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Abstract

Groupoidification is a form of categorification in which vector spaces
are replaced by groupoids, and linear operators are replaced by spans
of groupoids. We introduce this idea with a detailed exposition of ‘de-
groupoidification’: a systematic process that turns groupoids and spans
into vector spaces and linear operators. Then we present two applications
of groupoidification. The first is to Feynman diagrams. The Hilbert space
for the quantum harmonic oscillator arises naturally from degroupoidify-
ing the groupoid of finite sets and bijections. This allows for a purely
combinatorial interpretation of creation and annihilation operators, their
commutation relations, field operators, their normal-ordered powers, and
finally Feynman diagrams. The second application is to Hecke algebras.
We explain how to groupoidify the Hecke algebra associated to a Dynkin
diagram whenever the deformation parameter q is a prime power. We
illustrate this with the simplest nontrivial example, coming from the A2

Dynkin diagram. In this example we show that the solution of the Yang–
Baxter equation built into the A2 Hecke algebra arises naturally from the
axioms of projective geometry applied to the projective plane over the
finite field Fq.

1 Introduction

‘Groupoidification’ is an attempt to expose the combinatorial underpinnings of
linear algebra — the hard bones of set theory underlying the flexibility of the
continuum. One of the main lessons of modern algebra is to avoid choosing
bases for vector spaces until you need them. As Hermann Weyl wrote, “The
introduction of a coordinate system to geometry is an act of violence”. But vec-
tor spaces often come equipped with a natural basis — and when this happens,
there is no harm in taking advantage of it. The most obvious example is when
our vector space has been defined to consist of formal linear combinations of
the elements of some set. Then this set is our basis. But surprisingly often,
the elements of this set are isomorphism classes of objects in some groupoid.
This is when groupoidification can be useful. It lets us work directly with the
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groupoid, using tools analogous to those of linear algebra, without bringing in
the real numbers (or any other ground field).

For example, let E be the groupoid of finite sets and bijections. An isomor-
phism class of finite sets is just a natural number, so the set of isomorphism
classes of objects in E can be identified with N. Indeed, this is why natural
numbers were invented in the first place: to count finite sets. The real vector
space with N as basis is usually identified with the polynomial algebra R[z],
since that has basis z0, z1, z2, . . . . Alternatively, we can work with infinite for-
mal linear combinations of natural numbers, which form the algebra of formal
power series, R[[z]]. So, formal power series should be important when we apply
the tools of linear algebra to study the groupoid of finite sets.

Indeed, formal power series have long been used as ‘generating functions’ in
combinatorics [21]. Given a combinatorial structure we can put on finite sets,
its generating function is the formal power series whose nth coefficient says
how many ways we can put this structure on an n-element set. André Joyal
formalized the idea of ‘a structure we can put on finite sets’ in terms of espèces
de structures, or ‘structure types’ [6, 14, 15]. Later his work was generalized to
‘stuff types’ [4], which are a key example of groupoidification.

Heuristically, a stuff type is a way of equipping finite sets with a specific
type of extra stuff — for example a 2-coloring, or a linear ordering, or an
additional finite set. Stuff types have generating functions, which are formal
power series. Combinatorially interesting operations on stuff types correspond
to interesting operations on their generating functions: addition, multiplication,
differentiation, and so on. Joyal’s great idea amounts to this: work directly with
stuff types as much as possible, and put off taking their generating functions.
As we shall see, this is an example of groupoidification.

To see how this works, we should be more precise. A stuff type is a groupoid
over the groupoid of finite sets: that is, a groupoid Ψ equipped with a functor
v : Ψ → E. The reason for the funny name is that we can think of Ψ as a
groupoid of finite sets ‘equipped with extra stuff’. The functor v is then the
‘forgetful functor’ that forgets this extra stuff and gives the underlying set.

The generating function of a stuff type v : Ψ→ E is the formal power series

Ψ
˜

(z) =
∞∑

n=0

|v−1(n)| zn. (1)

Here v−1(n) is the ‘full inverse image’ of any n-element set, say n ∈ E. We
define this term later, but the idea is straightforward: v−1(n) is the groupoid
of n-element sets equipped with the given type of stuff. The nth coefficient of
the generating function measures the size of this groupoid.

But how? Here we need the concept of groupoid cardinality. It seems this
concept first appeared in algebraic geometry [5, 16]. We rediscovered it by
pondering the meaning of division [4]. Addition of natural numbers comes from
disjoint union of finite sets, since

|S + T | = |S|+ |T |.
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Multiplication comes from cartesian product:

|S × T | = |S| × |T |.

But what about division?
If a group G acts on a set S, we can ‘divide’ the set by the group and form

the quotient S/G. If S and G are finite and G acts freely on S, S/G really
deserves the name ‘quotient’, since then

|S/G| = |S|/|G|.

Indeed, this fact captures some of our naive intuitions about division. For
example, why is 6/2 = 3? We can take a 6-element set S with a free action of
the group G = Z/2 and construct the set of orbits S/G:

Since we are ‘folding the 6-element set in half’, we get |S/G| = 3.
The trouble starts when the action of G on S fails to be free. Let’s try the

same trick starting with a 5-element set:

We don’t obtain a set with 2 1
2 elements! The reason is that the point in the

middle gets mapped to itself. To get the desired cardinality 2 1
2 , we would need

a way to count this point as ‘folded in half’.
To do this, we should first replace the ordinary quotient S/G by the ‘action

groupoid’ or ‘weak quotient’ S//G. This is the groupoid where objects are
elements of S, and a morphism from s ∈ S to s′ ∈ S is an element g ∈ G with
gs = s′. Composition of morphisms works in the obvious way. Next, we should
define the ‘cardinality’ of a groupoid as follows. For each isomorphism class of
objects, pick a representative x and compute the reciprocal of the number of
automorphisms of this object; then sum the result over isomorphism classes. In
other words, define the cardinality of a groupoid X to be

|X | =
∑

isomorphism classes of objects [x]

1

|Aut(x)| . (2)
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With these definitions, our problematic example gives a groupoid S//G with
cardinality 2 1

2 , since the point in the middle of the picture gets counted as ‘half
a point’. In fact,

|S//G| = |S|/|G|
whenever G is a finite group acting on a finite set S.

The concept of groupoid cardinality gives an elegant definition of the gener-
ating function of a stuff type — Eq. 1 — which matches the usual ‘exponential
generating function’ from combinatorics. For the details of how this works, see
Example 11.

Even better, we can vastly generalize the notion of generating function, by
replacing E with an arbitrary groupoid. For any groupoid X we get a vector
space: namely RX , the space of functions ψ : X → R, where X is the set of
isomorphism classes of objects in X . Any sufficiently nice groupoid over X
gives a vector in this vector space.

The question then arises: what about linear operators? Here it is good to
take a lesson from Heisenberg’s matrix mechanics. In his early work on quantum
mechanics, Heisenberg did not know about matrices. He reinvented them based
on this idea: a matrix S can describe a quantum process by letting the matrix
entry Sji ∈ C stand for the ‘amplitude’ for a system to undergo a transition
from its ith state to its jth state.

The meaning of complex amplitudes was somewhat mysterious — and indeed
it remains so, much as we have become accustomed to it. However, the mystery
evaporates if we have a matrix whose entries are natural numbers. Then the
matrix entry Sji ∈ N simply counts the number of ways for the system to
undergo a transition from its ith state to its jth state.

Indeed, let X be a set whose elements are possible ‘initial states’ for some
system, and let Y be a set whose elements are possible ‘final states’. Suppose
S is a set equipped with maps to X and Y :

S
q

���������
p

��@@@@@@@

Y X

Mathematically, we call this setup a span of sets. Physically, we can think of S
as a set of possible ‘events’. Points in S sitting over i ∈ X and j ∈ Y form a
subset

Sji = {s : q(s) = j, p(s) = i}.
We can think of this as the set of ways for the system to undergo a transition
from its ith state to its jth state. Indeed, we can picture S more vividly as a
matrix of sets:
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q p XY

S

If all the sets Sji are finite, we get a matrix of natural numbers |Sji|.
Of course, matrices of natural numbers only allow us to do a limited portion

of linear algebra. We can go further if we consider, not spans of sets, but spans
of groupoids. We can picture one of these roughly as follows:

q p
XY

S

If a span of groupoids is sufficiently nice — our technical term will be ‘tame’ —
we can convert it into a linear operator from RX to RY . Viewed as a matrix, this
operator will have nonnegative real matrix entries. So, we have not succeeded
in ‘groupoidifying’ full-fledged quantum mechanics, where the matrices can be
complex. Still, we have made some progress.

As a sign of this, it turns out that any groupoid X gives not just a vector
space RX , but a real Hilbert space L2(X). If X = E, the complexification of
this Hilbert space is the Hilbert space of the quantum harmonic oscillator. The
quantum harmonic oscillator is the simplest system where we can see the usual
tools of quantum field theory at work: for example, Feynman diagrams. It turns
out that large portions of the theory of Feynman diagrams can be done with
spans of groupoids replacing operators [4]. The combinatorics of these diagrams
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then becomes vivid, stripped bare of the trappings of analysis. We sketch how
this works in Section 3.1. A more detailed treatment can be found in the work
of Jeffrey Morton [19].

To get complex numbers into the game, Morton generalizes groupoids to
‘groupoids over U(1)’: that is, groupoids X equipped with functors v : X →
U(1), where U(1) is the groupoid with unit complex numbers as objects and only
identity morphisms. The cardinality of a groupoid over U(1) can be complex.

Other generalizations of groupoid cardinality are also interesting. For exam-
ple, Leinster has generalized it to categories [17]. The cardinality of a category
can be negative! More recently, Weinstein has generalized it to Lie groupoids
[22]. Getting a useful generalization of groupoids for which the cardinality is
naturally complex, without putting in the complex numbers ‘by hand’, remains
an elusive goal. However, the work of Fiore and Leinster suggests it is possible
[9].

In the last few years James Dolan, Todd Trimble and the authors have ap-
plied groupoidification to structures related to quantum groups, most notably
Hecke algebras and Hall algebras. A beautiful story has begun to emerge in
which q-deformation arises naturally from replacing the groupoid of finite sets
by the groupoid of finite-dimensional vector spaces over Fq , where q is a prime
power. To some extent this work is a reinterpretation of known facts. How-
ever, groupoidification gives a conceptual framework for what before might have
seemed a strange set of coincidences.

We hope to write up this material and develop it further in the years to
come. For now, the reader can turn to the online videos and notes available
through U. C. Riverside [2]. The present paper has a limited goal: we wish to
explain the basic machinery of groupoidification as simply as possible.

In Section 2, we present the basic facts about ‘degroupoidification’: the
process that turns groupoids into vector spaces and tame spans into linear op-
erators. Section 3.1 describes how to groupoidify the theory of Feynman dia-
grams; Section 3.2 describes how to groupoidify the theory of Hecke algebras.
In Section 4 we prove that the process of degroupoidifying a tame span gives
a well-defined linear operator. We also give an explicit criterion for when a
span of groupoids is tame, and explicit formula for the operator coming from a
tame span. Section 5 proves many other results stated earlier in the paper. Ap-
pendix A proves some basic definitions and useful lemmas regarding groupoids
and spans of groupoids. The goal is to make it easy for readers to try their own
hand at groupoidification.

