

UCINET 6 for Windows
Software for Social Network Analysis

USER'S GUIDE

Borgatti, Everett and Freeman

2002

Copyright © 1999-2002 Analytic Technologies, Inc.

UCINET 6
 1999-2002 Analytic Technologies. All rights reserved.

Analytic Technologies
11 Ohlin Lane

Harvard, MA 01451 USA
Voice: (978) 456-7372
Fax: (978) 456-7373

Email: support@analytictech.com; sales@analytictech.com

mailto:support@analytictech.com;
mailto:sales@analytictech.com

Table of Contents

Preface 0
 Notational Conventions 0.1
 Acknowledgements 0.2
 Programming Considerations 0.3
 Content 0.4
 Matrix Orientation 0.5

Getting Started 1
 Hardware 1.1
 Installation 1.2
 Quitting the Program 1.3
 Technical Support 1.4
 Citing The Program 1.5
 License and Limited Warranty 1.6

The UCINET Environment 2
 Menus and Help 2.1
 Forms 2.2
 Running An Analysis 2.3
 The Log File 2.4
 Datasets 2.5
 Program Organization 2.6
 File Submenu 2.7
 Data Submenu 2.8
 Transform Submenu 2.9
 Tools Submenu 2.10
 Networks Submenu 2.11
 Options Submenu 2.12

Importing Data 3
 RAW Filetype 3.1
 Excel Filetype 3.2
 DL Filetype 3.3
 Full Matrix Format 3.4
 Rectangular Matrices 3.5
 Labels 3.6
 Multiple Matrices 3.7
 External Data File 3.8
 Diagonal Absent 3.9
 Lowerhalf and Upperhalf Matrices 3.10
 Blockmatrix Format 3.11
 Linked List Formats 3.12
 Nodelists 3.12.1
 Edgelist Formats 3.12.2
 Edgearray Format 3.12.3

 UCINET Spreadsheet Editor 3.15

Data Processing 4
 Subgraphs and Submatrices 4.1
 Merging Datasets 4.2
 Permutations and Sorts 4.3
 Transposing and Reshaping 4.4
 Recodes 4.5
 Linear Transformations 4.6
 Symmetrizing 4.7
 Geodesic Distances and Reachability 4.8
 Aggregation 4.9
 Normalizing and Standardizing 4.10
 Mode Changes 4.11

Where is it now? 5

~ 0 ~
Preface

0.1 Notational Conventions

UCINET is menu-driven Windows program. This means you choose what you want to do by selecting items from a
menu. Menus may be nested, so that choosing an item from a menu may call up a submenu with additional choices,
which in turn may call up submenus of their own. Consequently, to get to certain choices, you may have to select
through a number of menus along the way. To represent the options you must take to a given choice, we use angle
brackets. For example, to run the hierarchical clustering procedure, you must first start UCINET, then click on the
top toolbar and point to Tools, from the drop down menu that appears highlight Cluster and from the submenu that
appears click on Hierarchical. We will represent this series of choices as

 Tools>Cluster>Hierarchical

0.2 Acknowledgements

Dozens of people have contributed to UCINET 6 for Windows by making suggestions, contributing technical
expertise, finding bugs, and providing moral and financial support. We especially thank Charles Kadushin, David
Krackhardt, Ron Rice and Lee Sailer for their early and continued support. We also thank those who have
contributed technical expertise for specific algorithms, including Pip Pattison (semigroups), Kim Romney
(correspondence analysis) and Stan Wasserman (p1).

We are also grateful to Brian Kneller (University of Greenwich, London) for doing much of the initial
programming on the Windows interface. The non-metric MDS program is adapted from UCINET 3.0 (MacEvoy
and Freeman, 1985), which in turn was drawn from the University of Edinburgh's MINISSA program. Many of the
procedures make use of routines found in Numerical Recipes in Pascal by Press, Flannery, Teukolsky and
Vetterling, and EISPACK (Smith et. al. 1976, Springer-Verlag).

0.3 Programming Considerations

To paraphrase an old song (and reverse the meaning), UCINET 6.0 is built for speed, not for comfort. Oftentimes
during the programming of UCINET, we had to choose between using a fast algorithm that used a lot of memory
(and therefore reduced the maximum size of network it could handle), and a slow algorithm that saved memory and
could handle much larger datasets. In previous versions we tried to strike a balance between the two. In this
version, we usually chose speed. One reason for this is that it is precisely when working with large datasets that
speed is essential: what good is an algorithm that can handle thousands of nodes if it takes days to execute? The
other reason is that advances in hardware and operating system software continually extend the amount of memory
programs can access, so it seems a waste of programming time to work out ways to economize on memory.

One consequence of menu systems is the need to organize program capabilities into categories and subcategories in
a way that is logical and comprehensible. Of course, this has proved to be impossible. With only a little effort one
can discover several competing schemes for classifying all the functions that UCINET 6.0 offers. None of the
schemes is perfect: each does an elegant job of classifying certain items but seems forced and arbitrary with others.
The scheme we have settled on is no exception. The basic idea is that under "network" we put techniques whose
reason for being is fundamentally network-theoretic: techniques whose interpretation is forced when applied to

non-network data. An example of such a technique is a centrality measure. In contrast, under "tools" we put
techniques that are frequently used by network analysts, but are also commonly used in contexts having nothing to
do with networks. Multidimensional scaling and cluster analysis are examples of such procedures. Inevitably, of
course, there are techniques that are either difficult to classify or for some reason are convenient to misclassify.

0.4 Content

UCINET 6.0 is basically a re-engineered version of UCINET IV, and so users familiar with UCINET IV should
easily adapt to the new environment. We have extended UCINET's capabilities and re-organised the routines into
what we believe to be more sensible categories.

Perhaps the most fundamental design consideration we have faced is choosing what capabilities the program should
have. Since Freeman's first version was released, UCINET has incorporated a diverse collection of network
techniques. The techniques are diverse both in the sense of what they do (detect cohesive subgroups, measure
centrality, etc), and where they come from (having been developed by different individuals from different
mathematical, methodological, and substantive points of view). In UCINET 6.0 we continue that tradition, seeing
ourselves more as editors and publishers of diverse works than as authors with a single pervading perspective.

One problem with this approach is that different techniques implicitly assume different views of what their data
are. For example, graph-theoretic techniques describe their data in terms of abstract collections of points and lines,
algebraic techniques view their data as sets and relations, and statistical techniques understand their data to be
variables, vectors, or matrices. Sometimes the mathematical traditions intersect and the same operation is found in
the repertoire of each tradition; cognates, if you will. For example, a graph automorphism, which is a 1-1 mapping
of a graph to itself, corresponds in the world of 1-mode matrices to a re-ordering of the rows and corresponding
columns of a matrix. Likewise, the converse of a graph, in which the direction of all directed arcs is reversed,
translates to the transpose of a matrix, which is an exchange of rows and columns. Unfortunately, there are also
false cognates among the lexicons. For example, a relation may be expressed as a matrix, but in discrete algebra,
the "inverse" of a relation is the transpose of that matrix, not the matrix which, when multiplied by the original,
yields the identity.

0.5 Matrix Orientation

In UCINET 6.0, all data are described as matrices. While the prompts and outputs of some procedures may reflect
the language most commonly associated with that technique (e.g. "networks" for centrality measures, "relations"
for ego-algebras), it is extremely important for the user to maintain a "matrix-centered" view of the data. All
UCINET data are ultimately stored and described as collections of matrices. Understanding how graphs, networks,
relations, hypergraphs, and all the other entities of network analysis are represented as matrices is essential to
efficient, trouble-free usage of the system.

~ 1 ~
Getting Started

1.1 Hardware

UCINET 6.0 requires a computer running Windows 95 (from 1997 or more recent), Windows 98, NT or other
compatible operating system. The program requires 2mb of hard disk storage space and 16mb of RAM.

1.2 Installation

The UCINET program must be installed before it can be used. If you have a CD then place the disk in the drive and
the program should start the installation automatically. If this does not happen then from the start button select the
run option change to your CD drive and click on "setup.exe". If you have an electronic version then from run
select the folder containing UCINET and select the file "setup.exe". The installation wizard will guide you through
the installation procedure.

1.3 Quitting the Program

To leave the program, choose File>Exit from the toolbar, click on the door icon, or press Ctl+x (the Control key
and the x key together). If the program is in the middle of executing an analysis and you want to interrupt it, you
can try pressing esc. This works only for iterative procedures such as MDS or TABU SEARCH. Otherwise press
Control Alt Delete (simultaneously) and this brings up the operating system window click on the button marked
task manager, you can now select UCINET and end the task. Some procedures offer a “Calculating …” dialogue
box with a STOP button that will stop execution at the next convenient point.

1.4 Technical Support

Registered owners of UCINET 6.0 (professional version) are entitled to technical support. Please e-mail, write or
call the authors during standard business hours with any questions, suggestions and bug reports. They can be
reached at the following addresses:

Steve Borgatti
Analytic Technologies
11 Ohlin Lane
Harvard, MA 01451 USA
Tel: +1 978 456 7372
Fax: +1 978 456 7373
Email: support@analytictech.com

Martin Everett
School of Computing and Mathematical Sciences
University of Greenwich

mailto:support@analytictech.com

30 Park Row
Greenwich
London SE10 9LS
Tel: +44(0)20 8331 8716
Fax: +44(0)20 8331 8665
email: M.G.Everett@greenwich.ac.uk

Please communicate bugs as soon as possible: if at all possible, we will immediately replace the software with a
corrected copy at our expense.

1.5 Citing The Program

If you use UCINET 6.0 to perform any analyses which result in a publication or presentation, you must cite it (this
is required by your licensing agreement). The citation should treat the program as though it were a book. For
example:

Borgatti, S.P., M.G. Everett, and L.C. Freeman. 1999. UCINET 6.0 Version 1.00. Natick: Analytic
Technologies.

In other words, the title of the "book" is the name of the program, and the publisher is Analytic Technologies.
Since the program will change over time, it is important to include the version number in the title in order to allow
others to replicate your work.

1.6 License and Limited Warranty

This software is protected by both United States copyright law and international treaty provisions. You must treat
this software like a book, except that (i) you may copy it to the hard disk of a single computer or to the hard disk of
any computer(s) that you personally have exclusive use of, and (ii) you can make archival copies of the software
for the sole purpose of backing it up to protect your investment from loss.

By "treat this software like a book" we mean that the software may be used by any number of people, and may be
freely moved from one computer to another, as long as there is no possibility of it being used simultaneously on
two different computers. Just as a given copy of a book cannot be read by two different people in different places at
the same time, neither can the software be legally used by different people on different computers at the same time.

Analytic Technologies warrants the physical CD and physical documentation associated with the UCINET 6.0
product to be free of defects in materials and workmanship for a period of sixty days from the date of purchase or
licensing. If Analytic Technologies receives notification within the warranty period of defects in materials or
workmanship, and such notification is determined by Analytic Technologies to be correct, we will replace the
defective materials at no charge. However, do not return any product until you have called us and obtained
authorization.

The entire and exclusive liability and remedy for breach of this Limited Warranty shall be limited to replacement of
CD(s) or documentation and shall NOT include or extend to any claim for or right to recover any other damages,
including but not limited to, loss of profit or prestige or data or use of the software, or special, incidental or
consequential damages or other similar claims, even if Analytic Technologies has been specifically advised of the
possibility of such damages. In no event will Analytic Technologies's liability for any damages to you or any other
person ever exceed the price of the license to use the software, regardless of any form of the claim.

mailto:M.G.Everett@greenwich.ac.uk

Analytic Technologies specifically disclaims all other warranties, express or implied, including but not limited to,
any implied warranty of merchantability or fitness for a particular purpose. Specifically, Analytic Technologies
makes no representation or warranty that the software is fit for any particular purpose and any implied warranty of
merchantability is limited to the sixty-day duration of the Limited Warranty covering the physical CD(s) and
physical documentation only (and not the software) and is otherwise expressly and specifically disclaimed.

