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 Annals of Mathematics, 128 (1988), 173-193

 On the structure of Brauer's
 centralizer algebras

 By HANs WENZLt

 In his paper [Br], R. Brauer defined algebras motivated by the following
 basic problem of classical invariant theory: Let G be a group of linear transfor-
 mations on a vector space V and let T7T f be the representation of G on

 Vf = V ? ... ? V, the fPth tensor power of V. Then the question is how does
 7V"f decompose into irreducible representations of G. One way of studying this
 problem is to consider the algebra Bf(G) of centralizers, i.e. the algebra of
 linear maps y on Vf such that ygr'f(g) = g?f(g)y for all g E G. This approach
 was successful for G = Gl(n), where Bf(Gl(n)) is a quotient of kSf, the group
 algebra of the symmetric group. So the decomposition of 7,@f was obtained from
 knowledge about that algebra.

 In this paper, we will study a sequence of algebras, denoted by Df(n)
 which play a similar role for other classical Lie groups. More precisely, if G is
 the orthogonal group O(n) or the symplectic group Sp(2m), the corresponding
 Bf(G)'s are quotients of Brauer's Df(n) and Df(- 2m) respectively (see [HWL],
 Theorem (2.10)). If n > f, Df(n) is semisimple (which in this paper means that
 it is a direct sum of full matrix algebras over k) and its structure does not depend
 on n. In the other case, however, Df(n) is no longer semisimple, which makes it
 difficult to determine the relevant semisimple quotient. In fact, H. Weyl was
 unable to use this "somewhat enigmatic algebra" directly in the determination of
 the decomposition of ?TTf and therefore was obliged to resort to different
 methods still considered "mysterious" by other authors (see [Wy], V.5 and
 p. 159 and [ABP]).

 The algebras Df(n) have been studied by various authors mainly using
 combinatorial methods (see [Be], [Bw], [EK], [HWL-3] and [S]). Based on their
 results and extensive computations, P. Hanlon and D. Wales conjectured that

 I Partially supported by NSF grant #DMS 85-13467
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 174 HANS WENZL

 Df(n) is semisimple for all f e N if n is not an integer. We will prove their

 conjecture in this paper, thereby also giving a simple inductive procedure to

 determine the decomposition of Df(n) into full matrix rings. Moreover, if n is an
 integer, we completely determine the structure of the semisimple quotient of
 Df(n) in which Brauer and Weyl were interested.

 The main tools for proving these results come from the study of subfactors

 of type II1 von Neumann factors and its recent applications in knot theory (see
 [J1,2], [Wn] and [BW]). Similar methods were already used to determine the
 structure of an algebra derived from recently discovered link invariants (see
 [BW]). These algebras contain as limiting cases Brauer's algebras Df(n). The
 connection with link invariants, however, will not be explored in this paper.

 Therefore we will proceed directly from Brauer's original definitions.

 Let us briefly explain the main technical devices which we shall employ. We

 single out a special element of Df+?(n), denoted by ef (which comes from the
 contraction on the f-th and (f + 1)-th factor of Vf+ 1), to define a map (which is

 usually called a conditional expectation) from Df(n) onto Df -(n). Via this
 conditional expectation, we obtain a trace rTn with the following remarkable

 property: If its restriction to Df(n) is nondegenerate, then Df+? (n) is semisim-
 ple. In this case the structure of the ideal generated by ef can be determined by

 a simple inductive procedure from the structure of Df- (n) and Df(n). Such
 constructions were first used in V. Jones' paper [J1] on subfactors for finite von

 Neumann algebras and were extended in [Wn], [BW] and [GHJ].
 Using the representation theory of the odd dimensional orthogonal groups,

 we provide an easy criterion to determine whether rTn is nondegenerate or not.
 We only have to evaluate special polynomials derived from Weyl's dimension
 formulas at x = n (see [EK]). The conjecture of Hanlon and Wales follows then
 from the fact that all these polynomials have integer roots.

 After factoring over the annihilator of Tn, our methods can also be extended
 to the case when n is an integer. Using essentially the same inductive procedure
 as in the semisimple case, we determine the structure of a particularly interesting
 quotient of Df(n). If n is a positive or an even negative integer, it coincides
 with Bf(O(n)) in the first case and with Bf(Sp(- n)) in the second case. Similar
 characterizations can also be found for the other cases.

 I would like to thank Vaughan Jones for bringing the preprints of Hanlon
 and Wales to my attention.

 1. Adjoining idempotents to semisimple algebras

 We consider extensions for a pair of (finite dimensional) semisimple algebras
 A c B, obtained by adjoining an idempotent e which is closely related to a
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 BRAUER S CENTRALIZER ALGEBRAS 175

 conditional expectation from B onto A. For convenience the term semisimple
 will be used in this paper as a synonym for a direct sum of full matrix algebras.
 The letter k will always denote a field of characteristic 0 and k(x) will denote
 the field of rational functions over k.

 Let MA(k) (or just Mn) denote the algebra of all n X n matrices over k. So
 if A and B are semisimple algebras (in our restricted sense), we can write them

 as A = (DAi and B = B. with Ai- Mai(k) and B1 _ Mbj(k) for appropriate
 natural numbers ai and b . If A is a subalgebra of B, any simple B1 module is
 also an A module. Let gij be the number of simple Ai modules in its
 decomposition into simple A modules. The matrix G = (gij) is called the
 inclusion matrix for A C B.

 The inclusion of A in B is conveniently described by a so-called Bratteli

 diagram. This is a graph with vertices arranged in 2 lines. In one line, the

 vertices are in one-to-one correspondence with the minimal direct summands Ai

 of A, in the other one with the summands Bi of B. Then a vertex corresponding
 to Ai is joined with a vertex corresponding to Bj by gij edges. If A and B have
 the same identity, there is an easy way of computing the square root b of the

 dimension of B1. We just add up all the square roots of the dimensions of the
 A 's to which B1 is joined by edges (with multiplicities).