2 Degroupoidification

In this section we describe a systematic process for turning groupoids into vector
spaces and tame spans into linear operators. This process, ‘degroupoidification’,
is in fact a kind of functor. ‘Groupoidification’ is the attempt to undo this func-
tor. To ‘groupoidify’ a piece of linear algebra means to take some structure built
from vector spaces and linear operators and try to find interesting groupoids and
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spans that degroupoidify to give this structure. So, to understand groupoidifi-
cation, we need to master degroupoidification.

We begin by describing how to turn a groupoid into a vector space. In what
follows, all our groupoids will be ‘essentially small’. This means that they have
a set of isomorphism classes of objects, not a proper class. We also assume our
groupoids have finite homsets. In other words, given any pair of objects, the set
of morphisms from one object to another is finite.

Definition 1. Given a groupoid X, let X be the set of isomorphism classes of
objects of X.

Definition 2. Given a groupoid X, let the degroupoidification of X be the
vector space

RX = {Ψ: X → R}.

A nice example is the groupoid of finite sets and bijections:

Example 3. Let E be the groupoid of finite sets and bijections. Then E ∼= N,
so

RE ∼= {ψ : N→ R} ∼= R[[z]],

where the formal power series associated to a function ψ : N→ R is given by:

∑

n∈N
ψ(n)zn.

A sufficiently nice groupoid over a groupoid X will give a vector in RX . To
construct this, we use the concept of groupoid cardinality:

Definition 4. The cardinality of a groupoid X is

|X | =
∑

[x]∈X

1

|Aut(x)|

where |Aut(x)| is the cardinality of the automorphism group of an object x in
X. If this sum diverges, we say |X | =∞.

The cardinality of a groupoid X is a well-defined nonnegative rational num-
ber whenever X and all the automorphism groups of objects in X are finite.
More generally, we say:

Definition 5. A groupoid X is tame if |X | <∞.

We show in Lemma 51 that given equivalent groupoids X and Y , |X | = |Y |.
We describe a useful alternative method for computing groupoid cardinality in
Lemma 22.

The reason we use R rather than Q as our ground field is that there are
interesting groupoids whose cardinalities are irrational numbers. The following
example is fundamental:
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Example 6. The groupoid of finite sets E has cardinality

|E| =
∑

n∈N

1

|Sn|
=

∑

n∈N

1

n!
= e.

With the concept of groupoid cardinality in hand, we now describe how to
obtain a vector in RX from a sufficiently nice groupoid over X .

Definition 7. Given a groupoid X, a groupoid over X is a groupoid Ψ
equipped with a functor v : Ψ→ X.

Definition 8. Given a groupoid over X, say v : Ψ→ X, and an object x ∈ X,
we define the full inverse image of x, denoted v−1(x), to be the groupoid
where:

• an object is an object a ∈ Ψ such that v(a) ∼= x;

• a morphism f : a→ a′ is any morphism in Ψ from a to a′.

Definition 9. A groupoid over X, say v : Ψ → X, is tame if the groupoid
v−1(x) is tame for all x ∈ X.

Definition 10. Given a tame groupoid over X, say v : Ψ→ X, there is a vector
Ψ
˜
∈ RX defined by:

Ψ
˜

([x]) = |v−1(x)|.
As discussed in Section 1, the theory of generating functions gives many

examples of this construction. Here is one:

Example 11. Let Ψ be the groupoid of 2-colored finite sets. An object of Ψ is
a ‘2-colored finite set’: that is a finite set S equipped with a function c : S → 2,
where 2 = {0, 1}. A morphism of Ψ is a function between 2-colored finite sets
preserving the 2-coloring: that is, a commutative diagram of this sort:

S

c !!DDDDDDDD
f // S′

c′||yyyyyyyy

{0, 1}

There is an forgetful functor v : Ψ→ E sending any 2-colored finite set c : S → 2
to its underlying set S. It is a fun exercise to check that for any n-element set,
say n for short, the groupoid v−1(n) is equivalent to the weak quotient 2n//Sn,
where 2n is the set of functions c : n → 2 and the permutation group Sn acts
on 2n in the obvious way. It follows that

Ψ
˜

(n) = |v−1(n)| = |2n//Sn| = 2n/n!

so the corresponding power series is

Ψ
˜

=
∑

n∈N

2n

n!
zn = e2z ∈ R[[z]].
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This is called the generating function of v : Ψ → E. Note that the n! in the
denominator, often regarded as a convention, arises naturally from the use of
groupoid cardinality.

Both addition and scalar multiplication of vectors have groupoidified ana-
logues. We can add two groupoids Φ, Ψ over X by taking their coproduct, i.e.,
the disjoint union of Φ and Ψ with the obvious map to X :

Φ + Ψ

��
X

We then have:

Proposition. Given tame groupoids Φ and Ψ over X,

Φ + Ψ
˜

= Φ
˜

+ Ψ
˜
.

Proof. This will appear later as part of Lemma 20, which also considers infinite
sums.

We can also multiply a groupoid over X by a ‘scalar’ — that is, a fixed
groupoid. Given a groupoid over X , say v : Φ → X , and a groupoid Λ, the
cartesian product Λ×Ψ becomes a groupoid over X as follows:

Λ×Ψ

vπ2

��
X

where π2 : Λ×Ψ→ Ψ is projection onto the second factor. We then have:

Proposition. Given a groupoid Λ and a groupoid Ψ over X, the groupoid Λ×Ψ
over X satisfies

Λ×Ψ
˜

= |Λ|Ψ
˜
.

Proof. This is proved as Proposition 28.

We have seen how degroupoidification turns a groupoidX into a vector space
RX . Degroupoidification also turns any sufficiently nice span of groupoids into
a linear operator.

Definition 12. Given groupoids X and Y , a span from X to Y is a diagram

S
q

���������
p

��@@@@@@@

Y X

where S is groupoid and p : S → X and q : S → Y are functors.
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To turn a span of groupoids into a linear operator, we need a construction
called the ‘weak pullback’. This construction will let us apply a span from X
to Y to a groupoid over X to obtain a groupoid over Y . Then, since a tame
groupoid over X gives a vector in RX , while a tame groupoid over Y gives a
vector in RY , a sufficiently nice span from X to Y will give a map from RX to
RY . Moreover, this map will be linear.

As a warmup for understanding weak pullbacks for groupoids, we recall ordi-
nary pullbacks for sets, also called ‘fibered products’. The data for constructing
such a pullback is a pair of sets equipped with functions to the same set:

T

q
  @@@@@@@ S

p
��~~~~~~~

X

The pullback is the set

P = {(s, t) ∈ S × T | p(s) = q(t)}

together with the obvious projections πS : P → S and πT : P → T . The pullback
makes this diamond commute:

P
πT

~~~~~~~~~
πS

��@@@@@@@

T

q
  @@@@@@@ S

p
��~~~~~~~

X

and indeed it is the ‘universal solution’ to the problem of finding such a com-
mutative diamond [18].

To generalize the pullback to groupoids, we need to weaken one condition.
The data for constructing a weak pullback is a pair of groupoids equipped with
functors to the same groupoid:

T

q
  @@@@@@@ S

p
��~~~~~~~

X

But now we replace the equation in the definition of pullback by a specified
isomorphism. So, we define the weak pullback P to be the groupoid where an
object is a triple (s, t, α) consisting of an object s ∈ S, an object t ∈ T , and an
isomorphism α : p(s)→ q(t) in X . A morphism in P from (s, t, α) to (s′, t′, α′)
consists of a morphism f : s→ s′ in S and a morphism g : t→ t′ in T such that
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the following square commutes:

p(s)

p(f)

��

α // q(t)

q(g)

��
p(s′)

α′
// q(t′)

Note that any set can be regarded as a discrete groupoid: one with only identity
morphisms. For discrete groupoids, the weak pullback reduces to the ordinary
pullback for sets.

Using the weak pullback, we can apply a span from X to Y to a groupoid
over X and get a groupoid over Y . Given a span of groupoids:

S
q

���������
p

��@@@@@@@

Y X

and a groupoid over X :

Φ
v

~~~~~~~~~

X

we can take the weak pullback, which we call SΦ:

SΦ
πS

~~||||||||
πΦ

  BBBBBBBB

S
q

���������
p

  BBBBBBBB Φ
v

~~||||||||

Y X

and think of SΦ as a groupoid over Y :

SΦ
qπS

}}||||||||

Y

This process will determine a linear operator from RX to RY if the span S is
sufficiently nice:

Definition 13. A span

S
q

���������
p

��@@@@@@@

Y X
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is tame if v : Φ→ X being tame implies that qπS : SΦ→ Y is tame.

Theorem. Given a tame span:

S
q

���������
p

��@@@@@@@

Y X

there exists a unique linear operator

S
˜

: RX → RY

such that
S
˜

Φ
˜

= SΦ
˜

whenever Φ is a tame groupoid over X.

Proof. This is Theorem 23.

Theorem 25 provides an explicit criterion for when a span is tame. This
theorem also gives an explicit formula for the the operator corresponding to a
tame span S from X to Y . If X and Y are finite, then RX has a basis given by
the isomorphism classes [x] in X , and similarly for RY . With respect to these
bases, the matrix entries of S

˜
are given as follows:

S
˜[y][x] =

∑

[s]∈p−1(x)
T
q−1(y)

|Aut(x)|
|Aut(s)|

where |Aut(x)| is the set cardinality of the automorphism group of x ∈ X , and
similarly for |Aut(s)|. Even when X and Y are not finite, we have the following
formula for S

˜
applied to ψ ∈ RX :

(S
˜
ψ)([y]) =

∑

[x]∈X

∑

[s]∈p−1(x)
T
q−1(y)

|Aut(x)|
|Aut(s)| ψ([x]) .

As with vectors, there are groupoidified analogues of addition and scalar
multiplication for operators. Given two spans from X to Y :

S
qS

���������
pS

��@@@@@@@ T
qT

��~~~~~~~
pT

  @@@@@@@

Y X Y X

we can add them as follows. By the universal property of the coproduct we
obtain from the right legs of the above spans a functor from the disjoint union
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S+T to X . Similarly, from the left legs of the above spans, we obtain a functor
from S + T to Y . Thus, we obtain a span

S + T

||xxxxxxxx

""FFFFFFFF

Y X

This addition of spans is compatible with degroupoidification:

Proposition. If S and T are tame spans from X to Y , then so is S + T , and

S + T
˜

= S
˜

+ T
˜
.

Proof. This is proved as Proposition 26.

We can also multiply a span by a ‘scalar’: that is, a fixed groupoid. Given
a groupoid Λ and a span

S
q

���������
p

��@@@@@@@

Y X

we can multiply them to obtain a span

Λ× S
qπ2

||xxxxxxxx
pπ2

""FFFFFFFF

Y X

Again, we have compatibility with degroupoidification:

Proposition. Given a tame groupoid Λ and a tame span

S

���������

��@@@@@@@

Y X

then Λ× S is tame and
Λ× S
˜

= |Λ|S
˜
.