This limited warranty gives you specific legal rights; you may have others which vary from state to state. Some
states do not allow the exclusion of incidental or consequential damages, or the limitation on how long an implied
warranty lasts, so some of the above may not apply to you.

This License and Limited Warranty shall be construed, interpreted and governed by the laws of Massachusetts, and
any action hereunder shall be brought only in Massachusetts. If any provision is found void, invalid or
unenforceable it will not affect the validity of the balance of this License and Limited Warranty which shall remain
valid and enforceable according to its terms. If any remedy hereunder is determined to have failed of its essential
purpose, all limitations of liability and exclusion of damages set forth herein shall remain in full force and effect.
This License and Limited Warranty may only be modified in writing signed by you and a specifically authorized
representative of Analytic Technologies. All use, duplication or disclosure by the U.S. Government of the computer
software and documentation in this package shall be subject to the restricted rights under DFARS 52.227-7013
applicable to commercial computer software. All rights not specifically granted in this statement are reserved by
Analytic Technologies.

~ 2 ~
The UCINET Environment

In this chapter we give an overview of running the program, covering such topics as menus and forms, the nature of
UCINET 6.0 datasets, running analyses, and dealing with output.

2.1 Menus and Help

The program is menu-driven, which makes it very easy to use, even if you haven't used it in a while. After you start
up the program, you will find yourself in the main window. The main window provides the following choices: File,
Data, Transform, Tools, Network, Options, and Help together with three buttons. Each of these choices is itself
a submenu with additional choices. The leftmost button directly calls the spreadsheet editor, as already stated the
middle button exits from the program and the button on the right allows the user to change the default folder.

There are two ways to choose an item from a menu. The simplest method is to use the mouse to highlight the
desired choice, then give a left click to activate a routine. If a highlighted choice has a submenu, that submenu will
automatically appear. Another method is to press the highlighted letter of the desired choice, which is usually the
first letter. For example, if the Network menu is highlighted then to get to Roles and Positions you can press L,
you can now select another option if your choice is at the bottom level of the menu then the routine is activated.
After selecting Roles and Positions typing S will select Structural and then P will select and run the Profile
routine.

Sometimes, however, there is a way to circumvent the menus. Some menu items, such as displaying datasets found
in Data>Display, have been assigned "hot-keys" which can be used to invoke that item directly without going
through the menus. Provided no menus are highlighted then pressing Ctrl+D will immediately invoke the
Data>Display routine.

All the hot keys are Control or Alt letter combinations. They are as follows:

 Ctrl+F File>Change Default Folder
 Alt+X File>Exit
 Ctrl+S Data>Spreasheet
 Ctrl+D Data>Display
 Ctrl+B Data>Describe
 Ctrl+X Data>Extract
 Ctrl+M Data>Random>Matrix

2.2 Forms

Suppose you choose a procedure from the menu. With few exceptions, the next thing you are likely to see is a
parameter form. A form is a collection of one or more fill-in-the-blank questions. For example, suppose you click
on networks>Subgroups>Cliques from the File menu. The form you see will consist of the following questions:

Input dataset: Camp92.##h
Minimum size: 3
Analyze pattern of overlaps?: YES
Diagram Type Tree Diagram
(Output) Clique indicator matrix: CliqueSets
(Output) Co-membership matrix: CliqueOverlap
(Output) Partition indicator matrix: CliquePart

The left-hand items (in bold type) are the question. The right-hand side contains the default answers. Often you
will leave the default values as they are, expect for the input dataset, which is where you enter the name of the
dataset that you want to analyze. You can either type the name yourself or double-click on that area and a dialog
box will appear allowing you to choose the file you want from a list.

Once all the form is completed to your satisfaction, you activate the routine by clicking on the OK button (not
shown above).

The next time you choose Clique from the menu, you will find that the default input dataset is whatever dataset
you used the last time you ran Clique, unless the option Smartdefaultnames is on. In that case, the program puts
in the default name that it thinks you might want to use, based on what you have done earlier. If this is the file you
want to edit, just click on OK. If not, just start typing the name of the new file or click on the button to the right of
the box. The moment you hit a key, the old filename will vanish: there is no need to backspace to the beginning of
the name. If the filename is almost right but needs editing, use the mouse to place the cursor in the correct position
so that you can fix it.

Whenever you are being prompted for a filename, then the button to the right of the box with three dots on it will
activate the standard Windows procedure for selecting a file.

Incidentally, whenever you are called upon to enter a list of actors, you should refer to the actors by number (i.e.
row or column in the data matrix) rather than by name or other label. Separate the numbers by spaces or commas.
UCINET gives help in this process by allowing you to click on labels and automatically entering in the correct
actor or matrix numbers. The button labeled with an L immediately next to the file selection button will give a list
of labels you can now select from this list using the mouse. To select more than one entry you should press the
Control key at the same time as you click on your choice. In addition, you can indicate groups of numbers using
the following conventions:

 3 to 10
 3-10
 first 5
 last 30

The first two lines both specify the set of id numbers 3, 4, 5, 6, 7, 8, 9, 10. The last line only works when it is clear
to the program what the total number of actors is. All of these conventions can be mixed, as follows:

 List of actors to DROP: first 4, 18 12,5 19 to 25, last 2

2.3 Running An Analysis

As the diagram below indicates, the typical UCINET 6.0 procedure takes two kinds of input, and produces two
kinds of output.

 input parameters ---> | | ---> output text
 | PROCEDURE |
 input datasets ---> | | ---> output datasets

One kind of input consists of UCINET 6.0 datasets. Most procedures take a single dataset as input, but that dataset
may contain multiple matrices, often representing different social relations measured on the same actors. Other
procedures (such as the Join and QAP Regression procedures) take multiple datasets as input, each of which may
contain several matrices.

Another kind of input consists of a set of parameters which either describe the data or alter the way the program
runs. For example, as you saw earlier, the parameters for the Clique procedure are: the name of the input dataset,
the minimum size of clique to report, and the names of various output files. Most parameters have default values
which the user will have an opportunity to either accept or override.

Parameters are specified in forms that appear immediately after a procedure is selected from the menu. The first
time a procedure is invoked in a given session, the fields for all parameters will contain "factory-set" default values
(wherever possible). If you change the values of any parameters, these changes will remain in effect for subsequent
runs, until you change them again or exit UCINET. The only exception to this rule occurs when some default
settings depend on the values of other default settings, in which case changing certain parameter values will cause
the program to change other defaults, even if you have previously set them.

One set of parameters that always have default values is the names of a procedure's output files. Output files are
UCINET 6.0 datasets that can be read by all of the other UCINET procedures and therefore used as input for
further analyses. For example, one of the outputs of the CLIQUE program is an actor-by-actor matrix whose ijth
cell gives the number of cliques that actors i and j are both members of. This matrix is suitable for input to the
MDS program to obtain a spatial representation of the pattern of overlaps. By default, the name of this dataset is
CliqueOverlap.

In addition to output datasets, most UCINET procedures also produce a textual report as output. This report is
always saved to an text file called a Log File (usually stored in the \Windows\System directory), and is also
automatically displayed on the screen.

Let us run through an example of a clique analysis. The first step is to clique on Network>Subgroups>Cliques
from the toolbar. This will pop up a form that contains the following:

Input dataset:
Minimum size: 3
Analyze pattern of overlaps?: YES
Diagram Type Tree Diagram
(Output) Clique indicator matrix: CliquesSets
(Output) Co-membership matrix: CliquesOver
(Output) Partition indicator matrix: CliquesPart

The first line asks for the name of the UCINET 6.0 dataset containing the data. If the dataset is called TARO and is
located in the \uci3 folder of the c: drive, you would fill in the blank with c:\uci3\TARO. (Of course, naming the
drive and folder is only necessary if the data are located in a different drive/folder than the current default). You
could also select this file by clicking on the button to the right of the question and selecting the file using the mouse
from the window that opens up.

The second line asks for the minimum size of clique to report. A default answer of 3 is already filled in. To
override the default, just type over it.

The third line asks whether to compute and analyze an actor-by-actor matrix that counts up, for each pair of actors,
the number of cliques they belong to in common. This matrix is then submitted to hierarchical clustering. The
default answer here is YES, but to save processing time you may wish to override the default when working with
large datasets.

The fourth line asks a question about what type of clustering diagram you would like to view. The default is a tree
diagram; the only other alternative is a dendrogram which is a variation on the same theme.

The fifth through seventh lines ask for the names of datasets to contain the key outputs from the analysis. These
datasets can then be used as input to other analyses. Default names are supplied for all three.

When you are through entering or modifying these parameters, click on OK to begin the analysis. Since TARO is a
standard UCINET dataset then you will be able to run this analysis. The result will be a tree diagram appearing on
the screen. If you now clique on the OK button then the following Log File will be displayed.

CLIQUES
--

Minimum Set Size: 3

Input dataset: C:\Uci3\TARO

10 cliques found.

 1: 2 3 17
 2: 1 2 17
 3: 17 18 22
 4: 4 5 6
 5: 4 6 7
 6: 5 20 21
 7: 8 9 10
 8: 11 20 21
 9: 12 13 14
 10: 12 14 15

Group Co-Membership Matrix

 1 1 1 1 1 1 1 1 1 1 2 2 2
 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2
 -
 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
 2 1 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0
 3 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
 4 0 0 0 2 1 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 5 0 0 0 1 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0
 6 0 0 0 2 1 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 7 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 8 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
 9 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
 10 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
 11 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 0
 12 0 0 0 0 0 0 0 0 0 0 0 2 1 2 1 0 0 0 0 0 0 0
 13 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0
 14 0 0 0 0 0 0 0 0 0 0 0 2 1 2 1 0 0 0 0 0 0 0
 15 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 0 0 0 0 0
 16 0
 17 1 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 3 1 0 0 0 1
 18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1
 19 0
 20 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 2 2 0
 21 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 2 2 0
 22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1

SINGLE-LINK HIERARCHICAL CLUSTERING

 1 1 1 1 1 1 1 1 2 2 1 1 2

Level 8 9 0 3 2 4 5 6 9 5 6 4 7 1 1 0 1 3 2 7 8 2
----- -
 2 XXX XXX . . XXX . . XXX . .
 1 XXXXX XXXXXXX . . XXXXXXXXXXXXX XXXXXXXXXXX
 0 XXX

Group indicator matrix saved as dataset CliquesSets
Clique co-membership matrix saved as dataset CliquesOver
Clique co-membership partition-by-actor indicator matrix saved as dataset CliquesPart

Date and time: 15 Jan 99 13:38:43
Running time: 00:00:01

The output from the CLIQUE program is typical of most of the analytical procedures. It begins with a report of the
parameter settings used to make the run. This makes it easy to interpret and reproduce the output at a later time.
The next bit of output is a report on the number of cliques found, followed by a listing of each clique (one to a
line). The first number on each line identifies the clique. The remaining numbers identify the actors that belong in
that clique. If the data had contained actor labels (names), you would see names instead.

After the listing of cliques is an actor-by-actor clique co-membership matrix that gives the number of cliques each
pair of actors has in common. This is the basis for the next table, which gives the results of a single-link
hierarchical clustering of the co-membership matrix. If you would prefer a different clustering algorithm, you are
free to submit the co-membership matrix, which is automatically saved , to the clustering program of your choice.