 We can also interpret the numbers gij in the following way: Let pi be a
 minimal idempotent of Ai and let pi = Eqm, where the qm's are mutually
 orthogonal minimal idempotents of B. This decomposition is not unique in

 general. But for any such decomposition there will be exactly gij idempotents in
 B1. As an easy consequence we obtain that

 (1) piBpi ? Mgij

 We will describe, as an example, the inclusion of kSf- 1 in kSf, where kSf- 1
 and kSf are the group algebras of the corresponding symmetric groups. Let, for

 f ? 0, Af be the set of all Young diagrams with f nodes. We will write a specific
 Young diagram X as an m-tuple [X,1 . .., Xm] where Xi is the number of nodes in
 the i-th row. The empty Young diagram in AO is denoted by [0]. It is well-known
 that the simple components kSf A of Sf are labeled by Young diagrams X with f

 nodes. So the Bratteli diagram for kSf- 1 C kSf is obtained in the following way:
 We draw for each ,i E Af_1 and each X E Af a vertex and connect two

 vertices by an edge if and only if the corresponding [t is obtained from the
 corresponding X by taking away one node from X. The inclusion diagram for
 kS2 c kS3 is shown in the upper half of Figure 1 (with [1m] = [1,... , 1]
 (m times)).
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 176 HANS WENZL

 21] [2]

 [1 2X1 [3

 FicuRE 1

 An important role will be played by traces, i.e. functionals tr: B -* k such
 that tr(ab) = tr(ba) for all a, b E B. As there is up to scalar multiples only one

 trace on Mj(k), any trace tr on B = ED Bi is completely determined by a vector
 (y, where tj = tr( pj) and pj is a minimal idempotent of Bj. A trace tr on B is
 called nondegenerate if for any b E B there is a b' E B such that tr( bb') # 0. It

 is easy to check that tr is nondegenerate if and only if tj # 0 for each j.
 Let us recall that if tr is a nondegenerate trace on B, the map

 b E B -b tr(b * ) E B* is an isomorphism between B and its dual B* (where as
 usual tr(b * ) denotes the map x '-> tr(bx)). Let tr be nondegenerate on both A
 and B. Using the isomorphism above for A and A*, we obtain for every b E B a

 necessarily unique eA(b) E A such that tr(b * ).A = tr(EA(b) * ) A. The linear
 map EA: B -> A, b '-4 EA(b) is called the trace-preserving conditional expecta-
 tion from B onto A, where the element EA(b) E A is uniquely determined by

 the equation

 (2) tr(EA(b)a) = tr(ba) for al a E A.

 We obtain from this equation and the faithfulness of tr the following properties

 of EA:

 (a) EA(alba2) = alA(b)a2 for all al, a2 E A and b e B and in particular
 EA(a) = a for all a E A.

 (b) EA is nondegenerate; i.e. for all 0 # b E B there are b1, b2 E B such
 that EA(blb) # 0 and EA(bb2) = O0

 We will moreover assume that B is contained in an algebra C and that there

 is an element e E C such that

 (a) e2 = e,

 (3) (b) ebe = eEA(b) = EA(b) for all b E B,

 (c) The map a E A - ae is an injective homomorphism with le = e.
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 BRAUER S CENTRALIZER ALGEBRAS 177

 An important example for such a situation can be obtained in the following
 way (see [Ji], ?3.1): Let B be represented via left regular representation on
 itself. For convenience, the isomorphic image of B in this representation will also

 be denoted by B. If B is regarded as representation space, it will be denoted by

 B, and its elements by b, with b E B. We take as C the set L(B4) of all linear
 maps on BV. As in [JI] we define an idempotent eA on Bt by eAbt = EA(b)h. It
 follows from this definition that

 (eAbeA) b = (eAb) EA(b') (EA(b)eA)b' = (eAEA(b)) b' for all b' E B.

 Using again (2) (a) we show that eA is an idempotent and that (aeA)bt = (eAa)bt
 for all a e A and b e B. Finally, the equation (aeA)lt = a shows that the map
 a e A - aeA is injective.

 LEMMA (1.1). (a) Any element x E (B, e) can be written as a linear
 combination of elements of B and elements of the form bleb2 with bl, b2 E B.
 In particular, any element of the ideal generated by e can be written as a linear

 combination of elements of the form bjeb2.
 (b) EA can be extended to (B, e) such that exe = EA(x)e for every x E

 (B, e). This extension is unique in the following sense: If e' is another
 idempotent in some extension C' of B with properties (3)(a)-(c) and if x' is the
 element in (B, e') obtained by replacing every occurrence of e in x by e', then
 EA(X) = -A(X ).

 (c) If x E (B, e), there exist unique elements b and b' in B such that
 xe = be and ex = eb'.

 (d) Let C = L(B~) and let x E (B, eA). Then (eAx)bt = (EA(xb)) and
 x = 0 if and only if EA(bjxb2) = 0 for all bl, b2 E B.

 Proof (a) This is an immediate consequence of (3)(a).

 (b) By (a) it is enough to show the statement for x = b1eb2 with bl, b2 E B.
 But then exe = ebleb2e = EA(bl)EA(b2)e. Hence EA(x) is uniquely determined by
 (3)(c). By the same computations, we obtain EA(ble'b2) = EA(bl)EA(b2) for any
 e' with (3)(a)-(c).

 (c) Again we can assume that x E B or x = b1eb2 with bl, b2 E B. In the
 second case we have xe = blEA(b2)e. If b e B such that be = xe, we have for
 all elements c e B, 0 = ec(b - b)e = EA(c(b - b))e. Hence b = b as EA is
 nondegenerate.

 (d) The proof of the first statement is an easy computation. If x # 0, there
 exists b2 E B such that xb24 = b' # 0. As EA is nondegenerate, there is b1 E B
 such that EA(blb') = 0. Hence EA(blxb2) = eAbl(xb2)~ = EA(blbh ) 0. The
 other direction is trivial.

 Recall that we can identify B with a direct sum of full matrix algebras.
 Using the transposition of matrices, we obtain an involution *: B -* B, b b*
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 178 HANS WENZL

 such that (ab)* = b*a* for all a, b e B (where * depends on the matrix

 representation of B). The involution * defines a ("right regular") representation

 p of B on BX by p(b)bf = (b'b*)(. If J: BX -* BX is defined by Jbb = b*, it is
 easy to check that Jp(b)J is equal to left multiplication by b. So p is equivalent
 to the left regular representation of B.