Proof. This is proved as Proposition 29.

Next we turn to the all-important process of composing spans. This is the
groupoidified analogue of matrix multiplication. Suppose we have a span from
X to Y and a span from Y to Z:

T
qT

���������
pT

��@@@@@@@ S
qS

���������
pS

��@@@@@@@

Z Y X
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Then we say these spans are composable. In this case we can form a weak
pullback in the middle:

TS
πT

~~||||||||
πS

  BBBBBBBB

T
qT

���������
pT

  BBBBBBBB S
qS

~~||||||||
pS

��@@@@@@@

Z Y X

which gives a span from X to Z:

TS
qTπT

}}||||||||
pSπS

!!CCCCCCCC

Z X

called the composite TS.
When all the groupoids involved are discrete, the spans S and T are just

matrices of sets, as explained in Section 1. We urge the reader to check that
in this case, the process of composing spans is really just matrix multiplication,
with cartesian product of sets taking the place of multiplication of numbers,
and disjoint union of sets taking the place of addition:

(TS)ki =
∐

j∈Y
Tkj × Sji.

So, composing spans of groupoids is a generalization of matrix multiplication.
Indeed, degroupoidification takes composition of tame spans to composition

of linear operators:

Proposition. If S and T are composable tame spans:

T
qT

���������
pT

��@@@@@@@ S
qS

���������
pS

��@@@@@@@

Z Y X

then the composite span

TS
qTπT

}}||||||||
pSπS

!!CCCCCCCC

Z X

is also tame, and
TS
˜

= T
˜
S
˜
.
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Proof. This is proved as Lemma 33.

Besides addition and scalar multiplication, there is an extra operation for
groupoids over a groupoid X , which is the reason groupoidification is connected
to quantum mechanics. Namely, we can take their inner product:

Definition 14. Given groupoids Φ and Ψ over X, we define the inner product
〈Φ,Ψ〉 to be this weak pullback:

〈Φ,Ψ〉

||yyyyyyyy

""EEEEEEEE

Φ

##FFFFFFFFF Ψ

{{xxxxxxxxx

X

Definition 15. A groupoid Ψ over X is called square-integrable if 〈Ψ,Ψ〉 is
tame. We define L2(X) to be the subspace of RX consisting of finite real linear
combinations of vectors Ψ

˜
where Ψ is square-integrable.

Note that L2(X) is all of RX when X is finite. The inner product of
groupoids over X makes L2(X) into a real Hilbert space:

Theorem. Given a groupoid X, there is a unique inner product 〈·, ·〉 on the
vector space L2(X) such that

〈Φ
˜
,Ψ
˜
〉 = |〈Φ,Ψ〉|

whenever Φ and Ψ are square-integrable groupoids over X. With this inner
product L2(X) is a real Hilbert space.

Proof. This is proven later as Theorem 34.

We can always complexify L2(X) and obtain a complex Hilbert space. We
work with real coefficients simply to admit that groupoidification as described
here does not make essential use of the complex numbers. Morton’s generaliza-
tion involving groupoids over U(1) is one way to address this issue [19].

The inner product of groupoids over X has the properties one would expect:

Proposition. Given a groupoid Λ and square-integrable groupoids Φ, Ψ, and
Ψ′ over X, we have the following equivalences of groupoids:

1.
〈Φ,Ψ〉 ' 〈Ψ,Φ〉.

2.
〈Φ,Ψ + Ψ′〉 ' 〈Φ,Ψ〉+ 〈Φ,Ψ′〉.
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3.
〈Φ,Λ×Ψ〉 ' Λ× 〈Φ,Ψ〉.

Proof. Here equivalence of groupoids is defined in the usual way — see Definition
45. This result is proved below as Proposition 38.

Finally, just as we can define the adjoint of an operator between Hilbert
spaces, we can define the adjoint of a span of groupoids:

Definition 16. Given a span of groupoids from X to Y :

S
q

���������
p

��@@@@@@@

Y X

its adjoint S† is the following span of groupoids from Y to X:

S
p

��~~~~~~~
q

��???????

X Y

We warn the reader that the adjoint of a tame span may not be tame, due
to an asymmetry in the criterion for tameness, Theorem 25. However, we have:

Proposition. Given a span

S
q

���������
p

��@@@@@@@

Y X

and a pair v : Ψ→ X, w : Φ→ Y of groupoids over X and Y , respectively, there
is an equivalence of groupoids

〈Φ, SΨ〉 ' 〈S†Φ,Ψ〉.
Proof. This is proven as Proposition 35.

We say what it means for spans to be ‘equivalent’ in Definition 50. Equivalent
tame spans give the same linear operator: S ' T implies S

˜
= T
˜

. Spans of
groupoids obey many of the basic laws of linear algebra — up to equivalence.
For example, we have these familiar properties of adjoints:

Proposition. Given spans

T
qT

���������
pT

��@@@@@@@ S
qS

���������
pS

��@@@@@@@

Z Y Y X

and a groupoid Λ, we have the following equivalences of spans:
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1. (TS)† ' S†T †

2. (S + T )† ' S† + T †

3. (ΛS)† ' ΛS†

Proof. These will follow easily after we show addition and composition of spans
and scalar multiplication are well defined.

In fact, degroupoidification is a functor

˜
: Span→ Vect

where Vect is the category of real vector spaces and linear operators, and Span
is a category with

• groupoids as objects,

• equivalence classes of tame spans as morphisms,

where composition comes from the method of composing spans we have just
described. We prove this fact in Theorem 30. A deeper approach, which we
shall explain elsewhere, is to think of Span as a bicategory with

• groupoids as objects,

• tame spans as morphisms,

• isomorphism classes of maps of spans as 2-morphisms

Then degroupoidification becomes a map between bicategories:

˜
: Span→ Vect

where Vect is viewed as a bicategory with only identity 2-morphisms. We can
go even further and think of of Span as a tricategory with

• groupoids as objects,

• tame spans as morphisms,

• maps of spans as 2-morphisms,

• maps of maps of spans as 3-morphisms.

However, we have not yet found a use for this further structure.
In short, groupoidification is not merely a way of replacing linear algebraic

structures involving the real numbers with purely combinatorial structures. It
is also a form of ‘categorification’ [3], where we take structures defined in the
category Vect and find analogues that live in the bicategory Span.

17



3 Groupoidification

Degroupoidification is a systematic process; groupoidification is the attempt to
undo this process. The previous section explains degroupoidification — but
not why groupoidification is interesting. The interest lies in its applications
to concrete examples. So, let us sketch two: Feynman diagrams and Hecke
algebras.

3.1 Feynman Diagrams

One of the first steps in developing quantum theory was Planck’s new treatment
of electromagnetic radiation. Classically, electromagnetic radiation in a box can
be described as a collection of harmonic oscillators, one for each vibrational
mode of the field in the box. Planck ‘quantized’ the electromagnetic field by
assuming that the energy of each oscillator could only take discrete, evenly
spaced values: if by fiat we say the lowest possible energy is 0, the allowed
energies take the form n~ω, where n is any natural number, ω is the frequency
of the oscillator in question, and ~ is Planck’s constant.

Planck did not know what to make of the number n, but Einstein and
others later interpreted it as the number of ‘quanta’ occupying the vibrational
mode in question. However, far from being particles in the traditional sense of
tiny billiard balls, quanta are curiously abstract entities — for example, all the
quanta occupying a given mode are indistinguishable from each other.

In a modern treatment, states of a quantized harmonic oscillator are de-
scribed as vectors in a Hilbert space called ‘Fock space’. This Hilbert space
consists of formal power series. For a full treatment of the electromagnetic field
we would need power series in many variables, one for each vibrational mode.
But to keep things simple, let us consider power series in one variable. In this
case, the vector zn/n! describes a state in which n quanta are present. A general
vector in Fock space is a convergent linear combination of these special vectors.
More precisely, the Fock space consists of ψ ∈ C[[z]] with 〈ψ, ψ〉 < ∞, where
the inner product is given by

〈∑
anz

n ,
∑

bnz
n
〉

=
∑

n! anbn . (3)

But what is the meaning of this inner product? It is precisely the inner
product in L2(E), where E is the groupoid of finite sets! This is no coincidence.
In fact, there is a deep relationship between the mathematics of the quantum
harmonic oscillator and the combinatorics of finite sets. This relation suggests
a program of groupoidifying mathematical tools from quantum theory, such as
annihilation and creation operators, field operators and their normal-ordered
products, Feynman diagrams, and so on. This program was initiated by Dolan
and one of the current authors [4]. Later, it was developed much further by
Morton [19]. Guta and Maassen [12] and Aguiar and Maharam [1] have also
done relevant work. Here we just sketch some of the basic ideas.

First, let us see why the inner product on Fock space matches the inner
product on L2(E) as described in Theorem 34. We can compute the latter inner
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product using a convenient basis. Let Ψn be the groupoid with n-element sets
as objects and bijections as morphisms. Since all n-element sets are isomorphic
and each one has the permutation group Sn as automorphisms, we have an
equivalence of groupoids

Ψn ' 1//Sn.

Furthermore, Ψn is a groupoid over E in an obvious way:

v : Ψn → E.

We thus obtain a vector Ψ
˜n
∈ RE following the rule described in Definition 10.

We can describe this vector as a formal power series using the isomorphism

RE ∼= R[[z]]

described in Example 3. To do this, note that

v−1(m) '
{

1//Sn m = n

0 m 6= n

where 0 stands for the empty groupoid. It follows that

|v−1(m)| =
{

1/n! m = n

0 m 6= n

and thus

Ψ
˜n

=
∑

m∈N
|v−1(m)| zm =

zn

n!
.

Next let us compute the inner product in L2(E). Since finite linear combi-
nations of vectors of the form Ψ

˜n
are dense in L2(E) it suffices to compute the

inner product of two vectors of this form. We can use the recipe in Theorem 34.
So, we start by taking the weak pullback of the corresponding groupoids over
E:

〈Ψm,Ψn〉

zzuuuuuuuuu

$$IIIIIIIII

Ψm

%%JJJJJJJJJJ Ψn

zztttttttttt

E

An object of this weak pullback consists of an m-element set S, an n-element
set T , and a bijection α : S → T . A morphism in this weak pullback consists of
a commutative square of bijections:

S

f

��

α // T

g

��
S′

α′
// T ′
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So, there are no objects in 〈Ψm,Ψn〉 when n 6= m. When n = m, all objects
in this groupoid are isomorphic, and each one has n! automorphisms. It follows
that

〈Ψ
˜m

,Ψ
˜n
〉 = |〈Ψm,Ψn〉| =

{
1/n! m = n

0 m 6= n

Using the fact that Ψ
˜n

= zn/n!, we see that this is precisely the inner product
in Eq. 3. So, as a complex Hilbert space, Fock space is the complexification of
L2(E).