The final bit of output is a set of statements indicating what output files were created by the procedure. The main
output file is a clique-by-actor binary matrix that indicates which actors belong to which clique. This matrix can be
analyzed further, or used to extract a subgraph from the larger network using the Data>Extract procedure. For
example, if you want to pull out just the network of relationships among members of, say, the fourth clique, just tell
the Extract program what the name of the original dataset is, what the name of the clique-by-actor indicator matrix
is (the default is CliquesSets) and which clique you want (#4 specified as ROW 4). That's all there is to it.

2.4 The Log File

Textual output such as shown above is normally written to a text file in the \windows\system directory whose
default name is Log File Number x, where x is an integer. When you run an analysis, the program writes output to
the Log File and then displays the contents to the screen the number of the file is displayed in a box in the tool bar.
The file can edited, saved, printed in the normal way using the buttons and options on the toolbar. When you run
another procedure a new Log File with a number one higher than the last is created. You may leave Log Files open
on the screen or you may close them. You can re-open a previously closed Log Files by clicking on File>Edit
Previous Log File, this opens up a window which displays the number of the last Log File and gives a list of the
existing Log Files together with what routine was run to create them. Simply select a file or type in its number to
open up a closed file. As a default UCINET will keep 50 previous files but this can be increased or decreased by
selecting Options>Number of Log Files and changing the value. If you wish to keep a Log File from one session
to the next then it must be saved, this can be done by clicking the save icon on the procedure output window or
selecting Save from the File option again in the procedure output window. Note that any unsaved log files are
deleted as soon as you exit from UCINET.

2.5 Datasets

There are three important things to keep in mind about UCINET 6.0 datasets. The first is that they are collections
of one or more matrices. It doesn't matter whether you think about your data as a graph (i.e., a set of vertices and a
set of edges or links), a relation (i.e., a set of ordered pairs), a hypergraph (i.e., a set of subsets), or anything else: as
far as UCINET is concerned, your data are a collection of matrices. This does not mean that UCINET cannot read
data that are not in matrix form: it can (see Chapter 3 "Importing Data" in this Guide). It just means that once the
data are in the system, it is thought of as a matrix.

Network analysts commonly think of their data as graphs. A graph is a set of points (also known as nodes or
vertices) together with a set of lines (links, ties, edges) that connect the points. The information in a graph (who is
connected to whom) can be represented by a matrix known as the adjacency matrix, in which a given cell X(i,j)
contains a value of 1 if nodes i and j are connected, and 0 otherwise. In more precise language, a graph G = (V,E)
with vertex set V and edge set E can be represented as a square symmetric 1-mode matrix X, known as the
adjacency matrix, in which X(i,j) = X(j,i) = 1 if (i,j) belongs to E and X(i,j) = X(j,i) = 0 otherwise. Thus, the rows
and columns of the adjacency matrix correspond to the nodes of the graph, and the cells in the matrix correspond to
pairs of nodes or dyads. A matrix value X(i,j) = 1 indicates the presence of a link between node i and node j, and
X(i,j) = 0 indicates the absence of a link.

Here is an example of a matrix representing a network:

 A B C D E
A 0 1 0 1 1
B 1 0 1 0 0
C 0 1 0 0 1
D 1 0 0 0 0
E 1 0 1 0 0

In this network, actor A has a tie with actors B , D and E, but not with C and not with him/her self. Actor B has a
tie with A and with C, actor C has a tie with B and E, actor D has a tie only with A, and actor E has a tie with A
and C.

A directed graph is a set of points and a set of arcs (also known as arrows or lines with heads and tails) that
connect them. They are used to represent relations among nodes which are not necessarily reciprocal, as in "is in
love with" or "is the boss of". The information in a directed graph can be recorded as a square 1-mode adjacency
matrix (not necessarily symmetric) where X(i,j) = 1 if i is connected to j and X(i,j) = 0 otherwise. Note X(i,j) may
equal X(j,i), but is not required to.

A valued graph is represented by a square, 1-mode matrix in which X(i,j) gives the value of the link from i to j,
which might represent a strength of relationship, a length of a road, a probability of a state transition, a frequency
of interaction, etc.

A hypergraph is a collection of subsets of a set of nodes. The subsets are conceptually like edges/links that may
have more than two endpoints. In matrix form, a hypergraph is represented by a 2-mode incidence matrix in which
Y(i,j) = 1 if node i is contained in subset j, and Y(i,j) = 0 otherwise.

The matrices contained in a UCINET dataset can have any shape or size, and they do not have to represent
networks. For example, the following three collections of numbers are all matrices:

Matrix #1:

1 3 2 5
1 5 7 2
1 2 7 2
2 4 5 2
9 6 5 1

Matrix #2:

1 3 8 9 2 3 5 1.7

Matrix #3:

3.1415

Note that the second matrix has 8 columns and 1 row. The third matrix has 1 row and 1 column. Odd shapes are not
a problem. All that is important is that every row contains the same number of columns, and vice-versa.

A useful feature of UCINET datasets is that they may contain more than one matrix, though the rows and columns
of each matrix must correspond to the same objects. This enables you to place in a single file all network data
relating to a single set of people. For example, you might have a set of families as nodes, and measure two relations
on these families: "is married to a member of" and "has done business with a member of". This is useful for
applying network techniques that take as input one or more social relations, such as most of the positional methods
(e.g., CONCOR, REGE). Placing multiple relations in a dataset can even be useful when using techniques that do
not apply to multiple relations, such as centrality measures. In UCINET, wherever possible, a procedure
implementing a technique that does not make sense for multiple relations will run the technique on each relation
sequentially. One application of this is to run, say, a centrality measure on a dataset containing several hundred
random networks. The program will compute and save its measures for each network in the file. The results can
then be analyzed statistically.

Another way of using multi-matrix datasets is implemented in the Tools>Matrix Algebra procedure. Here, the
program "thinks" of a multi-matrix dataset as a single 3-way matrix composed of rows, columns and levels, and
allows the user to perform operations on all three dimensions.

The second important thing to understand about UCINET datasets is that they are not text files. Therefore you
cannot use a word processor or editor to enter or change them. Only UCINET (and other software by Analytic
Technologies) can read and write them. This can be inconvenient, but it is well worth the significant improvement
in performance that it buys. Of course, UCINET also provides a way to convert text files (and Excel spreadsheet
files) into UCINET datasets (see the Import command) and vice-versa (see the Export command). In this respect,
UCINET is similar to SYSTAT, SAS, SPSS, GRADAP and other well-known analytic packages.

The third important thing is that a single UCINET dataset actually consists of two physical files. One (with
extension .##D) contains the actual data, and the other (with extension .##H) contains information about the data.
In referring to an UCINET dataset, however, you will only refer to the ##H file (or just skip the extension
altogether). Instead, you will use the filename proper, or filename.##H, as in “sampson” or “sampson.##h”.
Filenames can contain spaces and can start with a numeric character. However, occasionally, you will need to
enclose a filename that contains spaces within quotation marks. UCINET IV datasets are compatible with UCINET
6.0 and no conversion is necessary.

2.6 The Default Directory

In any form, if you enter the name of file to be analyzed (e.g., camp92), UCINET assumes the file is in the current
directory, unless you enter a full pathname (e.g., c:\program files\UCINET 6\datafiles\camp92). To change the
default directory, click on the button on the far right of the main UCINET form that looks like a file cabinet. This
will open a tree-like dialogue form that will allow you to choose the folder that you want to read and write datafiles
to and from. Make sure to double-click the direct

2.6 Program Organization

UCINET is a diverse collection of hundreds of procedures and techniques drawn from a variety of sources. We
have organized these myriad capabilities into six basic categories, corresponding to the following six items in the
main window: File, Data, Transform, Tools, Network and Options.. In this section, we describe what kinds of
routines are to be found under each heading.

2.7 File Submenu

The File submenu comprises routines which deal with files and folders together with the print set up and a
command to exit UCINET. You can change the default folder, this is the folder where UCINET will look for a file
if you do not provide it with a full path name. You may also create folders in which to keep some or all of your
files. There are routines to rename, copy and delete UCINET files, useful because UCINET datasets consist of
two physical files, which means that operations like deleting would otherwise have to be performed twice. There
are also routines to edit text files and review and to review or edit Log Files.

2.8 Data Submenu

The Data submenu contains routines for managing UCINET datasets. It is divided into six basic sections. The first
section contains just one routine the spreadsheet editor for inputting and editing UCINET files directly. The second
section contains routines to create new UCINET datasets or bring other forms of data into UCINET. These include
Random to create random data based on different distributions, Import for converting ASCII files of various types
into UCINET datasets; and Export, for converting UCINET datasets into ASCII files that other programs can read
together with three routines (Attribute, Affilations and CSS) for converting specific types of data into standard
network data. The next section contains Display, which displays the contents of UCINET dataset in matrix form,
and Describe which describes the meta-information available on UCINET dataset (such things as the number of
rows and columns, labels and titles, etc) and also allows the user to input or edit labels. The fourth section consists
of routines to Extract parts of a dataset to form a new dataset, Join together two or more datasets and Unpack a
multirelational dataset into individual matrices. The next section of routines for performing non-numeric
transformations and manipulations of UCINET datasets. They include: Sort, for sorting rows and columns of a
matrix according to the values of a given variable; Permute, for re-ordering rows, columns and matrices into a
specified order; and Transpose for interchanging the rows with the columns. The final section allows the user to
re-organise the data in a variety of ways.

2.9 Transform Submenu

This submenu contains routines for transforming graphs and networks into other kinds. The submenu is divided
into four sections. The first section contains routines that combine rows and/or columns. Block creates block
densities which can then be converted into blockmodels, Collapse performs a similar but more general function
allowing for rows and columns to be treated separately and giving the user options on how to calculate the
combined values. The second section contains routines that typically operate on all cells of a matrix without

changing its dimensions. Operations implemented include symmetrizing, dichotomizing, recoding, reversing and
the Diagonal command, which enables the user to change the values of the main diagonal of a matrix, and to save
the current values to a file. The third section contains routines Rank and Normalize, the first routine converts lists
to ranks and the second normalizes either the whole matrix or just the rows (or columns) using a variety of
techniques. The final section contains routines that usually result in either additional nodes, lines or additional
relations. They include; Linegraph, which creates a graph in which the nodes correspond to the lines of an original
graph; Incidence, which converts an adjacency matrix to a rectangular node-by-line indicator matrix; Multigraph,
which converts a valued graph into a collection of binary adjacency matrices, one for each value in the graph,
Bipartite which converts an incidence matrix of a bipartite graph into an adjacency matrix, Multiplex which
constructs multiplex graph from a multirelational graph and Semigroup which generates the semigroup from
generator matrices.

2.10 Tools Submenu

UCINET provides a number of tools that although they are not strictly network procedures have been used widely
by network analysts. The submenu contains routines for metric and non-metric multidimensional scaling, cluster
analysis, correspondence analysis, singular value decomposition, factor analysis and measures of similarity and
dissimilarity. The Statistics section has standard descriptive methods the P1 model and a number of permutation
test methods. These include Matrix QAP (regression and correlation), Autocorrelation as well as permutation
versions of Regression, Anova and T-Tests. This section also includes some routines for constructing
dendrograms, scatterplots and tree diagrams from UCINET datasets.

2.11 Network Submenu

Under Cohesion are found routines for evaluating distances among nodes, maximum flows between pairs of nodes,
reachability, volume of paths between nodes, etc. Regions has methods for finding Components (strong and
weak), Bi-components and K-Cores. Under Subgroups are found routines for finding various types of cohesive
subsets proposed in the network literature, including cliques, n-cliques, n-clans, k-plexes, lambda sets and factions.
Ego Networks calculates a variety of ego-based measures for every actor in the network. Under Centrality are
found routines for computing various measures of node centrality, including degree, closeness, betweenness, flow
betweenness, information centrality, eigenvector centrality, power and the measures of Katz and Hubbell.
Core/Periphery leads to two routines for detecting core/periphery structures and locating each actor’s position in
the structure. Under Roles and Positions are found routines for clustering or classifying actors based on several
definitions of structural similarity: structural equivalence, automorphic equivalence, and regular equivalence.
Several algorithms are available for computing each kind of equivalence (e.g. CONCOR and profile euclidean
distance for structural equivalence; REGE and CATREGE for regular equivalence; and MAXSIM and
ExCatRege for exact equivalence). Properties has routines for computing density and transitivity of the network
as a whole

2.12 Options Submenu

These are routines for changing default settings of UCINET 6.0 system parameters, such as data checking, display
options and page size.