 We will moreover assume in the following that * also leaves A invariant, i.e.

 a* E A for all a E A. This is possible as A is isomorphic to a direct sum of full

 matrix algebras. Using J as above, one shows that PIA is equivalent to the
 representation of A on BX given by left multiplication.

 We can now completely determine the structure of the extension (B, eA) of
 B. If A and B are C* algebras, this result follows from [JI, ?3.2]. A comprehen-

 sive treatment of this and related questions can be found in [GHJ].

 PROPOSITION (1.2). (a) Let A, B, tr and eA be as above. Then the algebra

 (B, eA) is isomorphic to the centralizer of A on BV. In particular, it is
 semisimple.

 (b) There is a one-to-one correspondence between the simple components of

 A and (B, eA) such that if p E Ai is a minimal idempotent, peA is a minimal
 idempotent of (B, eA)i. Under this correspondence, the inclusion matrix for
 B C (B, eA) is the transposed Gt of the inclusion matrix for A C B.

 (c) (B, eA) = BeAB.

 Proof. (a) By the remarks above it is enough to show that (B, eA) is
 isomorphic to the centralizer p(A)' of p(A). By (2)(a), we have

 eAp(a)bt = (EA(b)a*)h = p(a)eAbt for all a E A and b E B.

 So (B, eA) and its double centralizer (B, eA)" are contained in p(A)'. On the
 other hand, it is well-known that if a linear operator x on BX commutes with B,
 it is right multiplication by the element b c B, uniquely determined by xI = be.

 Note that (eAb)lt = EA(b) is equal to (beA)l = bt only if eA(b) = b, i.e. if
 b c A. So x is in the centralizer of (B, eA) only if x = p(b*) c p(A). Taking
 centralizers, we obtain from this (B, eA)" D p(A)'. By Jacobson's density theo-
 rem, (a) follows as soon as we have shown that (B, eA) is semisimple.

 Let x E rad((B, eA)) be in the radical of (B, eA). If x # 0, there are
 b1, b2 E B such that EA(blxb2) = 0 by Lemma (1.1)(d). But then 0 # eAblxb2eA
 = EA(blxb2)eA E rad((B, eA)) and therefore also cA(blxb2)eA E rad(AeA). As
 AeA -A, it follows that 0 # EA(blxb2) E rad(A), a contradiction to A being
 semisimple.

 (b) If p is a minimal idempotent of A, it follows from (3)(b) that peAxpeA is

 a multiple of peA for any x E (B, eA). Hence peA is a minimal idempotent in
 (B, eA). Obviously the centers of p(A) and (B, eA) = p(A)' are the same. So,
 by the remarks above, z '-4 jzJ provides a one-to-one correspondence between
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 BRAUER'S CENTRALIZER ALGEBRAS 179

 the centers of A, represented on B4 by left multiplication, and of (B, eA).
 Moreover, if z is the minimal central idempotent of A with zp # 0, also

 (eApJzJ)Z4 = EA(p)4 = Pt *0. The statement about the inclusion matrix for
 B C (B, eA)" follows from [Bou, ?3, ex. 17] (see also [J1, (3.2.3)].

 For (c), we note that zeA 0 0 for any minimal central idempotent of (B, eA)
 by (b). Hence the two-sided ideal generated by eA has to be the whole algebra.

 The rest follows from Lemma (1.1)(a).

 The structure of (B, eA) can now be easily determined by just reflecting the
 Bratteli diagram for A C B about the line of B and then adding up the

 dimensions. Figure 1 shows the structure of (B, eA) for our example kS2 C kS3.
 The next theorem shows that the special case treated in Proposition (1.2) is

 the "smallest" algebra generated by B and a projection e with properties (a)-(c)

 (see also [Wn, Prop. (1.2)] for A and B finite dimensional C* algebras). A similar
 proof appears in [BW, Th. 3.5].

 THEOREM (1.3). Let A c B be (finite dimensional) semisimple algebras

 and let tr be a nondegenerate trace on B such that also its restriction to A is

 nondegenerate. Let eA be the trace-preserving conditional expectation onto A and

 let e be as in (3). Then (B, e) is a direct sum of full matrix algebras, which
 decomposes as

 (B, e) _ (B, eA) ED B,

 where (B, eA) is as in Proposition (1.2) and B is isomorphic to a subalgebra of
 B. In particular, the ideal generated by e is isomorphic to the semisimple algebra

 (B, eA).

 Proof As already mentioned we will not distinguish in notation between

 B c C and the image of B acting on Bt by left regular representation. Let
 (F: B U {e} -- L(Bt) be defined by (F(b) = b for b c B and (D(e) = eA.
 Obviously, (D extends to a homomorphism from (B, e) onto (B, eA), provided it
 is well-defined. Let x e (B, e) with x = 0. Then eblxb2e = EAfblxb2)e = 0 for
 b1, b2 e B. By Lemma (1.1)(b), we also have EA(bl(D(x)b2) = Ofor all b1,b2 e
 B; hence I)(Dx) = 0 by Lemma (1.1)(d).

 On the other hand, if x E ker (F and b2 E B, there exists a unique b e B
 such that (xb2)e = be by Lemma (1.1)(c). By Lemma (1.1)(b) and (d), we have

 for any b1 c B that EA(blxb2) = eA(bl1((x)b2) = 0. As cA is nondegenerate,
 b = 0 and xb2e = 0. Similarly, we also show that eb1x = 0 for any b1 E B.

 So if x E ker (F n BeB, x is annihilated by both ker (F and BeB. Note that

 by (3)(b), BeB = (e), the ideal generated by e and that (D(BeB) = (B, eA) by
 Lemma (1.1)(a) and Proposition (1.2). Hence BeB and ker (F generate ( B, e)
 and therefore x = 0. In particular, BeB is isomorphic to (B, eA). Obviously, the
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 180 HANS WENZL

 quotient (B, e)/BeB is generated by the image of B; hence it is also semisimple.
 From this follows the general statement.

