theorem are the ‘‘cusp type,’’ at which a cusp PO fi
appears17,22,23and the ‘‘SN type,’’ in which a pair of stable–
unstable POs are created. In this paper, only the SN bifu
tion has been encountered, while the cusp type bifurca
has been observed in other systems, notably in substit
methane molecules22,23and HOCl.34 In the phase sphere rep
resentation, it turns out that all the POs of the Fermi re
nance Hamiltonian lie on a great circle passing through
north ~c850! and south~c85p! poles of the sphere. On th
reduced one-dimensional subspace comprising the g
circle, the POs manifest themselves as extrema or inflec
points of the energy. Hence, they can be conveniently id
tified by examining the ‘‘pseudopotential’’ in which the en
ergy on the phase sphere is plotted vs the angle along
great circle.36 The pseudopotential for theP522 polyad
sphere is sketched in Fig. 7~b!, which illustrates how all of
the fixed points in Fig. 6~b! and 7~a! lie at extrema.

VI. UNSTABLE POs AND PATTERNS IN THE GAP
BETWEEN NEIGHBORING LEVELS

In Sec. IV, the shapes of quantum wave functions h
been interpreted in terms of the properties of thestablePOs
of the classical Hamiltonian. In this section, patterns of
energy spacing between adjacent levels within a quan
polyad will instead be connected to theunstableclassical
POs.

The unstable POs are not only dynamically important
themselves, but they also define the structures called sep
trices, which divide the classical phase space into dyna
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cally distinct regions. The energy spacings are therefore
important means by which to decode information about
molecular dynamics from the spectrum. These kinds of p
terns have been considered by Svitaket al.17 for the most
elementary version of the Fermi resonance Hamiltonian,
one which differs from the present study in that it includ
only second-order terms in the Dunham expansion for
zero-order part of the Hamiltonian. The simplest of the
patterns is a minimum or ‘‘dip’’ in the spacings of adjace
levels in a polyad, due to the presence of a classical sep
trix.

A separatrix is a phase space structure that contain
unstable PO. The simple minimum in the level spacings
associated, in the work of Svitaket al.,17 with an unstable
PO, which in the reduced phase of the sphere appears
fixed point, lying at a cusp on the separatrix.~In Ref. 17, the
dip occurs in the region classified as ‘‘zone II dynamics’’ b
Xiao and Kellman23,24!. More complicated phase space stru
tures, e.g., those formed after a SN bifurcation, which
volve more than one PO, can give rise to more comp

FIG. 8. Plot of the energy gap between levelsi and i 11 as a function ofi
for polyads@v1 ,P#5@0,22# ~~b!, ~c!, and ~d!! and @v1 ,P#5@0,30# ~a! for
the levels of theab initio PES ~circles! ~Refs. 10 and 11! and the Fermi
resonance Hamiltonian~squares!. The dot–dashed vertical lines indicate th
positions of the classical periodic orbits. See the text for a discussion o
three plots forP522.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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FIG. 9. Energy level patterns of theP522 polyad, plotted according to the procedure of Svitaket al. ~Ref. 36! compared with the similar procedure of Fig
8. The energy spacing between appropriately chosen pairs of levels is plotted as a function of the average energy of the two levels in the pair.~a! shows the
levels chosen in order of energy, resulting in a ‘‘zig–zag’’ or ‘‘interleaving fan;’’~b! shows the levels chosen after sorting by the assignment procedu
Xiao and Kellman~Refs. 23 and 24! ~c! and ~d! show the levels sorted by the slightly different procedure of Fig. 8. In~b!, ~c!, and ~d! the ‘‘zig–zag’’ is
replaced by a single dip, indicating the presence and location of the separatrix.
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spectral patterns,17 a fact of which we will make use shortly
In light of Ref. 17, Ishikawaet al.5 noted the presence of
minimum in the energy level spacings of the complete po
ads resulting from a fit of their incomplete experimental d
for HCP to a version of the Fermi resonance Hamiltoni
Here we will consider the presence and meaning of s
patterns in the refined version of the spectroscopic Ham
tonian we have developed in this paper.