~ 3 ~
Importing Data

Before you can do any analysis using UCINET 6.0, you must create a UCINET dataset. Typically, network data
"arrive" in the form of filled-out questionnaires or data sheets with entries taken from books and journals (as in data
on trade between nations). In both cases, the medium of delivery is paper and so you must type the data into a file
on the computer. The best, most general way to do this is to enter the data into an ASCII file using a file editor or
your favorite word processor. The data may be entered in any of several different formats outlined in this chapter.
Once the data are on disk, you can use the Data>Import/Export>Import command to convert these data into a
UCINET 6.0 dataset. For users of statistical software like SYSTAT, this should be a familar step. In SYSTAT, you
use the DATA command to read an ASCII file and create a SYSTAT system file, which the statistical procedures
can then read. SPSS and SAS also have analogous procedures, although they do not require you to create a
permanent system file as SYSTAT and UCINET 6.0 do.

Import can process ASCII data in a variety of file types. At the most general level, four kinds of data files are
supported: Raw, DL, Excel and Ucinet 3 (UCINET 6.0 uses the same datasets as UCINET IV so these do not be
imported). Raw files are those that contain only numbers, such as a respondent-by-variable matrix recording the
numerically coded responses of a set of respondents to a set of questions. DL files contain the same data as Raw
files, but in addition contain information about the data, such as the number of rows and columns, the names of
variables, the name of the study, and so on. UCINET 3 files are similar to DL files, but more limited in the range of
information provided. Excel are standard excel spreadsheet datafiles. Each of these file types is discussed in detail
in the next sections.

If you are entering data from scratch, we strongly suggest that you use the DL filetype (you can always Export the
data to another filetype at any time). This filetype is the most flexible in accepting data in a variety of formats.

Regardless of the type of file you import, the outcome is the same: a UCINET 6.0 dataset that can be used as input
to any numerical procedure. However, you should be aware that you have a few choices about how your data are
stored. UCINET can store data in one of three basic datatypes: Byte, Smallint, and Real. When you Import data
from an ASCII file, you will be asked to select one of these three types although the best advice is to leave the
default setting of real unless you have a very large dataset.

The Real datatype is the most powerful. Real datasets can contain values ranging from -1E36 to +1E36. They can
also contain missing values, which are internally stored as the value 1E38. The disadvantage of the Real datatype is
that 4 bytes of storage are required to represent each value, which can mean pretty hefty files. For example, a Real
dataset containing two 150-by-150 matrices requires 176kb of disk space.

The Smallint datatype requires only 2 bytes of storage for each value, but can only represent whole numbers in the
range -32000 to +32000. Missing values are not allowed.

The Byte datatype is the most economical, requiring only 1 byte of storage for each value. It is usually the best
choice for binary data. Byte datasets can contain whole numbers ranging from 0 to 255, with no missing values.

If you need missing values, you must use Real datasets. However, you should be aware that most techniques of
network analysis do not allow for missing values, and so only a few UCINET procedures know what to do with
them. Those procedures that cannot handle missing values automatically transform them to zeros or other
reasonable values.

In choosing a datatype, it is important to realize that while your choice affects the amount of disk space used to
store the data, it has no effect on the amount of memory the program needs to process the data. A program such as
MDS which is built to handle real values will read the data as real no matter how they are stored on disk. Similarly,
a program that can only handle integer data, such as Clique, will automatically round real data as they are read into
memory.

A note about missing values: All data values greater than 1E37 (10 raised to the power 37) are considered missing.
Also any non-numeric character found in an ASCII datafile (when a number is expected) is considered missing as
well. For example, the following matrix contains three missing values:

 0 9.7 1E38 .
 16. 0 3.1 na
 18.1 1e9 0 -1.2
 a3 12 .013 0

Note that unlike SYSTAT, UCINET 6.0 reads a lone period as zero, not as missing. If you are importing a
SYSTAT dataset that contains missing values, you should use a text editor to change all lone periods to, say, 'NA'.

3.1 Raw Filetype

A raw data file is one that contains only numbers (no labels, titles or other information about the data), and which is
typed in the form of a matrix. For example, a raw data file looks like this:

0 1 1 0
1 0 1 1
1 1 0 0
0 1 0 0

To determine how many columns there are in the matrix, the program reads the first line and counts the number of
values. To determine how many rows there are, it just counts the number of lines in the file.

While this procedure is convenient, we do not recommend it. One reason is that there is no possibility of data
checking by the computer: if the first row happens to be missing a number, the program will never know it, and
will assume that the matrix has one less column than it really does. Another reason is that you cannot spread the
data for a matrix row across more than one record in the data file. Furthermore, you can’t use labels to identify
nodes.

3.2 Excel Filetype

An Excel filetype is a data file created using Excel or saved as an Excel datatype from some other application
package. Currently UCINET supports Excel versions 4.0, 5.0 (Office ’95) and 7.0 (Office ’97). If you are using
other versions of Excel, then you must make sure that while in Excel you SAVE AS the data in one of the
supported formats.

Note that Excel only supports up a maximum of 255 columns and therefore cannot be used to create large network
datasets.

3.3 DL Filetype

A typical DL file consists of a set of numbers (the data) preceded by a series of keywords and phrases which
describe the data and might therefore be described as "meta-data". Alternatively, a DL file can consist only of the
meta-data, along with a pointer to another file that contains the actual data.

3.4 Full Matrix Format

A simple DL file for a 4-actor network might look like this:

dl n=4 format=fullmatrix
data:
0 1 1 0
1 0 1 1
1 1 0 0
0 1 0 0

The "dl" keyword identifies the file as a DL filetype, and must be the first word in the file. The phrase "n=4"
indicates a matrix with 4 rows and columns. The equals sign may be replaced by one or more spaces or commas.
All of the following are acceptable: "n = 4", "n 4", "n,4". The phrase "format=fullmatrix" indicates that the data are
entered as an ordinary matrix (as opposed to a linkedlist, lowerhalf matrix, etc.). Since fullmatrix format is the
default, this phrase is optional and may be dispensed with.

The "data:" keyword indicates that there is no more information about the data -- what follows are the data
themselves. The order of the keywords is therefore important: if you had "dl data: n=4", the program would blow
up. As we add other keywords to our repertoire, it is useful to keep in mind that the "dl" word goes first, followed
by all phrases having to do with the dimensions of the matrix, followed by any other key phrases, followed by the
"data:" keyword.

A note on punctuation: In general, a full colon (:) implies that a set of things are pending, such as a collection of
data values or a collection of labels. A semicolon (;) or a carriage-return (i.e., a new line) imply the end of a phrase.

Each data value must be separated from the others by one or more spaces or carriage returns. All non-numeric
values, except lone periods, are treated as missing values. The physical formatting of the data into rows with equal-
length columns is not required, as long as all values are present and in left-to-right, top-to-bottom order. For
example, the following is perfectly acceptable:

dl n=4 data:
0 1 1 0 1 0 1 1
1 1
0 0

0 1 0
0

3.5 Rectangular Matrices

Rectangular matrices might be entered as follows:

 dl nr = 6, nc = 4
 data:
 0 1 1 0
 1 0 1 1
 1 1 0 0
 0 1 0 0
 1 0 1 1
 1 1 0 0

The phrase "nr = 6" indicates that the matrix has 6 rows. The phrase "nc = 4" indicates that the matrix has 4
columns.

3.6 Labels

DL files may also contain actor labels, as follows:

 dl n=4
 labels:
 Sanders,Skvoretz,S.Smith,T.Smith
 data:
 0 1 1 0
 1 0 1 1
 1 1 0 0
 0 1 0 0

The "labels:" keyword indicates that the next 4 items are row and column labels. The labels may be up to 18
characters long (when the option longlabels is off) or 255 characters long (when longlabels is on), and are
separated either by spaces, commas or carriage returns (or both). Labels cannot contain embedded spaces unless
you enclose them in quotes, as in "Tom Smith".

The word "labels" should be followed by a full colon.

Labels may be specified separately for rows and columns. In fact, this is necessary when the matrix is not square.
For example:

 dl nr = 6, nc = 4
 col labels:
 hook,canyon,silence,rosencrantz
 data:
 0 1 1 0
 1 0 1 1
 1 1 0 0
 0 1 0 0
 1 0 1 1
 1 1 0 0

Another way to enter labels is as part of the data matrix:

 dl nr = 6, nc = 4
 row labels embedded
 col labels embedded
 data:
 Dian Norm Coach Sam
 Mon 0 1 1 0
 Tue 1 0 1 1
 Wed 1 1 0 0
 Thu 0 1 0 0
 Fri 1 0 1 1
 Sat 1 1 0 0

The "row labels embedded" and "column labels embedded" phrases indicate that row and column labels are
embedded in the data themselves. It is also valid to write simply "labels embedded" to indicate that both row and
column labels are found in the data.

3.7 Multiple Matrices

Sometimes it is convenient to have several, related, matrices in a single datafile. For example, we may measure
several social relations among a given set of actors. Here is how to do it:

dl n = 4, nm = 2
labels:
GroupA,GroupB,GroupC,GroupD
matrix labels:
Marriage,Business
data:
0 1 0 1
1 0 0 0
0 0 1 0
1 0 0 1

0 1 1 1
1 0 0 0
1 0 0 1
1 0 1 0

The phrase "nm=2" indicates that the file contains 2 matrices. The keywords "matrix labels:" indicates that the next
two words ("marriage" and "business") are labels for each of the matrices, presumably indicating the social relation
that each measures.

3.8 External Data File

Sometimes it is convenient to separate the data from the DL meta-data that describe them. This allows the data file
to be read by other programs (like SYSTAT, STRUCTURE, and NEGOPY) as well as UCINET. Here is how it's
done:

dl n = 16
labels:
ACCIAIUOL,ALBIZZI,BARBADORI,BISCHERI,CASTELLAN,GINORI
GUADAGNI,LAMBERTES,MEDICI,PAZZI,PERUZZI,PUCCI,RIDOLFI,
SALVIATI,STROZZI,TORNABUON

datafile C:\DATA\PADGM.DAT

The phrase "datafile = c:\data\padgm.dat" indicates the name of the file containing the actual data. That file should
not contain anything but data.

The disadvantage of using the datafile approach is that it multiplies the number of files that must be kept track of.

When a separate datafile is used, UCINET checks the first line of the file to see if it contains a FORTRAN format
statement such as NEGOPY and STRUCTURE require. If it does, UCINET begins reading the data from the
second line. Otherwise, it begins at the top of the file. This allows you to use STRUCTURE and NEGOPY files
interchangeably with UCINET files, as long as each value in the file is separated from the next by at least one
space.

3.9 Diagonal Absent

By default, the program assumes that the data consist of a whole matrix with no cells omitted. Technically, this is
referred to as the "fullmatrix format" and may be explicitly specified as follows:

 dl n=4 format=fullmatrix data:
 0 1 1 0 1 0 1 1
 1 1
 0 0
 0 1 0
 0

However, in the case of square matrices, it is sometimes convenient to omit some values. For example, it is
possible to omit the diagonal:

 dl n = 4
 diagonal = absent
 labels:
 Sanders,Skvoretz
 S.Smith,T.Smith
 data:
 1 1 0
 1 1 1
 1 1 0
 0 1 0
The program automatically fills in the absent values with missing value codes.