 2. Brauer's algebras

 We will first define Brauer's algebras Df over k(x). For f = 0, Do = k(x).
 For f > 0, a linear basis of the k(x) algebra Df is given by graphs with f edges
 and 2f vertices, arranged in 2 lines of f vertices each. In these graphs each edge

 belongs to exactly 2 vertices and each vertex belongs to exactly one edge. So an

 example for a graph in D4 would be

 It is easy to see that we have 2f - 1 possibilities to join the first vertex with

 another one, then 2f - 3 possibilities for the next one and so on. So the

 dimension of Df is 1 . 3 . 5 ... (2f - 1). To define the multiplication in Df, it is
 enough to define the product ab for 2 graphs a and b. This is done similarly as

 with braids by the following rule.

 (a) Draw b below a.

 (b) Connect the i-th upper vertex of b with the lower i-th vertex of a.
 (c) Let d be the number of cycles in the new graph obtained in (b) and let

 c be this graph without the cycles. Then ab = xdc.

 We will later need the following examples: Let ei and gi denote the graphs

 ei ... ...

 and i i+1

 gi= ~~~~~~~I I I
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 BRAUER S CENTRALIZER ALGEBRAS 181

 Then it is easy to check by pictures (see Figure 2) that

 (4) e2= xe

 and

 (5) eieilei = ei and eileiei_1 =ei_1

 e2= xei

 , 0

 1 0~~~~~~~~

 eieile A ei

 FicuRE 2

 We will call an edge horizontal if it joins 2 vertices in the same row. Note that
 there are as many horizontal edges in the upper row as there are in the lower
 one. Whenever a graph p has no horizontal edges, it can be regarded as a
 permutation 7T connecting the i-th lower vertex to the 7T(i)-th upper vertex. It is
 easy to check that the multiplication of graphs is compatible with the composi-
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 182 HANS WENZL

 tion of permutations under this identification. We will therefore refer to graphs
 without horizontal lines as permutation graphs or just as permutations. So,
 obviously, Df contains k(x)Sf as a subalgebra. We also remark that for any
 graph b e Df and a permutation graph p the graph bp is obtained by
 permuting the vertices of the lower row of b by 7 -' and pb is the graph
 obtained by permuting the vertices of the upper row of b by 7T.

 We finally remark that Df can be identified with the subalgebra of Df?1
 spanned linearly by all graphs with a vertical edge on their right hand sides.

 The k algebra Df(n) has a linear basis labeled by the same graphs. The
 multiplication is defined as in Df except that every occurrence of x is replaced
 by n. The relationship between Df and Df(n) will be studied in Lemma (2.3).
 As we will have to divide by our parameter n later, we will always assume n # 0

 even though Df(O) is well-defined.

 Most of the following results can also be obtained from [BW], Lemma (3.1)
 and the proof of Theorem (3.7) in connection with Section 5. We prove them
 here directly without using generators and relations or link invariants.

 PROPOSITION (2.1). (a) Any graph d E Df is either already in Df1 or it
 can be written in the form aXb with a, b E Df-1 and X E {gfl, ef-l}. In
 particular, { e1, g,,..., efl1, gf_1} generate Df as an algebra.

 (b) The ideal generated by ef- 1 coincides with the linear span If of graphs
 containing horizontal edges. Every graph b E If can be written as b = blef 1b2
 with bl, b2 EDf-1. So If= ef- 1) is contained in the algebra generated by
 Df- 1 and ef 1.

 (c) Df/If_ k(x)Sf.
 (d) The same statements hold for Df(n) and the ideal If(n) C Df(n)

 generated by graphs containing horizontal edges (with x replaced by n).

 Proof (a) Let b be a graph in Df which is not in Df- . We have to
 consider 3 cases, depending on whether the last 2 vertices belong to two, one or
 no horizontal edge. We will consider the case with one horizontal edge in detail.
 It is easy to see that for appropriate permutations Pi and P2 in Df- 1 the last six

 vertices of p1bp2 are connected by edges in one of the following ways.

 0 0 O o O /D

 or
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 BRAUER'S CENTRALIZER ALGEBRAS 183

 Let us assume the first case. Then p1bP2 = b'ef-lef2 with b' E Df-3. But
 then

 b = (p-lb')efl(ef_2P )

 has the desired form.

 In the other 2 cases, it is easy to check that there are permutations

 P1' P2 E Df_1 and an element b' E Df-2 such that p1bP2 = b'gf-1 if the edges
 belonging to the last two vertices are not horizontal and pjbp2 = b'ef1j if the
 last two vertices belong to two horizontal edges. Again, we only need to solve for

 b to show the claim.

 (b) It is easy to show (see also the remark after (5)) that the product of two

 graphs contains at least as many horizontal lines as either of the graphs. So If is
 an ideal. We prove the second statement of (b) by induction on f. Let b E Df

 be a graph containing at least one horizontal line. If b E Df1, then, by the
 induction assumption and (5),

 b = blef2b2 = (blef-JefJef-A)

 with b1, b2 E Df-2- Otherwise, we can assume by (a) that b = bjXb2 with
 b1, b2 E Df_1 and X E {gf_1, ef 1}. If X = gfl1, either b1 or b2 has to be in

 _ . Let us assume b1 E If_ 1. Then b1 = b 1ef,2b2 with b1 1, b12 e Df-2
 Hence b = b1,1ef_2gf_1b1,2b2 as gf_1 commutes with every element of Df-2.
 But then it can be checked easily by drawing the graphs that

 ef_2gf-1 = ef-2ef19gf-2.

 The case b2 E If is similar.

 (c) Just note that Df decomposes as a vector space into the direct sum of

 the span of the permutation graphs and If.
 (d) We can use the same proofs for Df(n) as in (a)-(c).

 In the next proposition we will construct conditional expectations and
 traces, which will relate Brauer's algebras to the concepts of Section 1.

 PROPOSITION (2.2). Let the notation be as in Proposition (2.1).

 (a) For each b E Df there exists a unique f- 1(b) E Df-1 such that
 efbef = xef-l(b)ef and Ef-1(b) = b for b E Df 1.

