
A FORMULA FOR THE JONES-WENZL PROJECTIONS

SCOTT MORRISON

Abstract. I present a method of calculating the coefficients appearing in the Jones-Wenzl projec-
tions in the Temperley-Lieb algebras. It essentially repeats the approach of Frenkel and Khovanov
in [FK97] published in 1997. I wrote this article mid-2002, not knowing about their work, but then
set it aside upon discovering their article.

Recently I decided to dust it off and place it on the arXiv — hoping the self-contained and
detailed proof I give here may be useful. It’s also been cited a number of times [Han10, Pet10,
Eli11, BPMS12, Lev13], so I thought it best to give it a permanent home.

The proof is based upon a simplification of the Wenzl recurrence relation. I give an example
calculation, and compare this method to the formula announced by Ocneanu [Ocn02] and par-
tially proved by Reznikoff [Rez07]. I also describe certain moves on diagrams which modify their
coefficients in a simple way.

1. Basic Definitions

The quantum integers are denoted by [n], and are given in terms of the formal quantum
parameter q by the formula

[n] = qn−1 + qn−3 + · · ·+ q−(n−1) =
qn − q−n

q − q−1
.

The quantum integers satisfy many relations, all of which reduce to simple arithmetic relations
when evaluated at q = 1. For example, a simple result we will need later is

Lemma 1.1. If m ≥ a, then [m− a] + [m+ 1][a] = [m][a+ 1].

An n strand Temperley-Lieb diagram is a diagram drawn inside a rectangle with n marked
points on both the upper and lower edges, with non-intersecting arcs joining these points. We
consider isotopic diagrams as equivalent. A through strand is an arc joining a point on the upper
edge of a diagram to the lower edge. A cup joins a point on the upper edge with another point on
the upper edge, and similarly a cap joins the lower edge to itself. A cap or cup is called innermost
if it is exactly that — there are no nested caps or cups inside it. This terminology is illustrated in
Figure 1.

through
strands

FF

n ~
� ==

h q
| ;;

g n
w

a non-innermost cap

DD�

innermost
cups

ee
X

Q
J oo KW_

Figure 1.

The n strand Temperley-Lieb algebra, denoted TLn, is the algebra over C(q) spanned by
the Temperley-Lieb diagrams, with multiplication defined on this basis by stacking diagrams. In
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such a product of diagrams closed loops may appear, each of which we remove while inserting an
additional factor of −[2]. Two quite different sign conventions appear in the literature. Generally,
in topological applications loops are given the value −[2], but in the theory of subfactors the
value [2]. I have employed the present convention, because it results in simpler formulas, with all
coefficients positive. To pass between the two conventions, replace everywhere [i] with (−1)i+1[i],
or equivalently q with −q.

Figure 2 illustrates multiplication in the 5 strand algebra.

= −[2]

Figure 2. A calculation in the 5 strand Temperley-Lieb algebra.

We can also define vector spaces TLn,m, spanned by isotopy classes of diagrams with m points
on the lower boundary of the rectangle, and n along the top. These fit together into a monoidal
category [CFS95, CP94] over C(q), with objects in N, and TLn,m giving the morphisms from m to
n.

Equivalently, we can give a definition of the Temperley-Lieb algebra in terms of generators and
relations [Jon91].1 Define the multiplicative generator ei (i = 1, . . . , n− 1) as the diagram with
i− 1 vertical strands, a cap-cup pair, then n− i− 1 more vertical strands. Figure 3 illustrates the
multiplicative generators in the 5 strand algebra.

e1 e2 e3 e4

Figure 3. The multiplicative generators in the 5 strand Temperley-Lieb algebra.

The Temperley-Lieb algebra is generated by these diagrams along with the identity diagram,
denoted 1, subject to the relations

eiei = −[2]ei

eiei±1ei = ei

eiej = ejei if |i− j| ≥ 2.

Inside the Temperley-Lieb algebra TLn we have the two-sided ideal In, generated by the elements
{e1, . . . , en−1}. This ideal has codimension 1; it is spanned by diagrams with n−2 or fewer through
strands, that is, every diagram except the identity diagram.