3.10 Lowerhalf and Upperhalf Matrices

Another possibility is to enter only the lower half of a square symmetric matrix:

 dl n = 4
 format = lowerhalf
 diagonal = absent
 labels:
 Sanders,Skvoretz
 S.Smith,T.Smith
 data:
 1
 1 1

 0 1 0

UCINET will automatically fill in the top half of the matrix to correspond to the bottom half, and fill the diagonal
with missing values. It is also possible to enter an upper half matrix using the keyword "upperhalf" instead of
"lowerhalf". Note that if the "diagonal absent" phrase is omitted, the program will expect a diagonal value to be
present. For example:

 dl n = 4
 format = lowerhalf
 labels:
 Sanders,Skvoretz
 S.Smith,T.Smith
 data:
 2
 1 2
 1 1 2
 0 1 0 2

3.11 Blockmatrix Format

Another data format, useful for creating design or model matrices, is called "blockmatrix". In this format, rather
than inputting the data directly, you input directions for creating the data. For example, to input a highly structured
matrix like

 2 1 1 1 1 0 0 0 0 0
 1 2 1 1 1 0 0 0 0 0
 1 1 2 1 1 0 0 0 0 0
 1 1 1 2 1 0 0 0 0 0
 1 1 1 1 2 0 0 0 0 0
 0 0 0 0 0 2 1 1 1 1
 0 0 0 0 0 1 2 1 1 1
 0 0 0 0 0 1 1 2 1 1
 0 0 0 0 0 1 1 1 2 1
 0 0 0 0 0 1 1 1 1 2

using blockmatrix form, you would create the following input file:

 dl n = 10 format = blockmatrix
 data:
 rows 1 to 10
 cols 1 to 10
 value = 0

 rows 1 to 5
 cols 1 to 5
 value = 1

 rows 5 6 7 8 9 10
 cols 5 to 10
 value = 1

 diagonal 0
 value = 2

In blockmatrix format, you identify a set of cells, then give them a value. In the example, the first three lines of
data assign a value of 0 to all cells in the matrix. The next three lines (ignoring blanks), isolate the top left quadrant
of the matrix and assigns all cells a value of 1. The next three lines do the same for the bottom right quadrant. The
last two lines give a value of 2 to every cell along the main or 0th diagonal.

As another example, consider this matrix:

100 0 0 0 0 0
 90 100 0 0 0 0
 80 90 100 0 0 0
 70 80 90 100 0 0
 60 70 80 90 100 0
 50 60 70 80 90 100

To enter this matrix in blockmatrix format, enter the following lines:

 dl n = 10 format = blockmatrix
 data:
 rows all
 cols all
 value 0
 diag 0
 val = 100
 diag -1
 val = 90
 diag -2
 val = 80
 d -3
 v = 70
 d -4
 v = 60
 d -5
 v = 50

Note the use of the keyword "all" to indicate all rows and columns. Note also that "rows", "cols", "value", and
"diagonal" may be abbreviated to first letters.

3.12 Linked List Formats

An important set of formats for network analysis are the so-called linked list formats, in which the user specifies
only ties that actually occur in the data and omits ties that did not occur. These formats are unique in being able to
accept character data.

There are two basic types of linked list formats: "nodelists" and "edgelists". Each of these types in turn has two
variants, one for 1-mode data and one for 2-mode data. Only the edgelists allow valued data.

3.12.1 Nodelists

A node list consists of a list of nodes that connected to a given node. Two nodelist formats are available: nodelist1
and nodelist2. The first is used for square, 1-mode matrices such as networks or proximities. The second format is

used for rectangular, 2-mode matrices such as a case-by-variable matrix or an item-by-use matrix. Both formats are
able to accept character data. The nodelist1 format looks like this:

 dl n = 4, format = nodelist1
 labels:
 Sanders,Skvoretz,S.Smith,T.Smith
 data:
 1 2 3
 2 1 3 4
 3 1 2
 4 2

The phrase "format=nodelist1" specifies a format in which the first number in every row of data identifies the actor
(whom we'll call "ego") whose data the row pertains to. The remaining numbers on the row identify the actors that
ego is directly connected to (i.e., his alters). For example, the third data line says that actor 3 (S.Smith) is connected
to Sanders and Skvoretz. The order of egos (rows) is immaterial, as is the order of alters within a row. Egos without
alters are simply left out (but still count in the "n = " phrase and still show up in the list of labels).

If you have too many alters to fit on one line, you can simply create a second line for that actor, but the first
number in the new line must indicate who these alters belong to. For example, the following is equivalent to the file
above:

 dl n = 4, format = nodelist1
 labels:
 Sanders,Skvoretz,S.Smith,T.Smith
 data:
 1 2 3

2 1 3
 2 4
 3 1 2
 4 2

Notice how the ties for actor 2 are spread across two lines.

An alternative approach to entering the very same data is to use item labels instead of id numbers, as follows:

 dl n = 4, format = nodelist1
 labels embedded
 data:
 sanders skvoretz s.smith
 skvoretz sanders s.smith t.smith
 s.smith sanders skvoretz
 t.smith skvoretz

It is possible to both list all the labels in the top half of the file (under a “labels:” statement as shown earlier), and
have the labels embedded in the data (make sure the “labels embedded” command is also present). The advantage
of this approach is that the rows and columns of the resulting matrix will be in the order you specify in the list of
labels. For example, the following would create a matrix in which the rows and columns were sorted in
alphabetical order:

Dl n = 4
format = nodelist1
labels:
Alfred, Betty, Chuck, David

Labels embedded
Data:
Betty chuck alfred
Alfred chuck david
David chuck betty
Chuck betty

Without listing the labels first, the resulting matrix would have been sorted in the order in which the labels were
encountered: row/column 1 would have been Betty, row/column 2 would have been Chuck, row/column 3 would
have been Alfred, etc.

The nodelist2 format is used to input 2-mode data in which two different kinds of entities are being related: for
example, persons and organizations, or persons and events. An example is as follows:

 dl nr=3, nc=4 format = nodelist2
 row labels embedded
 column labels embedded
 data:
 benny sex_roles, stats
 ginny aging, intro
 sally stats, intro, aging

These data record which of three people teaches each of four courses. The first line of data indicates that Benny
teaches Sex Roles and Statistics. The third line says that Sally also teaches Statistics, but teaches Intro and Aging
as well. The first item in each line always refers to a row entity, and the rest of the items on a line refer to column
entities.

3.12.2 Rankedlist Formats

The rankedlist formats are a simple variation on the nodelist formats that assume that the nodes attached to a given
node have been entered in a meaningful order. The program then assigns tie strengths based on the ordering. For
example, consider this file:

 dl n = 4, format = rankedlist1
 labels embedded
 data:
 sanders skvoretz s.smith
 skvoretz sanders s.smith t.smith
 s.smith sanders skvoretz
 t.smith skvoretz

If we look at the first line after the Data statement ("sanders skvoretz s.smith"), This says that for
actor Sanders, the actor Skvoretz is ranked 1st, and the actor S.Smith is ranked 2nd. Actors not listed at all are
assigned zeros by default, unless the phrase "recodena = no" appears in the dl language above the Data statement,
in which case missing values are supplied instead. The result of reading the file above is the following matrix:

 Sanders Skvoretz S.Smith T.Smith
Sanders 0 1 2 0
Skvoretz 1 0 2 3
S.Smith 1 2 0 0
T.Smith 0 1 0 0

Just like the case of nodelists, there is also a rankedlist2 that is used for 2-mode data:

 dl nr=3, nc=4 format = nodelist2
 row labels embedded
 column labels embedded
 data:
 benny sex_roles, stats
 ginny aging, intro
 sally stats, intro, aging

In this case, the line "benny sex_roles, stats" would assign a 1 to sex_roles and a 2 to stats, for the benny row of the
matrix.

3.12.3 Edgelist Formats

Instead of specifying a list of alters for each ego, the edgelist formats specify each link (or cell of a matrix)
individually. Two edgelist formats are available: edgelist1 and edgelist2. The first is used for square, 1-mode
matrices such as networks or proximities. The second format is used for rectangular, 2-mode matrices such as a
case-by-variable matrix or an item-by-use matrix. Both formats are able to accept character data.

The edgelist1 format consists of a list of edges (i.e. links) followed optionally by their values, as shown in this
example:

 dl n = 4 format = edgelist1
 labels:
 Sanders,Skvoretz,S.Smith,T.Smith
 data:
 1 2 1
 1 3 2
 2 1 1
 2 3 1
 2 4
 3 1 1
 3 2 na
 4 2 10.3

In the example, the fourth line of data says that actor 2 is connected to actor 3 with a tie-strength of 1. If the tie-
strength is omitted, as in the fifth line of data, it is assumed to be 1.0. If a dyad is omitted, such as the (4,3) pair, it
is assumed the strength of tie between them is 0.0. As with the matrix formats, tie strengths may be integers or real

numbers, depending on the storage option selected. Non-numeric values, such as "na" are coded as missing. The
adjacency matrix generated from this input data would look like this:

 Sanders Skvoretz S.Smith T.Smith

Sanders 0 1 2 0
Skvoretz 1 0 1 1
S.Smith 1 0 0
T.Smith 0 10.3 0 0

Ties may be listed in any order, but only one tie may be specified per line.

One feature of the edgelist1 format is the ability to cope with character data. This is principally useful when used in
conjunction with a "labels embedded" statement as follows:

 dl n = 3 format = edgelist1
 labels embedded
 data:
 sanders skvoretz 1
 sanders s_smith 1.782
 skvoretz sanders 1.09

This causes the program to draw the labels for the rows and columns of the adjacency matrix from the first two
fields in each data record, in the order in which they are found. Thus, in this example, a matrix with 3 rows and
columns is specified where the first row/column is identified with "Sanders", the second is identified with
"Skvoretz" and the third is identified with "S_Smith". The program will deal correctly with character identifiers of
any length, but only the first 19 characters (or 255, if longlabels is on) will be stored as row/column labels.

Note that the rows and columns of the matrix formed from these data will, by default, be ordered alphabetically.
For instance, in the data above, the first row will correspond to s_smith, the second to sanders, and the third to
skvoretz. By adding the phrase “alpha = no”, you can prevent the automatic alphabetization, in which case the
rows and columns will be ordered according to the order in which they are encountered in the file. In the data
above, the first row will correspond to sanders, the second to skvoretz, and the third to s_smith. You

You can have multiple relations in a single file by separating them with a vertical bar (|). For example:

 dl nm=2 n = 3 format = edgelist1
 labels embedded
 data:
 sanders skvoretz 1
 sanders s_smith 1.782
 skvoretz sanders 1.09
 !
 sanders s_smith 1
 skvoretz sanders 1

The edgelist2 format is identical to the edgelist1 format, but is used with rectangular, 2-mode data. Consider, for
example, the following matrix:

 COHESION SIMILARITY CENTRALITY
CLIQUE 1 0 1
CLOSENESS 1 0 1
REGE 0 1 0

DENSITY 1 0 1
CONCOR 1 1 0

An input file using the edgelist2 format is as follows:

dl nr = 5 nc = 3, format = edgelist2,
labels embedded
data:
clique cohesion
clique centrality
closeness cohesion
closeness centrality
rege similarity
density cohesion
density centrality
concor cohesion
concor similarity

In the example, all edges that are present have weight 1, hence no weights were specified in the data file. The
following input file has weighted edges:

 dl nr=2, nc=3 format = edgelist2
 labels embedded
 data:
 sanders skvoretz 1
 sanders s_smith 1.782
 skvoretz sanders 1.09

While the data in this file are identical to the data used to illustrate the edgelist1 format, the results are very
different:

 Skvoretz S_Smith Sanders
Sanders 1 1.782 0
Skvoretz 0 0 1.09

Note that only two different objects (Sanders and Skvoretz) occur as rows of the incidence matrix (see the first field
of each data record), while three different objects (Skvoretz, S_Smith and Sanders) occur as columns of the matrix
(see the second field of each data record). Note also that the fact that, in this example, the row objects happen to
have the same names as some of the column objects means nothing: the program does not regard them as the same.