 (b) There exists a linear functional T on Df defined inductively by Tr(1) = 1
 and (b) = T(Ef-(b)) for b E Df.

 (c) T is uniquely determined, inductively, by T(bXb2) = (1/x)T(blb2)
 fior X E {ef-l, gf1} and bl, b2 E Df_1.

 (d) T(b'eff1(b)) = T(b'b) for b E Df and b' E Df1.
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 (e) There exist a map from Df(n) onto Df 1(n), also denoted by - and
 a trace Tn on Df(n) such that T (b'1fi(b)) = Tn(b'b) for b E Df(n) and
 b' e Df-1(n).

 (f) Let b E Df. If b(n) is defined, Tn(b(n)) = (b)(n).

 Proof (a) It can be checked easily by pictures that for any graph b E Df,
 both the f-th and (f + 1)-th upper and lower vertices of ef bef are connected by
 horizontal edges. If we interpret the rest of this graph as an element b' E Df- 1,

 we obtain immediately efbef = b'ef. Then just define ef 1(b) = (1/x)b'. Obvi-
 ously this map can be extended to Df by linearity. If b E Df-1, then b
 commutes with ef. Hence efbef = befef = xbef, which shows the second state-
 ment.

 (b) The functional X is well-defined because ef 1(b) = b for all b E Df 1*
 (c) It follows from (5) and a similar picture for gf- that efXef = ef for

 X E {gf-1, ef-1}. Hence Ef-l(blXb2) = (1/x)blb2 as ef commutes with all
 elements of Df-1*

 (d) As ef commutes with b', Ef-l(b'b) = b'ef-l(b). Then the claim follows
 from (b).

 (e) This is clear.

 (f) This follows by induction on f.

 Property (c) is called the Markov property, which plays a central role for
 link invariants (see [J2] and (for the Kauffman invariant) [BW]). Note that by the
 just proven proposition we can use Theorem (1.3) for e = (l/x)ef, A = Df-1
 and B = Df, provided that T is nondegenerate on both Df-1 and Df. In this

 case the ideal If+- generated by ef is isomorphic to ( Df, eD_ _). A similar
 statement holds for the Df(n)'s. The question about when these traces are
 nondegenerate will be settled in the next section.

 In the remainder of this section we will prove a lemma which will relate
 Df(n) to the more easily manageable Df. Slightly more generally, let A be a
 finite dimensional, not necessarily semisimple k(x) algebra given by the k(x)
 basis { b1, b2, ..., bm }. Assume that the multiplication of basis elements is given

 by formulas bsbr = Ei7as, ribi with as, r, i e k(x) for i, r, s = 1, 2,. .., m. If for
 a given n E k all these rational functions are well-defined, we can define the k
 algebra A(n) by "evaluating A at x = n". This means that we have a linear
 basis {bl(n),..., bm(n)} of A(n) such that bs(n)br(n) = i lasr i(n)bi(n).

 Similarly, we define for a E A with a = Xm laibi the element a(n) =
 Ym2a1i(n)bi(n) E A(n), provided ai(n) is well-defined for i = 1,2,..., m. It is
 easy to see that the map a E A '-4 a(n) E A(n) is a partially defined, surjective
 ring homomorphism.
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 A set S = { pi, i = 1, 2, . . ., r } of idempotents is called a partition of unity

 if piPj = pjPi = 0 for i # j and if Y2>lpi = 1. We will need the following
 presumably well-known results.

 LEMMA (2.3). Let {pi, i = 1,2,.. ., r} and { qj, j = 1,2,.. ., s} be parti-
 tions of unity in A such that pi(n) and qj(n) are defined for all possible indices
 and let q be an idempotent in A such that q( n) is defined. Then

 (a) dimkpi(n)A(n)qj(n) = dimk(x)piAqj for i = 1, 2, ..., r and j =
 1,2,..., s.

 (b) If A -Md(k(x)) and if A(n) is semisimple, then A(n) -Md(k).
 (c) Let both qAq and q(n)A(n)q(n) be semisimple. Then qAq _ k(x) ?

 q(n)A(n)q(n).

 Proof (a) Let al(n),...,a,(n) be a basis of pi(n)A(n)qj(n). Let, for
 =1, 2,.. ., t, a1 be the corresponding linear combination of b , . . ., bin. We

 define a' = pialqj E piAqj. Obviously aj(n) = pi(n)alqj(n) = al(n) and the
 a's are linearly independent because they are already for x = n. Hence

 d&mkpi(n)A(n)qj(n) ? dimk(x)piAqj. But A = E. .jpiAqj as a vector space.
 Hence the dimensions have to be equal as dimk(x)A = dimkA(n).

 (b) This is obviously true for d = 1 by (a). Let p E A be such that Ap is a

 minimal left ideal of A. By the semisimplicity of A( n) we can find a E A such

 that ap(n) is well-defined and (ap)2(n) # 0. As Ap is minimal, (ap)2 = aap for
 some a E k(x) with a(n) # 0. Hence p1 = (1/a)ap is an idempotent such that
 p1(n) is also a well-defined idempotent in A( n). By the induction assumption for

 d - 1, we have a partition of unity { P2, p3,..., Pd} in (1 - p1)A(I - Pl)
 which is also well-defined for x = n. It follows from (a) that

 dimkpi(n)A(n)pj(n) = dimk(x)piApj = 1 for i, j = 1, 2,.. , d. We thus obtain
 sufficiently many matrix units in A( n).

 (c) Let z1,..., z, be the minimal central idempotents of A. If zi(n) is
 defined, it obviously must be a central idempotent of q(n)A(n)q(n). If it were
 not defined, we could find a d E N such that if z = (x - n)dz2, Z(n) is defined
 and not equal to 0. But then (z'(n))2 = [(x - n)dzf](n) = 0. This would mean
 that zf(n) is a nonzero central nilpotent in the semisimple algebra q(n)A(n)q(n)

 which is not possible. The zi(n)'s are nonzero by (a) and Azi k(x) ?
 A(n)zi(n) by (b).