It is worth reflecting on the meaning of the computation we just did. The
vector Ψ

˜n
= zn/n! describes a state of the quantum harmonic oscillator in which

n quanta are present. Now we see that this vector arises from the groupoid
Ψn over E. In Section 1 we called a groupoid over E a stuff type, since it
describes a way of equipping finite sets with extra stuff. The stuff type Ψn is a
very simple special case, where the stuff is simply ‘being an n-element set’. So,
groupoidification reveals the mysterious ‘quanta’ to be simply elements of finite
sets. Moreover, the formula for the inner product on Fock space arises from the
fact that there are n! ways to identify two n-element sets.

The most important operators on Fock space are the annihilation and cre-
ation operators. If we think of vectors in Fock space as formal power series, the
annihilation operator is given by

(aψ)(z) =
d

dz
ψ(z)

while the creation operator is given by

(a∗ψ)(z) = zψ(z).

As operators on Fock space, these are only densely defined: for example, they
map the dense subspace C[z] to itself. However, we can also think of them as
operators from C[[z]] to itself. In physics these operators decrease or increase
the number of quanta in a state, since

azn = nzn−1, a∗zn = zn+1.

Creating a quantum and then annihilating one is not the same as annhilating
and then creating one, since

aa∗ = a∗a+ 1.

This is one of the basic examples of noncommutativity in quantum theory.
The annihilation and creation operators arise from spans by degroupoidifi-

cation, using the recipe described in Theorem 23. The annihilation operator
comes from this span:

E
1

��~~~~~~~
S 7→S+1

��@@@@@@@

E E
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where the left leg is the identity functor and the right leg is the functor ‘disjoint
union with a 1-element set’. Since it is ambiguous to refer to this span by
the name of the groupoid on top, as we have been doing, we instead call it A.
Similarly, we call its adjoint A∗:

E
S 7→S+1

��~~~~~~~
1

��@@@@@@@

E E

A calculation [19] shows that indeed:

A
˜

= a, A
˜
∗ = a∗.

Moreover, we have an equivalence of spans:

AA∗ ' A∗A+ 1.

Here we are using composition of spans, addition of spans and the identity span
as defined in Section 2. If we unravel the meaning of this equivalence, it turns
out to be very simple [4]. If you have an urn with n balls in it, there is one more
way to put in a ball and then take one out than to take one out and then put
one in. Why? Because in the first scenario there are n+ 1 balls to choose from
when you take one out, while in the second scenario there are only n. So, the
noncommutativity of annihilation and creation operators is not a mysterious
thing: it has a simple, purely combinatorial explanation.

We can go further and define a span

Φ = A+A∗

which degroupoidifies to give the well-known field operator

φ = Φ
˜

= a+ a∗

Our normalization here differs from the usual one in physics because we wish
to avoid dividing by

√
2, but all the usual physics formulas can be adapted to

this new normalization.
The powers of the span Φ have a nice combinatorial interpretation. If we

write its nth power as follows:

Φn

q

~~||||||||
p

  BBBBBBBB

E E

then we can reinterpret this span as a groupoid over E ×E:

Φn

q×p
��

E ×E
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Just as a groupoid over E describes a way of equipping a finite set with extra
stuff, a groupoid over E × E describes a way of equipping a pair of finite sets
with extra stuff. And in this example, the extra stuff in question is a very simple
sort of diagram!

More precisely, we can draw an object of Φn as a i-element set S, a j-element
set T , a graph with i+j univalent vertices and a single n-valent vertex, together
with a bijection between the i+ j univalent vertices and the elements of S + T .
It is against the rules for vertices labelled by elements of S to be connected
by an edge, and similarly for vertices labelled by elements of T . The functor
p×q : Φn → E×E sends such an object of Φn to the pair of sets (S, T ) ∈ E×E.

An object of Φn sounds like a complicated thing, but it can be depicted
quite simply as a Feynman diagram. Physicists traditionally read Feynman
diagrams from bottom to top. So, we draw the above graph so that the univalent
vertices labelled by elements of S are at the bottom of the picture, and those
labelled by elements of T are at the top. For example, here is an object of Φ3,
where S = {1, 2, 3} and T = {4, 5, 6, 7}:

5 4 7 6

1 3 2
In physics, we think of this as a process where 3 particles come in and 4 go out.

Feynman diagrams of this sort are allowed to have self-loops: edges with
both ends at the same vertex. So, for example, this is a perfectly fine object of
Φ5 with S = {1, 2, 3} and T = {4, 5, 6, 7}:

5 4 6 7

2 3 1
To eliminate self-loops, we can work with the normal-ordered powers or
‘Wick powers’ of Φ, denoted : Φn : . These are the spans obtained by taking Φn,
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expanding it in terms of the annihilation and creation operators, and moving all
the annihilation operators to the right of all the creation operators ‘by hand’,
ignoring the fact that they do not commute. For example:

: Φ0 : = 1

: Φ1 : = A+A∗

: Φ2 : = A2 + 2A∗A+A∗2

: Φ3 : = A3 + 3A∗A2 + 3A∗2A+A∗3

and so on. Objects of : Φn: can be drawn as Feynman diagrams just as we did
for objects of Φn. There is just one extra rule: self-loops are not allowed.

In quantum field theory one does many calculations involving products of
normal-ordered powers of field operators. Feynman diagrams make these calcu-
lations easy. In the groupoidified context, a product of normal-ordered powers
is a span

: Φn1 : · · · : Φnk :

q

wwpppppppppppp
p

''OOOOOOOOOOOO

E E .

As before, we can draw an object of the groupoid : Φn1 : · · · : Φnk : as a Feynman
diagram. But now these diagrams are more complicated, and closer to those seen
in physics textbooks. For example, here is a typical object of : Φ3: : Φ3: : Φ4: ,
drawn as a Feynman diagram:

5 8 7 6

1 4 2 3

In general, a Feynman diagram for an object of : Φn1 : · · · : Φnk : consists
of an i-element set S, a j-element set T , a graph with n vertices of valence
n1, . . . , nk together with i+ j univalent vertices, and a bijection between these
univalent vertices and the elements of S + T . Self-loops are forbidden; it is
against the rules for two vertices labelled by elements of S to be connected by
an edge, and similarly for two vertices labelled by elements of T . As before, the
forgetful functor p× q sends any such object to the pair of sets (S, T ) ∈ E ×E.

The groupoid : Φn1 : · · · : Φnk : also contains interesting automorphisms.
These come from symmetries of Feynman diagrams: that is, graph automor-
phisms fixing the univalent vertices labelled by elements of S and T . These

23



symmetries play an important role in computing the operator corresponding to
this span:

: Φn1 : · · · : Φnk :

q

wwpppppppppppp
p

''OOOOOOOOOOOO

E E .

As is evident from Theorem 25, when a Feynman diagram has symmetries, we
need to divide by the number of symmetries when determining its contribution
to the operator coming from the above span. This rule is well-known in quan-
tum field theory; here we see it arising as a natural consequence of groupoid
cardinality.

3.2 Hecke Algebras

Hecke algebras are q-deformations of finite reflection groups, also known as
Coxeter groups [10]. Any Dynkin diagram gives rise to a simple Lie group, and
the Weyl group of this simple Lie algebra is a Coxeter group. Here we sketch
how to groupoidify a Hecke algebra when the parameter q is a power of a prime
number and the finite reflection group comes from a Dynkin diagram in this
way. More details will appear in future work [2].

Let D be a Dynkin diagram. We write d ∈ D to mean that d is a dot in
this diagram. Associated to each unordered pair of dots d, d′ ∈ D is a number
mdd′ ∈ {2, 3, 4, 6}. In the usual Dynkin diagram conventions:

• mdd′ = 2 is drawn as no edge at all,

• mdd′ = 3 is drawn as a single edge,

• mdd′ = 4 is drawn as a double edge,

• mdd′ = 6 is drawn as a triple edge.

For any nonzero number q, our Dynkin diagram gives a Hecke algebra. Since
we are using real vector spaces in this paper, we work with the Hecke algebra
over R:

Definition 17. Let D be a Dynkin diagram and q a nonzero real number. The
Hecke algebra H(D, q) corresponding to this data is the associative algebra
over R with one generator σd for each d ∈ D, and relations:

σ2
d = (q − 1)σd + q

for all d ∈ D, and
σdσd′σd . . . = σd′σdσd′ . . .

for all d, d′ ∈ D, where each side has mdd′ factors.
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When q = 1, this Hecke algebra is simply the group algebra of the Coxeter
group associated to D: that is, the group with one generator sd for each dot
d ∈ D, and relations

s2
d = 1, (sdsd′)

mdd′ = 1.

So, the Hecke algebra can be thought of as a q-deformation of this Coxeter
group.

If q is a power of a prime number, the Dynkin diagram D determines a
simple algebraic group G over the field with q elements, Fq. We choose a Borel
subgroup B ⊆ G, i.e., a maximal solvable subgroup. This in turn determines
a transitive G-set X = G/B. This set is a smooth algebraic variety called the
flag variety of G, but we only need the fact that it is a finite set equipped with
a transitive action of the finite group G. Starting from just this G-set X , we
can groupoidify the Hecke algebra H(D, q).

Recalling the concept of ‘action groupoid’ from Section 1, we define the
groupoidified Hecke algebra to be

(X ×X)//G.

This groupoid has one isomorphism class of objects for each G-orbit in X ×X :

(X ×X)//G ∼= (X ×X)/G.

The well-known ‘Bruhat decomposition’ of X/G shows there is one such orbit
for each element of the Coxeter group associated to D. Using this, one can
check that (X × X)//G degroupoidifies to give the underlying vector space of
the Hecke algebra. In other words, there is a canonical isomorphism of vector
spaces

R(X×X)/G ∼= H(D, q).

Even better, we can groupoidify the multiplication in the Hecke algebra. In
other words, we can find a span that degroupoidifies to give the linear operator

H(D, q)⊗H(D, q) → H(D, q)
a⊗ b 7→ ab

This span is very simple:

(X×X×X)//G

(X×X)//G × (X×X)//G (X×X)//G

(p1,p2)×(p2,p3)

||yyyyyyyyyyyyyyy

(p1,p3)

""EEEEEEEEEEEEEEE

(4)

where pi is projection onto the ith factor.
One can check through explicit computation that this span does the job.

The key is that for each dot d ∈ D there is a special isomorphism class in
(X ×X)//G, and the function

ψd : (X ×X)/G→ R
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that equals 1 on this isomorphism class and 0 on the rest corresponds to the
generator σd ∈ H(D, q).

To illustrate these ideas, let us consider the simplest nontrivial example, the
Dynkin diagram A2:

• •
The Hecke algebra associated to A2 has two generators, which we call P and L,
for reasons soon to be revealed:

P = σ1, L = σ2.

The relations are

P 2 = (q − 1)P + q, L2 = (q − 1)P + q, PLP = LPL.

It follows that this Hecke algebra is a quotient of the group algebra of the 3-
strand braid group, which has two generators P and L and one relation PLP =
LPL, called the Yang–Baxter equation or third Reidemeister move. This
is why Jones could use traces on the An Hecke algebras to construct invariants
of knots [13]. This connection to knot theory makes it especially interesting to
groupoidify Hecke algebras.