3.12.4 The EdgeArray1 Format

This format is a lot like an edgelist, but allows you to have multiple attributes of each tie (i.e., multiple relations).
For example:

 dl nm = 4 n = 3 format = edgearray1
 labels embedded
 matrix labels:
 avgcalls
 yearstogether
 pctincommon
 kin
 data:

 sanders skvoretz 1 62 33.7 0
 sanders s_smith 1.782 29 66.2 1
 skvoretz sanders 1.09 59 99.0 0

3.15 UCINET Spreadsheet Editor

You can type data in directly or cut and paste data from a table or spreadsheet into UCINET's spreadsheet. Simply
start the UCINET editor by clicking on the editor button in UCINET or click on Data>Edit or type Ctrl+E . To
copy your data from your spreadsheet or table simply move it onto the clipboard click on UCINET and paste the
data onto the spreadsheet either by using Ctrl+V or by selecting Edit>Paste in UCINET. You then need to save
your data within UCINET and it will be saved as a UCINET file. If you wish to type in your data directly then you
may do so in the editor. Note that you can only type in the labels once some data has been filled in to the relevant
row or column. If you already know the size of your data then fill in the last row and column entry first and you can
type in the labels at the beginning. If your data is symmetric click the Asymmetric mode button before you enter
any data this will automatically fill in the other half of your data. You need only enter the non-zero values in the
spreadsheet, once these have been filled in then click on the button marked Fill all empty cells will be given a value
of zero. If you accidentally stray outside the size of your required matrix then you need to delete the extra rows and
columns rather than filling them in with blanks. If your data has more than one relation then add the extra matrices
using the + button on the right side of the toolbar (the - can be used to delete relations). Individual matrices within
the network can be named using the rename sheet button situated just to the right of the add and delete worksheet
buttons.

The editor allows the access to some 2D and 3D graphics facilities. To utilize the graphics load a UCINET dataset
into the editor. Block the data that you wish to display. Click on edit>copy to move the data onto the clipboard and
then click on edit>paste to deposit the data into the spreadsheet graphics facility. Finally click on the graph button
on the tool bar towards the right hand side just left of the Symmetric/Asymmetric Mode button. The graphic
wizard will take you through the creation of your picture or chart.

Like Excel, the UCINET spreadsheet is limited to 255 columns and so this method cannot be used for larger
datasets.

~ 4 ~
Data Processing

Having entered raw data into the system, you will often find it necessary to transform or modify them before
submitting them to analysis. Sometimes, the reason for making changes is to correct errors or deficiencies in the
data collection technique. For example, if you ask members of a group to rank-order each other in terms of
"closeness", it may turn out that some of the lower rankings (say, below 10) were essentially random because the
respondent didn't know who the person was. In such a case, you might decide to recode all ranks lower than 10 to a
single value. Alternatively you may have simply mistyped one or two values, if the dataset is small then the easiest
way to correct your error is to use the spreadsheet editor as outlined in the previous section. In this section we shall
be concerned with more radical changes to the data.

A common example is when the data needs to be changed to allow their use in a certain analytic procedure which
requires somewhat different data. For example, you might collect valued data on the strength of certain kinds of
relationships among a set of people. If you then want to locate Luce and Perry cliques, you will need to
dichotomize the data because cliques have only been defined for ordinary graphs in which nodes are either
connected or they're not.

Another reason for transforming the data is to create a new variable, more useful analytically, that is derived from
the collected data. For example, suppose you have attitudinal data on a set of actors for a particular set of issues.
Suppose you also have relational data on the strength of friendships among actors. A natural hypothesis to check
would be that similarity in attitudes is correlated with strength of relationship. You can test the hypothesis using the
QAP procedure. First, however, you will have to obtain the similarity of attitudes among actors. This can be done
by computing correlations among rows of the actors-by-attitudes matrix.

UCINET 6.0 can perform a wide variety of data transformations. Before describing various transformations,
however, it is important to note that the use of the word "transformation" is misleading since none of the
procedures actually change the existing dataset: rather, they generate a new dataset that reflects the appropriate
changes. (Although this new dataset can be made to overwrite the existing one) It is this new dataset that is then
submitted for analysis (or, more likely, further transformation).

4.1 Subgraphs and Submatrices

Perhaps the most common data adjustment is the removal of one or more nodes from a network, corresponding to
removing one or more rows and columns from an adjacency matrix. The easiest way to do this in UCINET 6.0 is to
run the Data>Extract procedure which extracts a submatrix from an input matrix. The inputs to this procedure are,
first, a dataset to use as input, and second, a list of rows and/or coloumns to keep or delete. You have the option of
specifying which ones to retain or which ones to drop. If you are just dropping one or two row or columns, it makes
more sense to name those than to list all the rest. On running Extract, you will be asked to provide the following
information:

 •Input dataset: •
 •Are you going to KEEP or DELETE? KEEP •

 •Which rows to KEEP? ALL •
 •Which columns to KEEP? ALL •
 •Which matrices to KEEP? ALL •
 •Output dataset: EXTRACT •

Where it says, "Which rows to KEEP?" you enter a list of actors, such as "1 TO 10, 12 TO 24". You must do the
same for the columns, as we are removing nodes from the network our columns to keep are the same as the rows, in
this case you can just type "same". If the data has labels and you know the actor labels and not their number then
click on the L button to the right of the box and you can select the appropriate actors from the list. When you do
this Ctrl plus a mouse click will allow you to highlight multiple actors.

Alternatively, you can give the name of a UCINET 6.0 dataset containing a group indicator matrix such as output
by several of the analytic procedures (e.g., Cliques). A group indicator matrix is a binary group-by-actor matrix in
which X(i,j) = 1 if actor j is a member of group i and X(i,j) = 0 otherwise. For example, the Cliques program
names the group indicator matrix it creates CliquesSets; if you would like to pull out a subgraph consisting only of
the nodes in the sixth clique recorded in CliquesSets, fill in the form as follows:

Which rows to KEEP? CliquesSets row 6

Then either use "same" or type in "CliqueSets row 6" for the columns prompt. This says, 'The actors I want to
keep are given by the 6th row of a UCINET 6.0 dataset called CliquesSets'. IMPORTANT NOTE: If you the
dataset contains spaces inside the name, as in “My Clique Sets”, you will need to put quotes around the filename:

Which rows to KEEP? “My Cliques Sets” row 6

Of course, the dataset you give does not have to have been created by the Clique program. You can create one
yourself by simply creating an ASCII file containing a string of 1s and 0s and then Importing the information as a
dataset. For example:

dl nr=1 nc=10 data:
1 0 0 1 1 1 0 0 1 0

If you import this data as dataset mygroup, you would then answer the prompt in Extract like this:

Which rows to KEEP? mygroup row 1

Again you need to repeat this at the columns prompt. This would cause a subgraph containing the relationship
among actors 1, 4-6, and 9 to be created. Obviously there will be other cases when you will want to select different
rows from the columns.

4.2 Merging Datasets

Sometimes it is convenient to keep different data collected on the same actors in different files. However, it can
also be useful to join them together in a common file. For example, one may wish to perform several analyses on
each of the Sampson relations separately, but for certain procedures (e.g., positional analysis) you may wish the
analysis to be based on all measures simultaneously. The Data>Join procedure allows you to merge datasets with
respect to three dimensions: rows, columns and levels (matrices). For example, consider the following two
matrices:

Matrix number 1 is

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

Matrix number 2 is

2 2 2 2
2 2 2 2
2 2 2 2
2 2 2 2

To merge with respect to rows is to append the second matrix to the bottom of the first matrix to produce a new
matrix with 8 rows and 4 columns, as follows:

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
2 2 2 2
2 2 2 2
2 2 2 2
2 2 2 2

To merge with respect to columns is to append the second matrix to the right side of the first matrix to produce a
new matrix with 4 rows and 8 columns, as follows:

1 1 1 1 2 2 2 2
1 1 1 1 2 2 2 2
1 1 1 1 2 2 2 2
1 1 1 1 2 2 2 2

To merge with respect to levels is to place the two matrices in a dataset one after the other, to create a dataset with
2 matrices of 4 rows and 4 columns each, as follows:

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

2 2 2 2
2 2 2 2
2 2 2 2
2 2 2 2

4.3 Permutations and Sorts

Closely related to extracting subsets of matrices is the topic of re-ordering rows and/or columns. Often, reordering
a matrix so that members of the same group or class are adjacent to each other makes it easier to grasp the overall
structure of relationships. UCINET 6.0 distinguishes between two basic types of reorderings: permutations and
sorts.

Permutations are reorderings in which the user specifies the new order of nodes directly. For example, you might
tell the Permute program that the ordering of nodes should be '1, 6, 2 to 5, 10 9 8 7', which means you want node 1
first, node 6 second, etc. For example, here is the input form for the Data>Permute program:

 •Input dataset: •
 •New order of rows: •
 •New order of cols: •
 •New order of matrices: •
 •Output dataset: Permuted •

In contrast to permutations, sorts are reorderings in which the new order is specified indirectly by reference to an
attribute. For example, you might want the program to sort the nodes in order of decreasing centrality. To do this,
you must first have a dataset on disk containing the centrality of each node. Then you tell the Sort procedure which
dataset contains the criterion vector (i.e., the centrality vector), and which row or column of that dataset it is. Here
is the input form for the Data>Sort program (listing default answers to questions):

 •Input dataset: •
 •Dimensions to be arranged: Both •
 •Sort order: Ascending •
 •Criterion vector (sort key): •
 •Output dataset: Sorted •

4.4 Transposing and Reshaping

It is often convenient to interchange the rows and columns of a matrix. For example, in the world system literature,
it is commonplace to arrange network data such that the value of X(i,j) gives the dollar-amount of goods moving
from country to j to country i. For networkers, this is confusing because in the network literature X(i,j) almost
always indicates the value of an arc from i to j. All that is needed is to transpose the matrix using the
Data>Transpose procedure. For another example, suppose you have a dataset with two rows of data and 50
columns. You would like a scatter plot of the first row against the second. However, the scatter plot program in
UCINET can only plot columns. The solution is to transpose the data to give a matrix with 50 rows and 2 columns.

When you have 3-dimensional data (i.e., several matrices in a single dataset), the Data>Transpose procedure
transposes each matrix in the dataset. However, what if you wanted to transpose not rows and columns, but
columns and levels (i.e., matrices)? For example, the Newcomb year-1 dataset consists of 12 17-by-17 matrices,
one for each week that data were collected. The rows refer to egos (respondents), the columns refer to alters and the
levels refer to weeks. The values in the data refer to each ego's ranking of each alter on each week. Suppose that
instead we wanted to organize the data so that each alter's ratings from a given respondent across weeks were side
by side (so we could see whether they were increasing or decreasing in esteem). We would like columns of the
matrix to refer to weeks, rows to refer to egos and levels to refer to alters. What we want, then, is to transpose
(interchange) the columns and levels of the original data matrix. This is easily done using Tools>Matrix Algebra,
as follows:

 -->tnewc1 = transp(newcomb1 columns levels)

This says, 'interchange columns and levels of the dataset Newcomb1 and place the result in dataset Tnewc1'.