 3. Representations of Df( n)

 As pointed out in the introduction, the definition of the algebras Df(n) was

 motivated by representations of Lie groups. We will go back to this definition
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 and define representations of Df(n) onto Bf(O(n)) for n odd. Using results of

 the representation theory of these groups (mainly the formulas for the dimen-

 sions of their irreducible representations) we will obtain information about the

 traces Tn not only for these values of n but also about X and Tn for arbitrary

 n E k. A comprehensive study of traces on centralizer algebras for infinite tensor

 products can be found in [Wa].

 Let n be a positive integer and let eij be matrix units for i, j = 1, 2,..., n.
 Then it is easy to check that for

 G = Eeij X e

 and

 E = Eeij ? eij

 G and E are in B2(0(n)) for n ? 3. Note also that G is the "flip"; i.e.

 G(t ? r) = rg ? , and that E corresponds to Weyl's trace operation (or con-

 traction); i.e. it maps ( X q onto a multiple of the vector i= 2v2i ? vi, where
 V1, V2,.. ., IVn is an orthonormal basis of V (see [Wy], V.6).

 By [Br, (19) and ?5], there is an isomorphism between D2(n) and B2(0(n))

 for n ? 3 mapping G to g, and E to el. More generally, let us define elements
 Gi and Ei of (M)f = Mn ? * ?Mn (f times) by

 Gi =1 9 *-- @1 ( G (9 1 (9.. *-- 1

 and

 Ei 1 9 *-- XlE ( 19.. *-- 1

 where we plug in G and E for the i-th and (i + 1)-th factor. Then it follows

 again by [Br, (19) and ?5], that 1D: ei '-4 Ei and gi '-4 Gi defines a homomor-
 phism from Df(n) onto Bf(O(n)). If n is large enough (say n > 2f), this
 representation is faithful and semisimple (see [Wy], V.5). In particular, the

 quotient Df(n)/If(n) _ kSf splits as a direct summand. Note that if z(n) is the

 central idempotent corresponding to If( n) and if pi is a Young idempotent for

 kSf C Df(n), then qx(n) = (1 - z(n))px is a minimal idempotent of
 Df(n)/If(n). Hence, as 1D is injective,

 g E= O(n) ?! ((qjn#)7rT'(g)(D(qjn))
 is an irreducible representation of O(n). By [EK], there exists a polynomial Pi,

 derived from Weyl's dimension formulas such that the dimension dimes n of this
 representation is given by

 dimXn = PA(n)
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 The polynomial Pi can be written in the following form: Let Ad be the number
 of nodes in the j-th column and let

 A

 c(X) = 7 (xi + xi + 1 - i -

 with the product taken over all pairs (i, j) specifying row and column of a node
 of X. Then Pi can be written as

 A

 (6) PA(X) = 1/C(X) al (X + Xi + Xi - i - j)
 i~j

 x H(X - i- + i + j - 2)

 We see immediately that

 (a) All roots of PA are integers.

 (b) The smallest and the second smallest roots are 2 - 2X1 and

 3 - Xi - X2.
 (c) The largest root is Xi + X2 - 1.

 Let tr denote the usual normalized trace on (M.)f _ Mnf. If tr' is the
 normalized trace on Mw we have

 tr(a1 ? ... Oaf) = Htr'(ai).

 It follows from the considerations above that

 (7) tr(F(qx(n))) = Px(n)/nf.

 As any minimal idempotent p of Bf(G) corresponds to an irreducible represen-
 tation of G, it follows tr(p) $ 0 in general. Hence tr is nondegenerate as
 Bf(O(n)) is semisimple.

 We note here that the corresponding matrices Gi and Ei for an even
 dimensional vector space also generate Bf(O(n)) but not Bf(SO(n)).

 LEMMA (3.1). Let Gi, Ei and tr be defined for n = 2m + 1 as above and
 let X and Tn be as in Section 2.

 (a) tr(Ei) = tr(Gi) = I/n.
 (b) tr(aEf- lb) = tr(aGf- lb) = (1/n)tr(ab) for a, b E Bf- l(O(n)).

 (c) X and Tn are traces on Df and Df(n) for arbitrary n E k. For n a
 positive odd integer we have Tn = tr o (.

 (d) Let Jf(n) = (a E Df(n), Tn(ab) = 0 for all b e Df(n)} betheannihi-
 lator of T, in Df(n). Then Jf(n) is a two-sided ideal and Jf(n) C Jf?1(n).
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 Proof (a) is a straightforward computation.

 (b) (M.)f-' C 1 is the span of elements b E (M,)f of the form b =
 b1 ? ei, ? 1 with b1 E (M )f-2 and i, j = 1,2, . . ., n. For these elements it is
 easily verified by a direct matrix computation that tr(Ef lb) = tr(Gf-lb) =
 (1/n)tr(b). The general case follows from the trace property.

 (c) It follows from (a), (b) and Proposition (2.2)(c) that Tn = tr o (. Hence it
 is a trace on Df(n) for n = 2m + 1, m = 1,2,.... So for any two graphs
 b1, b2 EDf we have

 (bb2)(n) = (b(n)b2(n)) = 'r(b2(n)b1(n)) = (b2b )(n)

 for n = 3,5,7,...

 Hence T(bib2) and (b2b1) have to be the same rational functions. The case for
 arbitrary n E k follows from this.

 (d) As Tn is a trace, Jf(n) is a two-sided ideal. Note that if a E Jf(n),
 Tn(abXb2) = (1/n)Tn(abjb2) = 0 for b1, b2 e Df(n) and X E { gf, ef ). Hence,
 by Propositions (2.1)(a) and (2.2)(c) Jf(n) C Jf+?(n).

 Let Jf be the set of all Young diagrams with k < f nodes such that k 2 0
 and f - k is even.