So, let us see what the groupoidified Hecke algebra looks like, and where the
Yang–Baxter equation comes from. The algebraic group corresponding to the
A2 Dynkin diagram and the prime power q is G = SL(3,Fq), and we can choose
the Borel subgroup B to consist of upper triangular matrices in SL(3,Fq). Recall
that a complete flag in the vector space F3

q is a pair of subspaces

0 ⊂ V1 ⊂ V2 ⊂ F3
q .

The subspace V1 must have dimension 1, while V2 must have dimension 2.
Since G acts transitively on the set of complete flags, while B is the subgroup
stabilizing a chosen flag, the flag variety X = G/B in this example is just the
set of complete flags in F3

q — hence its name.
We can think of V1 ⊂ F3

q as a point in the projective plane FqP2, and
V2 ⊂ F3

q as a line in this projective plane. From this viewpoint, a complete
flag is a chosen point lying on a chosen line in FqP2. This viewpoint is natural
in the theory of ‘buildings’, where each Dynkin diagram corresponds to a type
of geometry [8, 11]. Each dot in the Dynkin diagram then stands for a ‘type
of geometrical figure’, while each edge stands for an ‘incidence relation’. The
A2 Dynkin diagram corresponds to projective plane geometry. The dots in this
diagram stand for the figures ‘point’ and ‘line’:

point • • line

The edge in this diagram stands for the incidence relation ‘the point p lies on
the line `’.

We can think of P and L as special elements of the A2 Hecke algebra,
as already described. But when we groupoidify the Hecke algebra, P and L
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correspond to objects of (X ×X)//G. Let us describe these objects and explain
how the Hecke algebra relations arise in this groupoidified setting.

As we have seen, an isomorphism class of objects in (X × X)//G is just a
G-orbit in X ×X . These orbits in turn correspond to spans of G-sets from X
to X that are irreducible: that is, not a coproduct of other spans of G-sets.
So, the objects P and L can be defined by giving irreducible spans of G-sets:

P

~~~~~~~~~

  @@@@@@@ L

��~~~~~~~

��@@@@@@@

X X X X

In general, any span of G-sets

S
q

��~~~~~~~
p

��@@@@@@@

X X

such that q × p : S → X × X is injective can be thought of as G-invariant
binary relation between elements of X . Irreducible G-invariant spans are always
injective in this sense. So, such spans can also be thought of as G-invariant
relations between flags. In these terms, we define P to be the relation that says
two flags have the same line, but different points:

P = {((p, `), (p′, `)) ∈ X ×X | p 6= p′}

Similarly, we think of L as a relation saying two flags have different lines, but
the same point:

L = {((p, `), (p, `′)) ∈ X ×X | ` 6= `′}.
Given this, we can check that

P 2 ∼= (q − 1)× P + q × 1, L2 ∼= (q − 1)× L+ q × 1, PLP ∼= LPL.

Here both sides refer to spans of G-sets, and we denote a span by its apex.
Addition of spans is defined using coproduct, while 1 denotes the identity span
from X to X . We use ‘q’ to stand for a fixed q-element set, and similarly for
‘q − 1’. We compose spans of G-sets using the ordinary pullback. It takes a
bit of thought to check that this way of composing spans of G-sets matches the
product described by Eq. 4, but it is indeed the case.

To check the existence of the first two isomorphisms above, we just need to
count. In FqP2, the are q+ 1 points on any line. So, given a flag we can change
the point in q different ways. To change it again, we have a choice: we can
either send it back to the original point, or change it to one of the q − 1 other
points. So, P 2 ∼= (q − 1)× P + q × 1. Since there are also q + 1 lines through
any point, similar reasoning shows that L2 ∼= (q − 1)× L+ q × 1.
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The Yang–Baxter isomorphism

PLP ∼= LPL

is more interesting. We construct it as follows. First consider the left-hand
side, PLP . So, start with a complete flag called (p1, `1):

p1

`1

Then, change the point to obtain a flag (p2, `1). Next, change the line to obtain
a flag (p2, `2). Finally, change the point once more, which gives us the flag
(p3, `2):

p1

`1

p1

`1

p2

p1

`1

p2

`2

p1

`1

p2

`2
p3

The figure on the far right is a typical object of PLP .
On the other hand, consider LPL. So, start with the same flag as before,

but now change the line, obtaining (p1, `
′
2). Next change the point, obtaining

the flag (p′2, `
′
2). Finally, change the line once more, obtaining the flag (p′2, `

′
3):

p1

`1

p1

`1

`′2

p1

`1

`′2

p′2
p1

`1

`′2

p′2
`′3

The figure on the far right is a typical object of LPL.
Now, the axioms of projective plane geometry say that any two distinct

points lie on a unique line, and any two distinct lines intersect in a unique
point. So, any figure of the sort shown on the left below determines a unique
figure of the sort shown on the right, and vice versa:

Comparing this with the pictures above, we see this bijection induces an isomor-
phism of spans PLP ∼= LPL. So, we have derived the Yang–Baxter isomorphism
from the axioms of projective plane geometry!
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4 Degroupoidifying a Tame Span

In Section 2 we described a process for turning a tame span of groupoids into
a linear operator. In this section we show this process is well-defined. The
calculations in the proof yield an explicit criterion for when a span is tame.
They also give an explicit formula for the the operator coming from a tame
span. As part of our work, we also show that equivalent spans give the same
operator.

4.1 Tame Spans Give Operators

To prove that a tame span gives a well-defined operator, we begin with three
lemmas that are of some interest in themselves. We postpone to Appendix
A some well-known facts about groupoids that do not involve the concept of
degroupoidification. This Appendix also recalls the familiar concept of ‘equiva-
lence’ of groupoids, which serves as a basis for this:

Definition 18. Two groupoids over a fixed groupoid X, say v : Ψ → X and
w : Φ → X, are equivalent as groupoids over X if there is an equivalence
F : Ψ→ Φ such that this diagram

Ψ
F //

p
  @@@@@@@ Φ

q
~~~~~~~~~

X

commutes up to natural isomorphism.

Lemma 19. Let v : Ψ→ X and w : Φ→ X be equivalent groupoids over X. If
either one is tame, then both are tame, and Ψ

˜
= Φ
˜

.

Proof. This follows directly from Lemmas 51 and 52 in Appendix A.

Lemma 20. Given tame groupoids Φ and Ψ over X,

Φ + Ψ
˜

= Φ
˜

+ Ψ
˜
.

More generally, given any collection of tame groupoids Ψi over X, the coproduct∑
i Ψi is naturally a groupoid over X, and if it is tame, then

∑

i

Ψi

˜

=
∑

i

Ψ
˜ i

where the sum on the right hand side converges pointwise as a function on X.

Proof. The full inverse image of any object x ∈ X in the coproduct
∑
i Ψi is

the coproduct of its full inverse images in each groupoid Ψi. Since groupoid
cardinality is additive under coproduct, the result follows.
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Lemma 21. Given a span of groupoids

S
q

���������
p

��@@@@@@@

Y X

we have

1. S(
∑

i Ψi) '
∑
i SΨi

2. S(Λ×Ψ) ' Λ× SΨ

whenever vi : Ψi → X are groupoids over X, v : Ψ → X is a groupoid over X,
and Λ is a groupoid.

Proof. To prove 1, we need to describe a functor

F :
∑

i

SΨi → S(
∑

i

Ψi)

that will provide our equivalence. For this, we simply need to describe for each
i a functor Fi : SΨi → S(

∑
i Ψi). An object in SΨi is a triple (s, z, α) where

s ∈ S, z ∈ Ψi and α : p(s) → vi(z). Fi simply sends this triple to the same
triple regarded as an object of S(

∑
i Ψi). One can check that F extends to a

functor and that this functor extends to an equivalence of groupoids over S.
To prove 2, we need to describe a functor F : S(Λ × Φ) → Λ × SΦ. This

functor simply re-orders the entries in the quadruples which define the objects
in each groupoid. One can check that this functor extends to an equivalence of
groupoids over X .

Finally we need the following lemma, which simplifies the computation of
groupoid cardinality:

Lemma 22. We have

|X | =
∑

x∈X

1

|Mor(x,−)|

where Mor(x,−) =
⋃
y∈X hom(x, y) is the set of morphisms whose source is the

object x ∈ X.

Proof. We check the following equalities:

∑

[x]∈X

1

|Aut(x)| =
∑

[x]∈X

|[x]|
|Mor(x,−)| =

∑

x∈X

1

|Mor(x,−)| .

Here [x] is the set of objects isomorphic to x, and |[x]| is the ordinary cardinality
of this set. To check the above equations, we first choose an isomorphism
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γy : x → y for each object y isomorphic to x. This gives a bijection from
[x]×Aut(x) to Mor(x,−) that takes (y, f : x→ x) to γyf : x→ y. Thus

|[x]| |Aut(x)| = |Mor(x,−)|,

and the first equality follows. We also get a bijection between Mor(y,−) and
Mor(x,−) that takes f : y → z to fγy : x→ z. Thus, |Mor(y,−)| = |Mor(x,−)|
whenever y is isomorphic to x. The second equation follows from this.

Now we are ready to prove the main theorem of this section:

Theorem 23. Given a tame span of groupoids

S
q

���������
p

��@@@@@@@

Y X

there exists a unique linear operator S
˜

: RX → RY such that S
˜

Ψ
˜

= SΨ
˜

for any
vector Ψ

˜
obtained from a tame groupoid Ψ over X.

Proof. It is easy to see that these conditions uniquely determine S
˜

. Suppose
ψ : X → R is any nonnegative function. Then we can find a groupoid Ψ over X
such that Ψ

˜
= ψ. So, S

˜
is determined on nonnegative functions by the condition

that S
˜

Ψ
˜

= SΨ
˜

. Since every function is a difference of two nonnegative functions
and S

˜
is linear, this uniquely determines S

˜
.

The real work is proving that S
˜

is well-defined. For this, assume we have a
collection {vi : Ψi → X}i∈I of groupoids over X and real numbers {αi ∈ R}i∈I
such that ∑

i

αi Ψi
˜

= 0. (5)

We need to show that ∑

i

αi SΨi
˜

= 0. (6)

We can simplify our task as follows. First, recall that a skeletal groupoid
is one where isomorphic objects are equal. Every groupoid is equivalent to a
skeletal one. Thanks to Lemmas 19 and 54, we may therefore assume without
loss of generality that S, X , Y and all the groupoids Ψi are skeletal.

Second, recall that a skeletal groupoid is a coproduct of groupoids with one
object. By Lemma 20, degroupoidification converts coproducts of groupoids
over X into sums of vectors. Also, by Lemma 21, the operation of taking weak
pullback distributes over coproduct. As a result, we may assume without loss
of generality that each groupoid Ψi has one object. Write ∗i for the one object
of Ψi.

With these simplifying assumptions, Eq. 5 says that for any x ∈ X ,

0 =
∑

i∈I
αi Ψi
˜

([x]) =
∑

i∈I
αi |v−1

i (x)| =
∑

i∈J

αi
|Aut(∗i)|

(7)
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where J is the collection of i ∈ I such that vi(∗i) is isomorphic to x. Since all
groupoids in sight are now skeletal, this condition implies vi(∗i) = x.