A related procedure is the Data>Reshape facility. Unlike the Transpose procedure, this procedure changes the
dimensions of a matrix without changing the order of data values. For example, suppose you have a 10-by-10
matrix. For certain purposes, it might be convenient to string out all the elements into a single 100-element vector.
To do this in UCINET 6.0, run the Reshape program and tell it that you want the output to have 100 rows and 1
column. The data elements in the file will be written in the order in which they appear in the matrix, moving from
left to right and top to bottom.

4.5 Recodes

One type of transformation that is frequently needed is to recode a range of values in a matrix to a new value. For
example, it may be desirable to convert all values from 0 to 9 to 0, all values from 10 to 19 to 1, etc. The easiest
way to do this is using the Transform>Recode procedure. Once you have invoked the procedure and filled out the
first part of the form (specifying the input), you must fill out the following :

• Values 0 to 9 are recoded as 0 •
• Values 10 to 19 are recoded as 1 •
• Values 20 to 100 are recoded as 2 •
• Values na to na are recoded as 0 •
• Values to are recoded as •

To fill in the form as we have, use the tab key or mouse to move from left to right and top to bottom. Note that on
the fourth line of the form we have requested that missing values (na) be converted to zeros.

The Recode command is often useful for converting zeros to missing values and vice-versa. Note, however, that
you cannot direct the program to change only values along the main diagonal, as might sometimes be needed. For
this, you can use the Transform>Diagonal procedure. This procedure lets you change the values of the main
diagonal of a matrix.

A special case of the general recoding problem is dichotomizing a matrix so that all values are either 0 or 1.
Typically, this is needed when you have measured the strength of ties among actors, but for the purposes of a given
analysis, would rather have binary data which simply record the presence or absence of a tie (or a strong tie).
Sometimes this comes up because the UCINET procedure you want to run requires binary data. If so, the procedure
will automatically change all values larger than zero to one. However, this may not be the ideal cutoff for your data
(e.g., suppose your data are all negative numbers). By dichotomizing the data yourself ahead of time, you can
ensure that they are dichotomized sensibly.

The Transform>Dichotomize procedure dichotomizes a matrix by comparing each cell value with a cutoff that
you supply. Depending on your choice, the program can assign a 1 to any cell whose value is strictly greater than,
greater than or equal to, exactly equal to, less than or equal to, or strictly less than the specified cutoff.

Another kind of recoding operation is the reversal of values (Transform>Reverse). For example, for a binary
matrix with values 0 and 1, this would mean changing all 1s to 0s and vice-versa. This might be used to change a
relation from "likes" to "does not like". For valued data, the procedure subtracts all values from the largest and adds
the smallest. Hence, for data with values 0, 1, and 2, the procedure would change the 0s to 2s, the 2s to 0s, and
leave the 1s as 1s.

4.6 Linear Transformations

Reversing values of a matrix is subtly different from other recodes in that the output values are related to the input
values in a simple, numerically meaningful way. In fact, a reversal is just a linear transformation Y(i,j)=X(i,j) +
Min(X)-Max(X). In order to perform more general transformations of the type Y(i,j) = bX(i,j) + m where b and m
are constants, it is necessary to use the Matrix Algebra package. For example, to multiply all the values in a
matrix called DAVIS by 7 you would type (once in Matrix Algebra):

 -->davis7 = linear(davis 7 0)

That means, 'multiply each value of the matrix in dataset DAVIS by 7 and then add 0, putting the result in a dataset
called DAVIS7'. To divide all values by 2 and then subtract 1, type:

 -->davis7 = linear(davis 0.5 -1)

4.7 Symmetrizing

To symmetrize a matrix X is to force X(i,j) to equal X(j,i) for all i and j. The need to symmetrize data comes up in
a number of contexts. One case is where data are collected on what is logically a symmetric relation, such as "has
had lunch with", but due to measurement error (e.g., faulty memories), the actual data are not symmetric. For
example Oliver recalls discussing selling arms to Iran with Ronald, but Ronald doesn't recall that. Another case is
where an asymmetric relation such as "lent money to" is measured, but the analysis is to be carried out on the more
general relation "is financially involved with". In either case, we must reconcile each X(i,j) and X(j,i).

UCINET provides several options for symmetrizing, including replacing both values with the average of the two,
or the smallest or the largest. Among the more unusual choices is the possibility of setting both X(i,j) and X(j,i)
equal to 1 if X(i,j) = X(j,i) and 0 otherwise. In effect, this creates a new matrix that indicates whether each dyad is
in agreement or not. The average of all values of this matrix would then give the proportion of consensual dyads.

4.8 Geodesic Distances and Reachability

A geodesic distance matrix is a matrix of geodesic distances among pairs of nodes. The geodesic distance between
two nodes is the number of links in the shortest path between them. On the theory that influence or communication
of any kind of one node on another declines with the distance between them, the geodesic distance matrix can be
used as an index of influence or cohesion.

To compute a geodesic distance matrix, run the Network>Cohesion>Geodesics procedure. In UCINET 6.0, you
will find that the notion of geodesic distances has been generalized to handle valued graphs of various types. For
example, your data might record the strength of relationship among actors. The strength of a path from node a to b
to c to d is defined as the strength of the weakest link between them. The geodesic path from any node to any other
is defined as the strongest path between them. The geodesic distance between two nodes is defined as the number
of links in the strongest path from one to the other. Another kind of valued data consists of costs or distances
associated with a pair of nodes. In this case, the geodesic path is defined as the cheapest or shortest path between
points, computed by summing the values of each link in the path.

If you run Distance you will also find that it gives you options for transforming the distances into proximities or
"nearnesses". This is useful when the geodesic distance matrix is being used as a proxy for, say, cohesion or
influence, where larger numbers should mean more cohesion or influence. The simplest option just subtracts the
distances from n (the number of nodes), much as the Reverse procedure would do. Another option takes the

reciprocal of distance (1/d(i,j)) and multiplies by maximum possible distance (n-1) so as to rescale the numbers to
vary from 0 to 1. An option of theoretical interest (translation: based on questionable assumptions) takes a constant
to the power of the distance between two nodes. Thus, if the constant is 0.5, a pair of nodes that is directly
connected is scored 0.5, a pair that is two links apart is scored 0.25, a pair three links apart is scored 0.125, and so
on. Another option of theoretical interest is one proposed by Burt (1976) and implemented in STRUCTURE. For a
given i and j, it yields a value that is one minus the proportion of actors i can reach in the same number of steps i
can reach j. Thus, if i and j are relatively distant, then the number of actors i can reach at that length or less relative
to the total number of actors i can reach at any length will be high and so the assigned value will be low.

Closely related to distance is the notion of reach. In the case of an adjacency matrix X, this concept usually refers
to a transitive closure of the data, such that Y(i,j) = 1 if there exists a path of any kind from i to j. In UCINET 6.0,
however, we have extended the notion to several kinds of valued matrices as well. For example, for a matrix
recording strengths, capacities or frequencies of relationships, the reach of i to j is the strength of the strongest path
between them, as defined above. If the strength values are dichotomous 1s and 0s, the strength of the strongest path
between any two points is always 1 unless there is no path at all, which yields the familiar notion of reachability.
For cost data, reachability is defined as the cost of the cheapest path. For probability data, reachability is defined as
the probability of the most probable path between two points. Thus, the reachability matrix can also be used as a
measure of cohesion or expected influence.

Other indices of influence or cohesion that have been suggested in the literature are maximum flows, these are
computed by procedures listed under Network>Cohesion>Maximum Flow.

4.9 Aggregation

A different class of transformations involve aggregating graphs or matrices in various ways. A typical case is
combining several relations measured on the same actors. For example, a study might record half a dozen different
kinds of ties among members of a group. A rough measure of influence, mutual dependence, or strength of
connection between two actors might be the total number of ties (0 to 6) that bind them. Some people call this
"multiplexity", but in UCINET we reserve that term for a slightly more sophisticated concept, namely the
combination of ties that bind two actors.

There are two ways to add across all relations within a dataset. The first way is to use data>CSS. The CSS
procedure has a number of ways of aggregating. For our purpose here, slice is the right choice. The second way to
aggregate within a dataset is through Matrix>Algebra. For example, to aggregate across both relations in a dataset
called PADGETT, type:

 -->agpadge = total(padgett rows cols)

This command says 'sum the values of dataset PADGETT, breaking the results out by rows and columns, and
saving the outcome as dataset AGPADGE'. To understand how this works, think of PADGETT as a 3-
dimensional table (like a contingency table) with rows, columns and levels. We want to collapse the table in such a
way that the result has only rows and columns. If we had wanted to collapse across columns as well, we could have
typed:

 -->rowmarg = total(padgett rows)

Similarly, to sum all values in the entire dataset, we would use the total command without arguments:

 -->bign = total(padgett)

The Transform>Multiplex procedure can be used to reduce a series of matrices in a dataset into a single
categorically-valued matrix which assigns a unique value to each unique combination of values across relations.
For example, suppose a dataset contained these two matrices:

0 1 0 1
0 0 1 1
1 0 0 0
1 1 0 0

0 1 1 0
1 0 1 1
1 0 0 1
0 1 0 0

Members of this network exhibit a total of four distinct combinations of relationships (listed in the order they are
encountered): not tied on both relations, tied on both relations, not tied on the first but tied on second, and tied on
the first but not on the second. A multiplex matrix of these data looks like this:

0 1 2 3
2 0 1 1
1 0 0 2
3 1 0 0

The single multiplex matrix encodes all the information in both data matrices. A multiplex matrix (or any valued
matrix) can be disaggregated by Transform>Multigraph procedure. This routine creates a new matrix for each
unique value in the input matrix. For example, the multiplex matrix given above would be disaggregated as
follows:

0 1 0 0
0 0 1 1
1 0 0 0
0 1 0 0

0 0 1 0
1 0 0 0
0 0 0 1
0 0 0 0

0 0 0 1
0 0 0 0
0 0 0 0
1 0 0 0

The first matrix indicates which nodes are tied at the "1" level. The second matrix indicates which nodes are tied at
the "2" level, and so on. Optionally, the "0" level can also be treated as a valid connection. Also, the output
matrices can be made to be cumulative, so that the second matrix would indicate which nodes were tied at level 2
or below.

Another kind of aggregation is the collapsing of nodes into classes or clusters. This is frequently encountered in the
context of blockmodeling where the aggregation results in a density matrix. The main output of blockmodeling is a
partition of actors into classes that are homogeneous with respect to some property. It is then desirable to produce a
density matrix which gives the average value of ties between actors of one block with actors of another block. For
example, if we partition the two matrices above so that the first two actors fall into one class and the second two
actors fall in another, we would get the following two density tables:

.25 .75
.75 0

.50 .75
.50 .25

To obtain a density table, run Transform>Block. This procedure takes as input a data matrix and a partition
vector. A partition vector indicates the class of each actor in the network. For example, if a set of 10 actors has
been partitioned into two classes, the partition vector might consist of this:
{1,2,1,2,2,1,1,2,1,1}. Thus, there is a number for each actor, and each number refers to a class. The partition vector
can be typed in from the keyboard or extracted from a previously created dataset (such as produced by CONCOR
or CLUSTER).

A more flexible program for collapsing nodes is Transform>Collapse. With this routine, you can sum values,
average them, or take the minimum or maximum. However, the input is not a partition vector, but rather lists of
nodes which are to be collapsed. For example, the partition vector given in the previous paragraph would be
represented as follows:

 NODES 1 3 6 7 9 10
 NODES 2 4 5 8

4.10 Normalizing and Standardizing

Another class of transformations is normalization. This refers to changing the scale of numbers in the data matrix,
either for the matrix as a whole, or for each row (or column) separately. For example, one might wish each row of a
data matrix to have the same mean and standard deviation. This need arises when each row of the matrix is
collected from a different respondent, who may be answering using a personal scale of measurement that is very
different from other respondents. For example, if respondents are asked to assess the physical distance from their
homes to the homes of all other actors in the network, it may be that some respondents answer in feet, others in
yards, and others in meters. In such cases, it is necessary to reduce each row to a common denominator in order to
make the data comparable.