 THEOREM (3.2). (a) The k(x) algebra Df is semisimple. It decomposes into

 a direct sum of full matrix algebras Dfx , where X e Ff. A simple Df, x module
 Vf A decomposes as a Df- 1 module into a direct sum

 Vf A = ( Vf- i,

 where Vf 1, , is a simple Df- 1 , module and [i ranges over all Young diagrams
 obtained from X by removing or (if X contains fewer than f nodes) adding one

 node. The weight vector of T is given by (Px(x)/xf)x X rf.
 (b) Let Df 1(n) and Df(n) be semisimple. Then the following statements

 are equivalent

 (i) Tn is nondegenerate on Df(n).
 (ii) Df+ 1(n) is semisimple and Df+ 1(n) ? k(x) Df+1.

 In this case, the weight vector of Tn is given by (Px(n)/n f) X rf

 Proof. We shall prove (a) and (b), (i) => (ii) by induction on f. The
 statements are trivially true for f = 0 and f = 1. Assume that Df1 and Df are

 semisimple and T is a nondegenerate trace on them. It follows from Propositions

 (2.1)(b) and (2.2) that the conditions of Theorem (1.3) are satisfied for A = Df- ,
 B = Df, e = (l/x)ef and tr= T. So the ideal (ef) c Df+1 is isomorphic to
 Jones' extension for Df-1 c Df by that theorem and Proposition (2.1)(b). By
 Proposition (1.2)(b) and the induction assumption, the simple components of
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 (ef) are labeled by the elements of Ff-1. In particular, (ef) is semisimple. By
 Proposition (2.1)(b) and (c) the quotient Df+l/(ef) k(x)Sf~l is also semisim-
 ple. Hence Df+1 is semisimple.

 Let Vf+ 1 A be a simple ( ef ) module. As ( ef (Df, eDf), Vf+ 1 A can be
 considered as a direct sum of exactly those Vf ,E which contain a simple Df- 1 A
 module by Proposition (1.2)(b). So the claim follows by the induction assumption

 from the inclusion Df 1 C Df. If Vf+1 x is annihilated by ef, it can be regarded
 as an Sf+1 module, for which the decomposition into simple Sf modules is
 well-known (see ?1).

 Let PX E Df 1 A be a minimal idempotent. By Proposition (1.2)(b) and (4),
 (l/x)efpx is a minimal idempotent of Df+l x and

 T((IIX)efpx) = (1/X2)T(PX) = PX(X)lXf 1

 by the induction assumption.

 Let z be the central idempotent for (ef) and let qX = (1 - z)px with Px a
 Young idempotent for X E Af+ 1. It follows from the remark before Lemma (3.1)
 that qx(n) is defined for odd n with n > 2(f + 1). Using Lemma (3.1)(c) and
 (7), we obtain

 T(q.)(n) = Tn(qX(n)) = tro ((qA(n)) = dimX, n/nf+l = Px(n)/nf+'.

 Hence, as the rational functions T(qx)(x) and Px(x)/xf+l coincide at infinitely
 many points, they have to be identical. In particular, they are nonzero. This
 shows the statement about the weight vector of T.

 Let us assume (b), (i). By Lemma (3.1)(d), we have Jf- l(n) C Jf(n), so that
 T-n is also nondegenerate on Df-i(n). It follows from the same arguments as in

 the proof for (a) that Df+?(n) is semisimple and that the weight vector of T-n on

 Df+i(n) is equal to (Px(n)/nf+l )X)rf. The proof of the converse implication
 will be given after Corollary (3.5).

 The following corollary proves the conjecture of Hanlon and Wales which
 was mentioned above.

 COROLLARY (3.3). If n is not an integer, Df(n) is semisimple and the trace
 Trn is nondegenerate on Df(n) for all f e N.

 Proof The statement is obviously true for DO(n) and D1(n). Let us assume
 the claim for Df 1(n) and Df(n). Then also Df+ 1(n) is semisimple by the just
 shown part of Theorem (3.3)(b). By (6)(a) all the entries of the vector

 (Px(n)/nf+?l)xr 1 are nonzero. Hence f-,n is nondegenerate on Df+ i(n).

 Theorem (3.2) gives an easy inductive procedure to compute the dimensions
 of the simple Df modules (similar procedures can also be found in [Be], [K] or [S]
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 for special values of x). For small f, this can be conveniently done using Bratteli

 diagrams (see ?1). One only has to reflect the inclusion pattern for Df-1 c Df
 about the line of Df to obtain the structure of (ef). Examples are given at the

 end of [BW].
 The techniques of the proof of Theorem (3.2) can also be used if Tn is

 degenerate on Df(n) by factoring over its annihilator. So let Bf(n) =

 Df(n)/Jf(n) and let p(f) be the quotient map from Df(n) onto Bf(n). It follows
 from Lemma (3.1)(d) that p(f? )(Df(n)) is isomorphic to p(f)(Df(n)) = Bf(n),

 where we regard Df(n) as a subalgebra of Df, (n) as usual. We will therefore
 omit the index f of p(f).

 For n = 2m + 1 > 0, we can show easily that Bf(n) - Bf(O(n)). Indeed,

 the kernel of (F is contained in the kernel of p by Lemma (3.1)(d). On the other

 hand, tr is a nondegenerate trace on Bf(O(n)) by the remark before Lemma

 (3.1). Hence the other inclusion also holds.

 For even n > 0 the same proof can be applied to show that Bf(n) is

 isomorphic to Bf(O(n)).
 To determine the structure of the Bf(n)'s, we need to define a special class

 of Young diagrams. As usual, we say that a Young diagram [i is a subdiagram of
 the Young diagram X, denoted by [ < X, if [ can be obtained from X by taking
 away appropriate nodes.

 A Young diagram X is said to be n-permissible if P,(n) 0 0 for all
 subdiagrams [i < X. The n-permissible Young diagrams of Ff and Af are
 denoted by rfn) and A(7) respectively.

 THEOREM (3.4). (a) Let X e Af. If all subdiagrams of X are n-permissible,

 then there exists a minimal idempotent qA E Df x such that qx(n) is well-
 defined.

 (b) Bf(n) is the direct sum of full matrix algebras Bf, x where X ef Fn). A

 simple Bf, x(n) module Vf x decomposes as a Bf 1(n) module into a direct sum

 Vf, A D Vf- i,
 with ,u ranging over all n-permissible Young diagrams obtained from X by
 removing or (if X contains fewer than f nodes) by adding one node.