Now, to prove Eq. 6, we need to show that

∑

i∈I
αi SΨi
˜

([y]) = 0

for any y ∈ Y . But since the set I is partitioned into sets J , one for each x ∈ X ,
it suffices to show ∑

i∈J
αi SΨi
˜

([y]) = 0. (8)

for any fixed x ∈ X and y ∈ Y .
To compute SΨi

˜
, we need to take this weak pullback:

SΨi

πS

~~|||||||| πΨi

!!CCCCCCCC

S
q

����������
p

!!CCCCCCCC Ψi

vi

}}zzzzzzzz

Y X

We then have
SΨi
˜

([y]) = |(qπS)−1(y)|, (9)

so to prove Eq. 8 it suffices to show

∑

i∈J
αi |(qπS)−1(y)| = 0. (10)

Using the definition of ‘weak pullback’, and taking advantage of the fact
that Ψi has just one object, which maps down to x, we can see that an object
of SΨi consists of an object s ∈ S with p(s) = x together with an isomorphism
α : x → x. This object of SΨi lies in (qπS)−1(y) precisely when we also have
q(s) = y.

So, we may briefly say that an object of (qπS)−1(y) is a pair (s, α), where
s ∈ S has p(s) = x, q(s) = y, and α is an element of Aut(x). Since S is skeletal,
there is a morphism between two such pairs only if they have the same first entry.
A morphism from (s, α) to (s, α′) then consists of a morphism f ∈ Aut(s) and
a morphism g ∈ Aut(∗i) such that

x
α //

p(f)

��

x

vi(g)

��
x

α′
// x

commutes.

32



A morphism out of (s, α) thus consists of an arbitrary pair f ∈ Aut(s),
g ∈ Aut(∗i), since these determine the target (s, α′). This fact and Lemma 22
allow us to compute:

|(qπS)−1(y)| =
∑

(s,α)∈(qπS)−1(y)

1

|Mor((s, α),−)|

=
∑

s∈p−1(y)∩q−1(y)

|Aut(x)|
|Aut(s)||Aut(∗i)|

.

So, to prove Eq. 10, it suffices to show

∑

i∈J

∑

s∈p−1(x)∩q−1(y)

αi|Aut(x)|
|Aut(s)||Aut(∗i)|

= 0 . (11)

But this easily follows from Eq. 7. So, the operator S
˜

is well defined.

In Definition 50 we recall the natural concept of ‘equivalence’ for spans of
groupoids. The next theorem says that our process of turning spans of groupoids
into linear operators sends equivalent spans to the same operator:

Theorem 24. Given equivalent spans

S
qS

���������
pS

��@@@@@@@ T
qT

��~~~~~~~
pT

  @@@@@@@

Y X Y X

the linear operators S
˜

and T
˜

are equal.

Proof. Since the spans are equivalent, there is a functor providing an equivalence
of groupoids F : S → T along with a pair of natural isomorphisms α : pS ⇒ pTF
and β : qS ⇒ qTF . Thus, the diagrams

S

��@@@@@@@ Φ

~~~~~~~~~
T

  @@@@@@@ Φ

~~~~~~~~~

X X

are equivalent pointwise. It follows from Lemma 54 that the weak pullbacks
SΨ and TΨ are equivalent groupoids with the equivalence given by a functor
F̃ : SΨ → TΨ. From the universal property of weak pullbacks, along with F ,
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we obtain a natural transformation γ : FπS ⇒ πT F̃ . We then have a triangle

SΨTΨ

ST

Y

F̃oo

πS

�������������

πT

��///////////

qS

�������������

qT

��///////////
Foo

γ
s{ oooooo

β
s{ oooooo

where the composite of γ and β is (qT · γ)−1β : qSπS ⇒ qTπT F̃ . Here · stands
for whiskering: see Definition 44.

We can now apply Lemma 52. Thus, for every y ∈ Y , the full inverse images
(qSπS)−1(y) and (qTπT )−1(y) are equivalent. It follows from Lemma 51 that
for each y ∈ Y , the groupoid cardinalities |(qSπS)−1(y)| and |(qTπT )−1(y)| are
equal. Thus, the linear operators S

˜
and T

˜
are the same.

4.2 An Explicit Formula

Our calculations in the proof of Theorem 23 yield an explicit formula for the
operator coming from a tame span, and a criterion for when a span is tame:

Theorem 25. A span of groupoids

S
q

���������
p

��@@@@@@@

Y X

is tame if and only if:

1. For any object y ∈ Y , the groupoid p−1(x)∩q−1(y) is nonempty for objects
x in only a finite number of isomorphism classes of X.

2. For every x ∈ X and y ∈ Y , the groupoid p−1(x) ∩ q−1(y) is tame.

Here p−1(x) ∩ q−1(y) is the subgroupoid of S whose objects lie in both p−1(x)
and q−1(y), and whose morphisms lie in both p−1(x) and q−1(y).

If S is tame, then for any ψ ∈ RX we have

(S
˜
ψ)([y]) =

∑

[x]∈X

∑

[s]∈p−1(x)
T
q−1(y)

|Aut(x)|
|Aut(s)| ψ([x]) .
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Proof. First suppose the span S is tame and v : Ψ→ X is a tame groupoid over
X . Equations 9 and 11 show that if S,X, Y, and Ψ are skeletal, and Ψ has just
one object ∗, then

SΨ
˜

([y]) =
∑

s∈p−1(x)∩q−1(y)

|Aut(v(∗))|
|Aut(s)||Aut(∗)|

On the other hand,

Ψ
˜

([x]) =





1

|Aut(∗)| if v(∗) = x

0 otherwise.

So in this case, writing Ψ
˜

as ψ, we have

(S
˜
ψ)([y]) =

∑

[x]∈X

∑

[s]∈p−1(x)
T
q−1(y)

|Aut(x)|
|Aut(s)| ψ([x]) .

Since both sides are linear in ψ, and every nonnegative function in RX is a
pointwise convergent nonnegative linear combination of functions of the form
ψ = Ψ

˜
with Ψ as above, the above equation in fact holds for all ψ ∈ RX .

Since all groupoids in sight are skeletal, we may equivalently write the above
equation as

(S
˜
ψ)([y]) =

∑

[x]∈X

∑

[s]∈p−1(x)
T
q−1(y)

|Aut(x)|
|Aut(s)| ψ([x]) .

The advantage of this formulation is that now both sides are unchanged when
we replace X and Y by equivalent groupoids, and replace S by an equivalent
span. So, this equation holds for all tame spans, as was to be shown.

If the span S is tame, the sum above must converge for all functions ψ of
the form ψ = Ψ

˜
. Any nonnegative function ψ : X → R is of this form. For the

sum above to converge for all nonnegative ψ, this sum:

∑

[s]∈p−1(x)
T
q−1(y)

|Aut(x)|
|Aut(s)|

must have the following two properties:

1. For any object y ∈ Y , it is nonzero only for objects x in a finite number
of isomorphism classes of X .

2. For every x ∈ X and y ∈ Y , it converges to a finite number.

These conditions are equivalent to conditions 1) and 2) in the statement of the
theorem. We leave it as an exercise to check that these conditions are not only
necessary but also sufficient for S to be tame.
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The previous theorem has many nice consequences. For example:

Proposition 26. Suppose S and T are tame spans from a groupoid X to a
groupoid Y . Then S + T

˜
= S
˜

+ T
˜

.

Proof. This follows from the explicit formula given in Theorem 25.

5 Properties of Degroupoidification

In this section we prove all the remaining results stated in Section 2. We start
with results about scalar multiplication. Then we show that degroupoidification
is a functor. Finally, we prove the results about inner products and adjoints.

5.1 Scalar Multiplication

To prove facts about scalar multiplication, we use the following lemma:

Lemma 27. Given a groupoid Λ and a functor between groupoids p : X → Y ,
then the functor c×p : Λ×Y → 1×X (where c : Λ→ 1 is the unique morphism
from Λ to the terminal groupoid 1) satisfies:

|(c× p)−1(1, x)| = |Λ||p−1(x)|

for all x ∈ X.

Proof. Recall that by definition of full inverse image

(c× p)−1(1, x) = {(λ, y) ∈ Λ× Y | ∃γ : (c× p)(λ, y)→ (1, x)}.

We notice that the element λ plays no real role in determining the morphism
γ, and (λ, y) ∈ (c× p)−1(1, x) for all λ if and only if y ∈ p−1(x). Now consider
the groupoid cardinality of this groupoid. By definition we have

|(c× p)−1(1, x)| =
∑

[(λ,y)]

1

|Aut(λ, y)|

Since we are working over the product Λ × Y , an automorphism of (λ, y) is
automorphism of λ together with an automorphism of y. It follows that

|Aut(λ, y)| = |Aut(λ)||Aut(y)|.

For a given y ∈ p−1(x) we can combine all the terms containing |Aut(y)| to
obtain the sum

|(c× p)−1(1, x)| =
∑

[y]∈p−1(x)


∑

[λ]

1

|Aut(λ)|


 1

|Aut(y)|

which then after factoring is equal to |Λ||p−1(x)|, as desired.
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Proposition 28. Given a groupoid Λ and a groupoid over X, say v : Ψ → X,
the groupoid Λ×Ψ over X satisfies

Λ×Ψ
˜

= |Λ|Ψ
˜
.

Proof. This follows from Lemma 27.

Proposition 29. Given a tame groupoid Λ and a tame span

S

���������

��@@@@@@@

Y X

then Λ× S is tame and
Λ× S
˜

= |Λ|S
˜
.

Proof. This follows from Lemma 27.

5.2 Functoriality of Degroupoidification

In this section we prove that our process of turning groupoids into vector spaces
and spans of groupoids into linear operators is indeed a functor. We first show
that the process preserves identities, then show associativity of composition,
from which many other things follow, including the preservation of composition.
The lemmas in this section add up to a proof of the following theorem:

Theorem 30. Degroupoidification is a functor from the category of groupoids
and equivalence classes of tame spans to the category of real vector spaces and
linear operators.

Proof. As mentioned above, the proof follows from Lemmas 31 and 33.

Lemma 31. Degroupoidification preserves identities, i.e., given a groupoid X,
1X
˜

= 1RX˜
, where 1X is the identity span from X to X and 1RX˜

is the identity

operator on RX˜ .

Proof. This follows from the explicit formula given in Theorem 25.