The Transform>Normalize procedure can normalize with respect to means, marginals, standard deviations, means
and standard deviations together, euclidean norms, and maximums. Each type of normalization can be performed
on the matrix as a whole, on each row separately, on each column separately, on each row and each column, and on
the matrix as a whole. For example, you can make each row have the same mean (0.00) and standard deviation
(1.00). Alternatively, you can normalize each column. The Normalize procedure even allows you to normalize
both rows and columns simultaneously. Still another possibility is to normalize the entire matrix as a whole so that
the mean of all numbers is zero, but the mean of any particular row or column might not be.

Normalizing operations can also be done in less automated a fashion using the Matrix Algebra package. For
example, suppose you have a 30-by-30 matrix in a dataset called trade which you would like to have normalized
so that columns add to 100. You can do this with the following sequence of commands:

 -->COLSUM = TOTAL(TRADE COLUMNS)
 -->NTRADE = DIV(TRADE FILL(COLSUM 30 30))

The first command creates a row vector (actually a 1-by-30 matrix) containing column sums. The next command
divides each entry of the trade dataset by its column sum. However, since the DIVIDE command requires matrices

to be the same size, the FILL command is invoked first to duplicate the row vector 30 times to create a 30-by-30
matrix.

4.11 Mode Changes

One class of transformations that is quite different from the others discussed in this chapter is the derivation of 1-
mode data from 2-mode data. A 1-mode matrix is a matrix in which both rows and columns refer to the exact same
objects (typically actors). A 2-mode matrix is one in which rows index one type of object (such as persons) and the
columns index another type of object (such as corporate boards). In network analysis, 2-mode data are frequently
encountered in the form of affiliation data: information is collected on a set of groups or events that a set of actors
is involved with. The data matrix typically has actors for rows and groups or events for columns. A given data
value X(i,j) = 1 if actor i is associated with group/event j, and X(i,j) = 0 otherwise. From this matrix, we typically
compute an actor-by-actor matrix by counting the number of groups/events that each pair of actors has in common.
The result is a "co-occurrence" or "co-membership" matrix that is then analyzed as ordinary (valued) network data.
Alternatively, we can compute an event-by-event matrix that counts the number of actors attending both events for
every pair of events, yielding a measure of the overlap in attendance between the events.

The simplest way to generate a 1-mode matrix from a binary 2-mode matrix is to run the Data>Affiliations
procedure. This procedure takes a 2-mode matrix as input and counts the number of events (or actors) that each pair
of actors (or events) are both positively involved in (both have 1s with). It is useful to realize that this process of
counting co-occurrence is the same as measuring the similarity of actors (or events) across events (or actors) using
a crude, unnormalized similarity measure. Other similarity measures may be equally appropriate for a given
analysis, particularly for valued data. To choose from a wider variety of similarity measures, run the
Tools>Similarities procedure. For example, an interesting choice for binary data would be the exact matches
measure, which would count the number of times that, say, two actors attend or do not attend the same events.
Thus, not attending the same events is taken into account in evaluating the relationship between the actors. For
valued data, the correlation measure might make a good choice. For a dissimilarity measure, such as euclidean
distance, run the Tools>Dissimilarities program.

A special case of this kind of mode change is the derivation of a 1-mode matrix from a single vector. For example,
a network study might collect basic information on the actors, such as age, sex, and income. The question then
becomes, How do these attributes relate to the pattern of relationships among the actors?. One way to answer the
question is to convert the attribute data into "networks" and use the QAP procedure to correlate them. For example,
consider the sex attribute, which we will assume is a vector S coded 1 for males and 2 for females. We can create
an actor-by-actor matrix which records for each pair of actors whether they are the same sex or not. That is, we
assign X(i,j) = 1 if actors i and j are of the same sex and X(i,j) = 0 otherwise. We can then use QAP to correlate "is
the same sex as" with "is a close friend of". For a metric variable like income, rather than ask whether actors with
the same income tend to be friends, we might prefer to ask whether the degree of difference between incomes
predicts friendship, in which case we would set X(i,j) equal to the absolute value of the difference between the
incomes of actors i and j.

The simplest way to generate "network" data from individual attribute data is to run Data>Attribute. This
procedure takes a single attribute as input and generates a square matrix using your choice of three measures
(equality, difference, and absolute difference). From the discussion above, it should be clear that the process of
converting vectors to matrices or attributes to networks is again precisely the same as computing the similarities
between rows of a 2-mode matrix. The 2-mode matrix in question is the attribute vector, which is simply an n-by-1
matrix in which the rows are actors and the column is a property or attribute.

The reverse process --- generating a 2-mode matrix from a 1-mode matrix --- can also be of interest in a network
context. For example, the Transform>Incidence procedure converts a node-by-node adjacency matrix into a 2-

mode node-by-line matrix in which X(i,j) = 1 if node i is incident upon (is touched by) link j. This matrix can then
be used as an indicator matrix for further analyses.

~ 5 ~
Where is it now?

In this section we provide a list of UCINET IV routines and state what they are called and where they are located in
UCINET 6.0. They are ordered as in UCINET IV. If a routine is no longer available we state that it has been
deleted. Some routines have been deleted since they have a function that is repeated, or the function has changed
under the new operating system in these cases we have named the routine which can be used to perform the same
function preceded by the word 'use'.

DOS
 CD Use File>Change Default Folder
 MD Use File>Create New Folder
 DIR Deleted
 COPY Deleted
 PRINT Deleted
 PRINTER Deleted
 EDIT File>Create/Edit Ascii File
 BROWSE Deleted
 SPOOLER Deleted
 SHELL Deleted
 EXIT File>Exit

DATASETS
 LIST Deleted
 COPY Deleted
 DELETE File>Delete Ucinet File
 RENAME File>Rename Ucinet File
 DESCRIBE Data>Describe
 DISPLAY Data>Display
 SPREADSHEET Data>Edit
 MERGE Data>Join
 TRANSPOSE Data>Transpose
 RESHAPE Data>Reshape
 SORT Data>Sort
 PERMUTE Data>Permute
 EXTRACT Data>Extract
 IMPORT
 DL Data>Import/Export>Import>DL
 RAW Data>Import/Export>Import >Raw
 KRACKPLOT Data>Import/Export>Import>Krackplot
 UCINET3.0 Data>Import/Export>Import>Ucinet 3.0
 EXPORT
 DL Data>Import/Export>Export>DL
 RAW Data>Import/Export>Export> Raw
 KRACKPLOT Data>Import/Export>Export>Krackplot
 UCINET3.0 Data>Import/Export>Export> Ucinet 3.0

NETWORKS

 RANDOM
 SOCIOMETRIC Data>Random>Sociometric
 BERNOULLI Data>Random>Bernoulli
 MULTINOMIAL Data>Random>Multinomial
 TRANSFORM
 SORT Use Data>Sort
 PERMUTE Use Data>Permute
 INCIDENCE Transform>Incidence
 LINEGRAPH Transform>Linegraph
 MULTIGRAPH Transform>Multigraph
 SEMIGROUP Transform>Semigroup
 MULTIPLEX Transform>Multiplex
 POOLED Data>CSS
 BLOCK IMAGE Transform>Block
 AFFILIATIONS Data>Affiliations
 ATTRIBUTE Data>Attribute
 CONNECTIONS
 DISTANCE Network>Cohesion>Distance
 REACH Network>Cohesion>Reachability
 FLOW Network>Cohesion>Maximum Flow
 VOLUME
 GEODESICS Network>Cohesion>Geodesics
 ALL PATHS Deleted
 WALKS Deleted
 INFLUENCE Network>Centrality>Katz (or Hubbell)
 DENSITY Network>Properties>Density
 TRANSITIVITY Network>Properties>Transitivity
 CENTRALITY
 DEGREE Network>Centrality>Degree
 CLOSENESS Network>Centrality>Closeness
 BETWEENNESS Network>Centrality>Betweenness
 EIGENVECTOR Network>Centrality>Eigenvector
 FLOW BETWEENNESS Network>Centrality>Flow Betweenness
 INFORMATION Network>Centrality>Information
 BONACICH POWER Network>Centrality>Power
 SUBGROUPS
 COMPONENTS Network>Regions>Components
 K-CORES Network>Regions>K-Core
 CLIQUES
 CLIQUE Network>Subgroups>Cliques
 N-CLIQUE Network>Subgroups>N-Cliques
 N-CLAN Network>Subgroups>N-Clan
 K-PLEX Network>Subgroups>K-Plex
 FACTIONS Network>Subgroups>Factions
 CONNECTIVITY SETS
 BLOCKS Network>Regions>Bi-Copmonent
 LAMBDA SETS Network>Subgroups>Lambda Sets
 POSITIONS
 STRUCTURAL EQUIVALENCE
 PROFILE SIMILARITY Network>Roles&Positions>Structural>Profile
 TABU SEARCH Network>Roles&Positions>Structural>Optimization

 CONCOR Network>Roles&Positions>Structural>CONCOR
 CATIJ Deleted
 AUTOMORPHIC
 GEODESIC EQUIVALENCE Deleted
 MAXSIM Network>Roles&Positions>Exact>MaxSim
 TABU SEARCH Network>Roles&Positions>Exact>Optimization
 ALL PERMUTATIONS Network>Roles&Positions>Automorphic
 REGULAR EQUIVALENCE
 CATEGORICAL Network>Roles&Positions>Maximal Regular>CATREGE
 CONTINUOUS Network>Roles&Positions>Maximal Regular>REGE
 TABU SEARCH Network>Roles&Positions>Maximal Regular>Optimization
 INTERNETWORK
 QAP-CORRELATION Tools>Statistics>Matrix(QAP)>QAP Correlation
 QAP-REGRESSION Tools>Statistics>Matrix(QAP)>QAP Regression
 STOCHASTIC
 P1 Tools>Statistics>P1

MATRICES
 RANDOM Data>Random>Matrix
 PLOT
 SCATTERPLOT Tools>Scatterplot>Draw
 CLUSTER DIAGRAM Deleted
 TRANSFORM
 SYMMETRIZE Transform>Symmetrize
 DICHOTOMIZE Transform>Dichotomize
 RECODE Transform>Recode
 REVERSE Transform>Reverse
 NORMALIZE Transform>Normalize
 COLLAPSE Transform>Collapse
 DIAGONAL Transform>Diagonal
 PARTITION TO SETS Data>Sets
 ALGEBRA Tools>Matrix Algebra
 UNIVARIATE Tools>Statistics>Univariate
 MULTIVARIATE
 SCALING
 MDS
 NON-METRIC Tools>MDS>Non-Metric
 METRIC Tools>MDS>Metric
 SVD Tools>2-Mode Scaling>SVD
 CORRESPONDENCE Tools>2-Mode Scaling>Correspondence
 CLUSTERING
 HIERARCHICAL Tools>Cluster>Hierarchical
 TABU SEARCH Tools>Cluster>Optimization
 REGRESSION Use Tools>Statistics>Vector>Regression
 SIMILARITIES Tools>Similarities
 DISSIMILARITIES Tools>Dissimilarities

OUTPUT
 PRINT Use Print Buttons on Output Screens
 COPY Use Save Buttons on Output Screens
 APPEND Deleted

 REVIEW Use File>Edit Previous Log File

OPTIONS
 DIRECTORIES Deleted
 PAGE SIZE Options>Page Size
 OUTPUT Options>Output Log File Append/Overwrite
 PRINTER Deleted

	UCINET 6 for Windows
	Table of Contents
	Getting Started1
	The UCINET Environment2
	Importing Data3
	Data Processing4
	Where is it now?5