The link between the classical phase space structure
quantum spectral patterns arises from the following con
erations:~i! The classical frequencyv* associated with the
third action integralI goes logarithmically to zero at th
unstable@SN# PO;15 ~ii ! the slope ofI5I(E) is just 1/v* ;
~iii ! quantum states are associated through the EBK qua
zation rule with equally spaced, half-integer values ofI.
Therefore, the energy gap between two neighboring lev
within a polyad decreases as these levels approach the
stable PO. Consequently, if a single branch exists in the
of I5I(E) on both sides of@SN#, then the unstable PO i
responsible for a minimum in the spacings between adja
levels. This phenomenon is the spectral minimum noted
Svitaket al.17 This is precisely what happens in the spectru
based on the fit by Ishikawaet al. of an effective Hamil-
tonian model to experimental data.5 As noted above, in the
present model for HCP, the spectral situation is more co
plex above the SN bifurcation. Two branches coexist in
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plot of I on the low-energy side of@SN#, and more precisely
between@SN# and @r # ~if @r # has an energy greater tha
@SN#! or @SN# and@SN# ~if @SN# has an energy greater tha
@r #!. A similar situation was considered by Svitaket al.17 for
the case of Xiao and Kellman’s23,24 ‘‘zone III’’ dynamics. If
one considers the adjacent level separations along e
branch separately, then the minimum spacing is still clea
evident. This is illustrated in Fig. 8: The bottom plot show
the spacings between adjacent levels of polyadP522 when
only the lower branch~negative values ofI! is considered on
the low-energy side of@SN#!. In other words, the polyad is
treated as if it contains levelsi 510 and all the levels from
i 58 down toi 50, the levelsi 59 andi 511 ~which belong
to the higher branch! being excluded. The minimum in th
level spacing is quite clear and occurs at@SN#. Similarly, the
penultimate plot in Fig. 8 displays the energy spacings
tween the levels of polyadP522, when only the higher
branch is considered on the low-energy side of@SN#, that is,
when the levelsi 58 andi 510 are excluded. Here again, th
minimum is clear. The point is that one must consider
two branches simultaneously because both are present in
spectrum. Since these two branches are parallel~becausev*
is the same for the two branches15!, this results in a zig–zag
in the plot of the adjacent level spacings, as can be see
the second highest plot of Fig. 8. This zig–zag is simply d
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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to the fact that two families of level spacingsE@ i 11#
2E@ i # coexist: The first family is associated with odd valu
of i and the second one with even values ofi. Since the
zig–zag behavior takes place over the entire energy ra
where two trajectories with the same value of energy coex
a simple monotonic decrease of the level spacings can
be observed between the two stable@SN# and @r # POs. The
example for polyadP530 is illustrated by the upper plot o
Fig. 8.

It is also useful to consider this pattern from the rela
viewpoint of the work of Svitaket al.17 and the pseudopo
tential on the great circle of the polyad sphere. In Ref. 17,
zig–zag pattern was described as an ‘‘interleaving fa
which was rearranged into a single ‘‘minimum’’ pattern, u
ing an assignment method proposed by Xiao and Kellma24

That method of sorting the energy level can be underst
with reference to the pseudopotential in Fig. 7~b!. The zig–
zag pattern, shown in Fig. 9~a!, is sorted into a single mini-
mum, shown in Fig. 9~b!, obtained by taking energy separ
tions only between levels which belong to the same wel
the pseudopotential. An essentially equivalent procedur
to sort the levels in Fig. 9~b! into two sets, one for each o
the wells labeled@r # and@SN# in the Fig. 7~b! pseudopoten-
tial. Figures 9~c! and 9~d! are obtained in this way. They ar
obviously completely equivalent to the two bottom plots
Fig. 8.

VII. CONCLUSION

In the present article we have demonstrated that mos
the features, which were empirically found in the vibration
wave functions and energy levels for anab initio PES of
almost spectroscopic accuracy, can be reproduced by a
fective resonance Hamiltonian. More important than only
producing exact quantum calculations, however, the stud
the resonance Hamiltonian enables these observations
interpreted in terms of classical periodic orbits and quan
ing trajectories to an extent that is exceedingly difficult
achieve from the study of the exact Hamiltonian alone.

Since the discovery of isomerization states in HCP6,7

other molecules were found to display strong perturbati
associated with a classical bifurcation, like HOCl,34,37

C2H2
35 and, more recently, DCP.38 At the present time, how-

ever, HCP remains unique, because it is the only molec
for which perturbations due to a reaction pathway have b
detected experimentally.1–5 Due to the rapid development o
experimental tools and computer capabilities, it is most pr
able that many other molecules will be shown to display
same kind of features in the near future. It is hoped that
work on HCP will convince people working in that field th
it is only through the collecting of the different pieces me
tioned in the introduction, namely, experimental data, ex
quantum calculation on a preciseab initio PES, classical
analysis of this PES, and semiclassical study of an effec
Hamiltonian, that a most precise and global understandin
the dynamics of these molecules can be achieved.
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