 Proof As usual, the proof goes by induction on f with f = 0 and f = 1

 being trivial. The trace Trn is nondegenerate on Bf-1(n) and Bf(n) by definition
 of these algebras. So we can show as in the proof of Theorem (3.2) that (p(ef))

 is semisimple and that Df+ 1(n) = Df+ j(n)/((ef) n Jf+? (n)) is isomorphic to
 the semisimple algebra (p(ef)) $ C with C kSf+?. Obviously Tn and p are
 also well-defined on this quotient of Df+1(n). To find the structure of Bf+?(n),
 we have to determine which simple components of Df+?(n) are annihilated
 by Tn.
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 We label the simple components of C by Young diagrams as usual. Let

 X E Afl be such that p(Cx) # 0, and let V be a simple CA module. If we
 regard V as a Bf(n) module, it decomposes into a direct sum of simple Bf A,(n)

 modules with X' < X by the branching rule for kSf C kSf, 1 (see also the proof of
 Theorem (3.2)). Hence all proper subdiagrams [i of X have to be n-permissible
 by the induction assumption.

 Let X' be an n-permissible subdiagram of X and let qX, be a minimal
 idempotent of Df x. By Theorem (3.2)(a) and (1) we have qx'Df?lqx'-k(x)',
 where s is the number of diagrams on f - 1 or f + 1 nodes which are contained

 in or contain X'.

 By the induction assumption for (a), we can choose qX, such that qx,(n) is
 defined. As all subdiagrams of X' are also n-permissible, we show as for Df+l
 that q-(,(n)Df+?(n)q-n,(n) is isomorphic to ks. By Lemma (2.3)(a) we also have
 qx (n)Df+ 1(n)q A(n) =k- . Hence there exists a minimal idempotent qX A Df+ 1 x
 such that qX(n) is well-defined by Lemma (2.3), which shows (a).

 Using the partially defined ring homomorphism from Df+1 onto Df+,(n),
 we find that q,(n) is annihilated by If+?(n) and by all central idempotents
 ze E kSf+1 c Df+1(n) for [ $ X. Hence qjx CC. As Twn factors over
 (ef) n Jf+ 1(n), we have by Proposition (2.2)(f),

 Tn(qA(n)) = Tn(qA(n)) = T(qx)(n) = Px(n)/nf+l.
 So qx(n) c Jf+1(n) if and only if PA(n) = 0. By the semisimplicity of Df+1(n)
 this is equivalent to p(Cx) = 0.

 By the induction assumption for Bf-1(n) and Proposition (2.1)(b), the

 simple components of (p(ef)) are labeled by the elements of fln)1.

 As for the Df's, the branching rule gives us a way to compute the

 dimensions of the simple Bf(n) modules. It only remains to determine the
 n-permissible Young diagrams. Note that part (a) of the following corollary
 restates Corollary (3.3). Part (c) relates the Bf(n)'s to the algebras in which

 Brauer and Weyl were primarily interested.

 COROLLARY (3.5). (a) If n E k is not an integer, all Young diagrams are

 n-permissible. In this case Df(n) _ Bf(n) and its decomposition into full matrix
 rings is the same as for Df.

 (b) If n is a nonzero integer, a Young diagram X is n-permissible if and
 only if:

 (i) Its first 2 columns contain at most n nodes for n positive.

 (ii) It contains at most m columns for n = - 2m a negative even integer.

 (iii) Its first 2 rows contain at most 2 - n nodes for n odd and negative.

 (c) If n is a positive integer, Bf(n) _ Bf(O(n)). If n is negative and odd,
 Bf(n) _ Bf(0(2 - n)). For n = - 2m < 0, Bf(n) is isomorphic to Bf(Sp(2m)).
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 Proof. Part (a) follows from (6)(a). Part (c) follows for positive n from the

 remarks before Theorem (3.4). Part (b) is an easy consequence of (6), (b) and (c).

 Let X be the Young diagram with X1 nodes in the first column, X2 nodes in

 the second, etc. Then it can be easily shown by induction using Theorem (3.4),

 that for odd negative n, Bf, A(n) _ Bf x(2 - n) for any n-permissible Young
 diagram X and therefore Bf(n) -Bf(2 - n).

 The proof of the remaining case of part (c) follows the lines of the one for

 the orthogonal groups.

 Let us label a basis of a 2m dimensional vector space in pairs by

 1, 1', 2, 2', ... m, m'. We obtain a corresponding labeling for the matrix units of

 M2m(k). Let

 E =Eeij 2> ei~j, + ei~j, 2) eij -eij, 2) ei~j -eij 0 eij,.

 The elements Ei and Gi are defined as at the beginning of this section. Then
 G1,... Gf 1, E1,. . . Ef-1 generate Bf(Sp(2m)) (see for instance [Br]). It can be
 checked by explicit matrix computations that - Gi and - Ei are compatible
 with the relations for G2 and E2 in [BW, ?5] with x =-2m. Hence g2 -G

 and e2 - E2 defines a representation of Df(- 2m), the image of which is
 Bf(Sp(2m)). The rest of the proof goes as in Lemma (3.1) and in the remark

 before Theorem (3.4).

 As an example, the Bratteli diagram of Bf(3) _ Bf(0(3)) is shown in Figure
 3 for f= 0,1,...,4.

 [0] 1

 [1 1 [22] 3 1

 [0] [1][2] 1] 3 [4] 1

 FicuRE 3
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 Conclusion of the proof of Theorem (3.2). Let us assume that

 DO(n),..., Df(n) are semisimple. By the induction assumption, Tn has to be
 nondegenerate on DO(n), . . ., Df- l(n). Assume Tn is degenerate on Df(n). Then
 Df- l(n) = Bf- l(n), while dimkBf(n) < dimkDf(n). So the semisimple quotient

 (ef) ED kSf~l of Df(n) (see the proof of Theorem (3.4)) cannot be a faithful
 representation of Df+ 1(n). On the other hand, it has as many simple components

 as Df, 1. So if Df1(l(n) were semisimple, it would have more simple components
 than Df, 1, a contradiction to Lemma (2.3)(c).
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