1For the relationship between the diagrammatic algebra and ‘generators and relations’ algebra when the formal
parameter q has been evaluated at a complex root of unity, see [Fre03, JR06].
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2. The Jones-Wenzl idempotent

Inside the n strand Temperley-Lieb algebra there is a special element called the Jones-Wenzl
idempotent, denoted f (n). It is characterised by the properties

f (n) 6= 0

f (n)f (n) = f (n)

eif
(n) = f (n)ei = 0 ∀i ∈ {1, . . . , n− 1} .

(2.1)

The second equation could be equivalently stated as Inf (n) = f (n)In = 0.
The aim of this work is to present new methods for calculating the coefficients for each diagram

appearing in the Jones-Wenzl idempotent. The starting point will be the Wenzl recurrence formula,
allowing us to calculate f (n+1) in terms of f (n).

Lemma 2.1. The coefficient of the identity diagram in a Jones-Wenzl idempotent is always 1.

Proof. Write f (n) = α1 + g, with α ∈ C and g ∈ In. We want to see that α = 1. This follows from
f (n)f (n) = f (n)α1 + f (n)g = αf (n) + 0, so α = 1. �

Lemma 2.2. The Jones-Wenzl idempotent, characterised by Equation 2.1, is unique.

Proof. Suppose both fn1 and fn2 satisfy Equation 2.1. Write fn1 = 1 + g1 and fn2 = 1 + g2, where
g1, g2 ∈ In. Then fn1 f

n
2 = fn1 (1 + g2) = fn1 and similarly fn1 f

n
2 = (1 + g1)f

n
2 = fn2 . Thus

fn1 = fn2 . �

For example, the 3 strand idempotent is

f (3) = +
[2]

[3]
+

[2]

[3]
+

1

[3]
+

1

[3]

The n strand Temperley-Lieb algebra naturally includes into the n+1 strand algebra, by adding
a vertical strand to the right side of the diagram. Taking advantage of this, we abuse notation and
write f (n) ∈ TLn+1 to mean the n strand Jones-Wenzl idempotent, with a vertical strand added to
the right, living in the n+ 1 strand algebra.

Proposition 2.3 (Wenzl recurrence formula). The Jones-Wenzl idempotent satisfies

f (n+1) = f (n) +
[n]

[n+ 1]
f (n)enf

(n), (2.2)

or, diagrammatically,

· · ·

· · ·

f (n+1) =

· · ·

· · ·

f (n) +
[n]

[n+ 1] · · ·

· · ·

f (n)

· · ·

· · ·

f (n)

.
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This is a well known result. The original paper is [Wen87]. Various proofs can be found in any
of [CFS95, Kau01, KL94, Lic93].

3. Simplifications of the Wenzl recurrence formula

We will now consider the last term, [n]
[n+1]f

(n)enf
(n), in the Wenzl recurrence formula. By ex-

panding this appropriately, we will see that many of the terms do not contribute.
Let P denote the leftmost n − 2 points along the top edge of an n strand diagram. Define

Jn ⊂ TLn as the linear span of those diagrams in which any two points of P are connected
together by a strand. This is a left ideal; multiplying by any diagram on the right does not change
this condition. Further we can write TLn = Jn

⊕
Kn, where Kn is spanned by the diagrams in

which the points of P are all connected to points on the bottom edge of the diagram. This collection
of diagrams consists of those diagrams with a single cup at the top right, and a single cap at some
position along the bottom edge, along with the identity diagram. We denote these diagrams by
gn,i, with i = 1, . . . , n − 1, with the subscript i indicating the position of the cap. Further, for
convenience we write gn,n = 1. This is illustrated for n = 6 in Figure 3. From this, we see Jn has
codimension n.

g6,1 g6,2 g6,3 g6,4 g6,5 g6,6 = 1

Figure 4. The diagrams spanning K6.

Lemma 3.1. The left ideal Jn is contained in the kernel of the map TLn ⊂ TLn+1 → TLn+1 given
by h 7→ f (n)enh.

Proof. If h is a diagram in Jn, then we can write h = eih
′ for some 1 ≤ i ≤ n − 2, and h′ ∈ TLn.