We now want to prove the associativity of composition of tame spans.
Amongst the consequences of this proposition we can derive the preservation
of composition under degroupoidification. Given a triple of composable spans:

T
qT

���������
pT

��@@@@@@@ S
qS

���������
pS

��@@@@@@@ R
qR

~~~~~~~~~
pR

  AAAAAAAA

Z Y X W
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we want to show that composing in the two possible orders — T (SR) or (TS)R
— will provide equivalent spans of groupoids. In fact, since groupoids, spans of
groupoids, and isomorphism classes of maps between spans of groupoids natu-
rally form a bicategory, there exists a natural isomorphism called the associa-
tor. This tells us that the spans T (SR) and (TS)R are in fact equivalent. But
since we have not constructed this bicategory, we will instead give an explicit
construction of the equivalence T (SR)

∼→ (TS)R.

Proposition 32. Given a composable triple of tame spans, the operation of
composition of tame spans by weak pullback is associative up to equivalence of
spans of groupoids.

Proof. We consider the above triple of spans in order to construct the afore-
mentioned equivalence. The equivalence is simple to describe if we first take
a close look at the groupoids T (SR) and (TS)R. The composite T (SR) has
objects (t, (s, r, α), β) such that r ∈ R, s ∈ S, t ∈ T , α : qR(r) → pS(s), and
β : qS(s) → pT (t), and morphisms f : (t, (s, r, α), β) → (t′, (s′, r′, α′), β′), which
consist of a map g : (s, r, α) → (s′, r′, α′) in SR and a map h : t → t′ such that
the following diagram commutes:

qSπs((s, r, α))
β //

qSπS(g)

��

pT (t)

pT (h)

��
qSπs((s

′, r′, α′))
β′

// pT (t′)

where πS maps the composite SR to S. Further, g consists of a pair of maps
k : r → r′ and j : s→ s′ such that the following diagram commutes:

qR(r)
α //

qS(k)

��

pS(s)

pS(j)

��
qR(r′)

α′
// pS(s′)

The groupoid (TS)R has objects ((t, s, α), r, β) such that r ∈ R, s ∈ S, t ∈ T ,
α : qS(s) → pT (t), and β : qR(r) → pS(s), and morphisms f : ((t, s, α), r, β) →
((t′, s′, α′), r′, β′), which consist of a map g : (t, s, α) → (t′, s′, α′) in TS and a
map h : r → r′ such that the following diagram commutes:

pR(r)

pR(h)

��

β // pSπs((t, s, α))

pSπS(g)

��
pR(r′)

β′
// pSπs((t′, s′, α′))

Further, g consists of a pair of maps k : s → s′ and j : t → t′ such that the
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following diagram commutes:

qS(s)
α //

qS(k)

��

pT (t)

pT (j)

��
qS(s′)

α′
// pT (t′)

We can now write down a functor F : T (SR)→ (TS)R:

(t, (s, r, α), β) 7→ ((t, s, β), r, α)

Again, a morphism f : (t, (s, r, α), β) → (t′, (s′, r′, α′), β′) consists of maps
k : r → r′, j : s → s′, and h : t → t′. We need to define F (f) : ((t, s, β), r, α) →
((t′, s′, β′), r′, α′). The first component g′ : (t, s, β) → (t′, s′, β′) consists of the
maps j : s→ s′ and h : t→ t′, and the following diagram commutes:

qS(s)
β //

qS(j)

��

pT (t)

pT (h)

��
qS(s′)

β′
// pT (t′)

The other component map of F (f) is k : r → r′ and we see that the following
diagram also commutes:

pR(r)

pR(k)

��

α // pSπs((t, s, β))

pSπS(g′)

��
pR(r′)

α′
// pSπs((t′, s′, β′))

thus, defining a morphism in (TS)R.
We now just need to check that F preserves identities and composition

and that it is indeed an isomorphism. We will then have shown that the
apexes of the two spans are isomorphic. First, given an identity morphism
1: (t, (s, r, α), β) → (t, (s, r, α), β), then F (1) is the identity morphism on
((t, s, β), r, α). The components of the identity morphism are the respective
identity morphisms on the objects r,s, and t. By the construction of F , it is
clear that F (1) will then be an identity morphism.

Given a pair of composable maps f : (t, (s, r, α), β) → (t′, (s′, r′, α′), β′) and
f ′ : (t′, (s′, r′, α′), β′) → (t′′, (s′′, r′′, α′′), β′′) in T (SR), the composite is a map
f ′f with components g′g : (s, r, α) → (s′′, r′′, α′′) and h′h : t → t′′. Further, g′g
has component morphisms k′k : r → r′′ and j′j : s→ s′. It is then easy to check
that under the image of F this composition is preserved.

The construction of the inverse of F is implicit in the construction of F , and
it is easy to verify that each composite FF−1 and F−1F is an identity functor.
Further, the natural isomorphisms required for an equivalence of spans can each
be taken to be the identity.
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It follows from the associativity of composition that degroupoidification pre-
serves composition:

Lemma 33. Degroupoidification preserves composition. That is, given a pair
of composable tame spans:

T

��@@@@@@@

���������
S

��@@@@@@@

���������

Z Y X

we have
T
˜
S
˜

= TS
˜
.

Proof. Consider the composable pair of spans above along with a groupoid Ψ
over X :

T

��@@@@@@@

���������
S

��@@@@@@@

���������
Ψ

��????????

~~~~~~~~~

Z Y X 1

We can consider the groupoid over X as a span by taking the right leg to be the
unique map to the terminal groupoid. We can compose this triple of spans in
two ways; either T (SΨ) or (TS)Ψ. By the Proposition 32 stated above, these
spans are equivalent. By Theorem 24, degroupoidification produces the same
linear operators. Thus, composition is preserved. That is,

T
˜
S
˜

Ψ
˜

= TS
˜

Ψ
˜
.

5.3 Inner Products and Adjoints

Now we prove our results about the inner product of groupoids over a fixed
groupoid, and the adjoint of a span:

Theorem 34. Given a groupoid X, there is a unique inner product 〈·, ·〉 on the
vector space L2(X) such that

〈Φ
˜
,Ψ
˜
〉 = |〈Φ,Ψ〉|

whenever Φ and Ψ are square-integrable groupoids over X. With this inner
product L2(X) is a real Hilbert space.

Proof. Uniqueness of the inner product follows from the formula, since every
vector in L2(X) is a finite-linear combination of vectors Ψ

˜
for square-integrable

groupoids Ψ over X . To show the inner product exists, suppose that Ψi,Φi are
square-integrable groupoids over X and αi, βi ∈ R for 1 ≤ i ≤ n. Then we need
to check that ∑

i

αiΨ˜ i
=
∑

j

βjΦ˜j
= 0
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implies ∑

i,j

αiβj |〈Ψi,Φj〉| = 0.

The proof here closely resembles the proof of existence in Theorem 23. We
leave to the reader the task of checking that L2(X) is complete in the norm
corresponding to this inner product.

Proposition 35. Given a span

S
q

���������
p

��@@@@@@@

Y X

and a pair v : Ψ→ X, w : Φ→ Y of groupoids over X and Y , respectively, there
is an equivalence of groupoids

〈Φ, SΨ〉 ' 〈S†Φ,Ψ〉.

Proof. We can consider the groupoids over X and Y as spans with one leg
over the terminal groupoid 1. Then the result follows from the equivalence
given by associtativity in Lemma 32 and Theorem 24. Explicitly, 〈Φ, SΨ〉 is the
composite of spans SΨ and Φ, while 〈S†Φ,Ψ〉 is the composite of spans S†Φ
and Ψ.

Proposition 36. Given spans

T
qT

���������
pT

��@@@@@@@ S
qS

���������
pS

��@@@@@@@

Z Y Y X

there is an equivalence of spans

(ST )† ' T †S†.

Proof. This is clear by the definition of composition.

Proposition 37. Given spans

S
qS

���������
pS

��@@@@@@@ T
qT

��~~~~~~~
pT

  @@@@@@@

Y X Y X

there is an equivalence of spans

(S + T )† ' S† + T †.
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Proof. This is clear since the addition of spans is given by coproduct of
groupoids. This construction is symmetric with respect to swapping the legs of
the span.

Proposition 38. Given a groupoid Λ and square-integrable groupoids Φ, Ψ,
and Ψ′ over X, we have the following equivalences of groupoids:

1.
〈Φ,Ψ〉 ' 〈Ψ,Φ〉.

2.
〈Φ,Ψ + Ψ′〉 ' 〈Φ,Ψ〉+ 〈Φ,Ψ′〉.

3.
〈Φ,Λ×Ψ〉 ' Λ× 〈Φ,Ψ〉.

Proof. Each part will follow easily from the definition of weak pullback. First
we label the maps for the groupoids over X as v : Φ → X , w : Ψ → X , and
w′ : Ψ′ → X .

1. 〈Φ,Ψ〉 ' 〈Ψ,Φ〉.
By definition of weak pullback, an object of 〈Φ,Ψ〉 is a triple (a, b, α) such
that a ∈ Φ, b ∈ Ψ, and α : v(a) → w(b). Similarly, an object of 〈Ψ,Φ〉 is
a triple (b, a, β) such that b ∈ Ψ, a ∈ Φ, and β : w(b) → v(a). Since α is
invertible, there is an evident equivalence of groupoids.

2. 〈Φ,Ψ + Ψ′〉 ' 〈Φ,Ψ〉+ 〈Φ,Ψ′〉.
Recall that in the category of groupoids, the coproduct is just the disjoint
union over objects and morphisms. With this it is easy to see that the
definition of weak pullback will ‘split’ over union.

3. 〈Φ,Λ×Ψ〉 ' Λ× 〈Φ,Ψ〉.
This follows from the associativity (up to isomorphism) of the cartesian
product.
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A Review of Groupoids

Definition 39. A groupoid is a category in which all morphisms are invertible.

Notation 40. We denote the set of objects in a groupoid X by Ob(X) and the
set of morphisms by Mor(X).

Definition 41. A functor F : X → Y between categories is a pair of functions
F : Ob(X) → Ob(Y ) and F : Mor(X) → Mor(Y ) such that F (1x) = 1F (x) for
x ∈ Ob(X) and F (gh) = F (g)F (h) for g, h ∈ Mor(X).

Definition 42. A natural transformation α : F → G between functors
F,G : X → Y consists of a morphism αx : F (x) → G(x) in Mor(Y ) for each
x ∈ Ob(X) such that for each morphism h : x → x′ in Mor(X) the following
naturality square commutes:

F (x)
αx //

F (h)

��

G(x)

G(h)

��
F (x′) αx′

// G(x′)

Definition 43. A natural isomorphism is a natural transformation α : F →
G between functors F,G : X → Y such that for each x ∈ X, the morphism αx
is invertible.

Note that a natural transformation between functors between groupoids is nec-
essarily a natural isomorphism.

In what follows, and throughout the paper, we write x ∈ X as shorthand
for x ∈ Ob(X). Also, several places throughout this paper we have used the
notation α ·F or F ·α to denote operations combining a functor F and a natural
transformation α. These operations are called ‘whiskering’:

Definition 44. Given groupoids X, Y and Z, functors F : X → Y , G : Y → Z
and H : Y → Z, and a natural transformation α : G ⇒ H, there is a natural
transformation α ·F : GF ⇒ HF called the right whiskering of α by F . This
assigns to any object x ∈ X the morphism αF (x) : G(F (x)) → H(F (x)) in Z,
which we denote as (α · F )x. Similarly, given a groupoid W and a functor
J : Z → W , there is a natural transformation J · α : JG → JH called the
left whiskering of α by J . This assigns to any object y ∈ Y the morphism
J(αy) : JG(y)→ JH(y) in W , which we denote as (J · α)y.

Definition 45. A functor F : X → Y between groupoids is called an equiva-
lence if there exists a functor G : Y → X, called the weak inverse of F , and
natural isomorphisms η : GF → 1X and ρ : FG → 1Y . In this case we say X
and Y are equivalent.

Definition 46. A functor F : X → Y between groupoids is called faithful if
for each pair of objects x, y ∈ X the function F : hom(x, y)→ hom(F (x), F (y))
is injective.

43



Definition 47. A functor F : X → Y between groupoids is called full if for
each pair of objects x, y ∈ X, the function F : hom(x, y) → hom(F (x), F (y)) is
surjective.

Definition 48. A functor F : X → Y between groupoids is called essentially
surjective if for each object y ∈ Y , there exists an object x ∈ X and a morphism
f : F (x)→ y in Y .

A functor has all three of the above properties if and only if the functor is an
equivalence. It is often convenient to prove two groupoids are equivalent by
exhibiting a functor which is full, faithful and essentially surjective.

Definition 49. A map from the span of groupoids

S
q

���������
p

��@@@@@@@

Y X

to the span of groupoids

S′

q′

~~~~~~~~~
p′

  AAAAAAA

Y X

is a functor F : S → S′ together with natural transformations α : p ⇒ p′F ,
β : q ⇒ q′F .

Definition 50. An equivalence of spans of groupoids

S
g

���������
f

��@@@@@@@ S′

g′

~~~~~~~~~
f ′

  AAAAAAA

Y X Y X

is a map of spans (F, α, β) from S to S ′ such that F : S → S′ is an equivalence
of groupoids, together with a map of spans (G,α′, β′) from S′ to S and a natural
isomorphism γ : GF ⇒ 1 such that the following equations hold:

1p = (p · γ) ◦ (α′ · F ) ◦ α

and
1q = (q · γ) ◦ (β′ · F ) ◦ β.

Lemma 51. Given equivalent groupoids X and Y , |X | = |Y |.

Proof. From a functor F : X → Y between groupoids, we can obtain a function
F : X → Y . If F is an equivalence, F is a bijection. Since these are the indexing
sets for the sum in the definition of groupoid cardinality, we just need to check
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that for a pair of elements [x] ∈ X and [y] ∈ Y such that F ([x]) = [y], we have
|Aut(x)| = |Aut(y)|. This follows from F being full and faithful, and that the
cardinality of automorphism groups is an invariant of an isomorphism class of
objects in a groupoid. Thus,

|X | =
∑

x∈X

1

|Aut(x)| =
∑

y∈Y

1

|Aut(y)| = |Y |.

Lemma 52. Given a diagram of groupoids

S

B

T

p

��??????????????

q

����������������
F //

α

;C��� ���

where F is an equivalence of groupoids, the restriction of F to the full inverse
image p−1(b)

F |p−1(b) : p−1(b)→ q−1(b)

is an equivalence of groupoids, for any object b ∈ B.

Proof. It is sufficient to check that F |p−1(b) is a full, faithful, and essentially
surjective functor from p−1(b) to q−1(b). First we check that the image of
F |p−1(b) indeed lies in q−1(b). Given b ∈ B and x ∈ p−1(b), there is a morphism
αx : p(x) → qF (x) in B. Since p(x) ∈ [b], then qF (x) ∈ [b]. It follows that
F (x) ∈ q−1(b). Next we check that F |p−1(b) is full and faithful. This follows
from the fact that full inverse images are full subgroupoids. It is clear that a
full and faithful functor restricted to a full subgroupoid will again be full and
faithful. We are left to check only that F |p−1(b) is essentially surjective. Let
y ∈ q−1(b). Then, since F is essentially surjective, there exists x ∈ S such that
F (x) ∈ [y]. Since qF (x) ∈ [b] and there is an isomorphism αx : p(x)→ qF (x), it
follows that x ∈ q−1(b). So F |p−1(b) is essentially surjective. We have shown that
F |p−1(b) is full, faithful, and essentially surjective, and, thus, is an equivalence
of groupoids.

The data needed to construct a weak pullback of groupoids is a ‘cospan’:

Definition 53. Given groupoids X and Y , a cospan from X to Y is a diagram

Y

g
��@@@@@@@ X

f~~~~~~~~~

Z

where Z is groupoid and f : X → Z and g : Y → Z are functors.
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We next prove a lemma stating that the weak pullbacks of equivalent cospans are
equivalent. Weak pullbacks, also called iso-comma objects, are part of a much
larger family of limits called flexible limits. To read more about flexible limits,
see the work of Street [20] and Bird [7]. A vastly more general theorem than
the one we intend to prove holds in this class of limits. Namely: for any pair of
parallel functors F,G from an indexing category to Cat with a pseudonatural
equivalence η : F → G, the pseudo-limits of F and G are equivalent. But to
make the paper self-contained, we strip this theorem down and give a hands-on
proof of the case we need.

To show that equivalent cospans of groupoids have equivalent weak pull-
backs, we need to say what it means for a pair of cospans to be equivalent. As
stated above, this means that they are given by a pair of parallel functors F,G
from the category consisting of a three-element set of objects {1, 2, 3} and two
morphisms a : 1 → 3 and b : 2 → 3. Further there is a pseudonatural equiv-
alence η : F → G. In simpler terms, this means that we have equivalences
ηi : F (i) → G(i) for i = 1, 2, 3, and squares commuting up to natural isomor-
phism:

F (1)

F (3)

G(1)

G(3)

F (1)

F (3)

G(1)

G(3)

η1

��

F (a) //

η3

��

G(a)
//

η2

��

F (b) //

η3

��

G(b)
//

v
;C�����

�����
w

;C�����
�����

For ease of notation we will consider the equivalent cospans:

Y

g
��>>>>>>>> X

f
����������

Ŷ

ĝ ��>>>>>>> X̂

f̂���������

Z Ẑ

with equivalences x̂ : X → X̂, ŷ : Y → Ŷ , and ẑ : Z → Ẑ and natural isomor-
phisms v : ẑf ⇒ f̂ x̂ and w : ẑg ⇒ ĝŷ.

Lemma 54. Given equivalent cospans of groupoids as described above, the weak
pullback of the cospan

Y

g
��@@@@@@@ X

f~~~~~~~~~

Z

is equivalent to the weak pullback of the cospan

Ŷ

ĝ ��>>>>>>> X̂

f̂���������

Ẑ
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Proof. We construct a functor F between the weak pullbacks XY and X̂Ŷ and
show that this functor is an equivalence of groupoids, i.e., that it is full, faithful
and essentially surjective. We recall that an object in the weak pullback XY
is a triple (r, s, α) with r ∈ X , s ∈ Y and α : f(r) → g(s). A morphism in
ρ : (r, s, α) → (r′, s′, α′) in XY is given by a pair of morphisms j : r → r′ in X
and k : s→ s′ in Y such that g(k)α = α′f(j). We define

F : XY → X̂Ŷ

on objects by
(r, s, α) 7→ (x̂(r), ŷ(s), w−1

s ẑ(α)vr)

and on a morphism ρ by sending j to x̂(j) and k to ŷ(k). To check that this
functor is well-defined we consider the following diagram:

f̂ x̂(r)
vr //

f̂ x̂(j)

��

ẑf(r)
ẑ(α) //

ẑf(j)

��

ẑg(s)
w−1
s //

ẑg(k)

��

ĝŷ(s)

ĝŷ(k)

��
f̂ x̂(r′) vr′

// ẑf(r′)
ẑ(α′)

// ẑg(s′)
w−1

s′

// ĝŷ(s′)

The inner square commutes by the assumption that ρ is a morphism in XY .
The outer squares commute by the naturality of v and w. Showing that F
respects identities and composition is straightforward.

We first check that F is faithful. Let ρ, σ : (r, s, α)→ (r′, s′, α′) be morphisms
in XY such that F (ρ) = F (σ). Assume ρ consists of morphisms j : r → r′,
k : s→ s′ and σ consists of morphisms l : r → r′ and m : s→ s′. It follows that
x̂(j) = x̂(l) and ŷ(k) = ŷ(m). Since x̂ and ŷ are faithful we have that j = l and
k = m. Thus, we have shown that ρ = σ and F is faithful.

To show that F is full, we assume (r, s, α) and (r′, s′, α′) are objects in XY
and ρ : (x̂(r), ŷ(s), ẑ(α)) → (x̂(r′), ŷ(s′), ẑ(α′)) is a morphism in X̂Ŷ consisting
of morphisms j : x̂(r)→ x̂(r′) and k : ŷ(s)→ ŷ(s′). Since x̂ and ŷ are full, there
exist morphisms j̃ : r → r′ and k̃ : s→ s′ such that x̂(j̃) = j and ŷ(k̃) = k. We
consider the following diagram:

ẑ(f(r))
v−1
r //

ẑ(f(j̃))

��

f̂ x̂(r)
ẑ(α) //

f̂ x̂(j̃)

��

ĝŷ(s)
ws //

ĝŷ(k̃)

��

ẑ(g(s))

ẑ(g(k̃))

��
ẑ(f(r′))

v−1

r′

// f̂ x̂(r′)
ẑ(α′)

// ĝŷ(s′)
ws

// ẑ(g(s′))

The center square commutes by the assumption that ρ is a morphism in X̂Ŷ , and
the outer squares commute by naturality of v and w. Since ẑ is full, there exists
morphisms ᾱ : f(r) → g(s) and ᾱ′ : f(r′) → g(s′) such that ẑ(ᾱ) = wsẑ(α)v−1

r
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and ẑ(ᾱ′) = ws′ ẑ(α
′)v−1

r′ . Now since ẑ is faithful, we have that

f(r)
ᾱ //

f(j̃)

��

g(s)

g(k̃)

��
f(r′)

ᾱ′
// g(s′)

commutes. Hence, F is full.
To show F is essentially surjective we let (r, s, α) be an object in X̂Ŷ . Since x̂

and ŷ are essentially surjective, there exist r̃ ∈ X and s̃ ∈ Y with isomorphisms
β : x̂(r̃)→ r and γ : ŷ(s̃)→ s. We thus have the isomorphism:

ẑ(f(r̃))
vr̃−1−→ f̂(x̂(r̃))

f̂(β)−→ f̂(r)
α−→ ĝ(s)

ĝ(γ−1)−→ ĝ(ŷ(s̃))
ws̃−→ ẑ(g(s̃))

Since ẑ is full, there exists an isomorphism µ : f(r̃) → g(s̃) such that ẑ(µ) =

wsĝ(γ
−1)αf̂ (β)v−1

r . We have constructed an object (r̃, s̃, µ) in XY and we need
to find an isomorphism from F ((r̃, s̃, µ) = (x̂(r̃), ŷ(s̃), w−1

s ẑ(µ)vr) to (r, s, α).
This morphism consists of β : x̂(r̃) → r and γ : ŷ(s̃) → s. That this is an
isomorphism follows from β, γ being isomorphisms and the following calculation:

ĝ(γ)w−1
s ẑ(µ)vr = ĝ(γ)w−1

s̃ ws̃ĝ(γ−1)αf̂(β)v−1
r̃ vr̃

= αf̂(β)

We have now shown that F is essentially surjective, and thus an equivalence of
groupoids.
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