Then f (n)enei = f (n)eien = 0. �

This immediately allows us to simplify the Wenzl recurrence relation. Write f (n) = f
(n)
J + f

(n)
K ,

with f
(n)
J ∈ Jn and f

(n)
K ∈ Kn. Then we have

f (n)enf
(n) = f (n)en(f

(n)
J + f

(n)
K )

= f (n)enf
(n)
K .

Now Kn is spanned by the diagrams gn,i for i = 1, . . . , n, so we can write

f
(n)
K =

n∑
i=1

coeff
∈f (n)

(gn,i) gn,i.

From this we easily obtain

Proposition 3.2 (Simplified recurrence formula). The Jones-Wenzl idempotents satisfy

f (n+1) = f (n)

(
n∑

i=1

[n]

[n+ 1]
coeff
∈f (n)

(gn,i) gn+1,i + gn+1,n+1

)
. (3.1)
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Proof. We use the fact that

engn,i = gn+1,i, (3.2)

as illustrated in Figure 3, and calculate as follows:

f (n+1) = f (n) +
[n]

[n+ 1]
f (n)en

n∑
i=1

coeff
∈f (n)

(gn,i) gn,i

= f (n) +
[n]

[n+ 1]
f (n)

n∑
i=1

coeff
∈f (n)

(gn,i) engn,i

= f (n)gn+1,n+1 +
[n]

[n+ 1]
f (n)

n∑
i=1

coeff
∈f (n)

(gn,i) gn+1,i

= f (n)

(
n∑

i=1

[n]

[n+ 1]
coeff
∈f (n)

(gn,i) gn+1,i + gn+1,n+1

)
.

�

=

Figure 5. A sample calculation, e5g5,3 = g6,3, illustrating Equation 3.2.

This simplification of the Wenzl recurrence relation is not in itself particularly useful. It is
still ‘quadratic’ in the sense that when expanded, each term contains two unknown coefficients.
However, we can now use it to make a direct calculation of the quantities coeff(gn,i), which will
enable us to further simplify the recurrence relation to a ‘linear’ form.

Proposition 3.3 (Further simplified recurrence formula). The coefficients of the diagrams with ‘a
single right cup’ are given by

coeff
∈f (n)

(gn,i) =
[i]

[n]
, (3.3)

and the recurrence formula thus becomes

f (n+1) =
f (n)

[n+ 1]

(
n+1∑
i=1

[i]gn+1,i

)
. (3.4)

Proof. At n = 1, there is only one such diagram, 1 = g1,1, with coefficient 1, as required. Now
assume Equation 3.3 holds for some value of n. Equation 3.4 follows immediately from Equation
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3.1, by the following calculation:

f (n+1) = f (n)

(
n∑

i=1

[n]

[n+ 1]

[i]

[n]
gn+1,i + gn+1,n+1

)

= f (n)

(
n∑

i=1

[i]

[n+ 1]
gn+1,i +

[n+ 1]

[n+ 1]
gn+1,n+1

)

=
f (n)

[n+ 1]

(
n+1∑
i=1

[i]gn+1,i

)
.

We will now use this to calculate the coefficient of gn+1,i in f (n+1). Suppose h is a diagram in

TLn, and consider the term [i]
[n+1] coeff(h)hgn+1,i on the right hand side of Equation 3.4. We will

determine the diagrams h and values of i for which this term contributes to the gn+1,j term in

f (n+1). There are several cases to consider.

(1) The diagram h contains a cap connecting two of the leftmost n − 1 points at the bottom
of the diagram. In this case hgn+1,i has n − 4 or fewer through strands, and so can not

contribute to the gn+1,j term in f (n+1). An example of this appears in Figure 2.
(2) There is no such cap in h, but there is a cap connected the rightmost two points at the

bottom of the diagram. In this case the diagram hgn+1,i has a vertical strand on the right
hand side, and so again can not contribute. An example appears in Figure 2.

h h

Figure 6. Examples illustrating the first two cases in Proposition 3.3.

(3) There are no such caps, and h is the identity diagram. In this case

[i]

[n+ 1]
coeff
∈f (n)

(h)hgn+1,i =
[i]

[n+ 1]
gn+1,i.

These cases are exhaustive, and so it is easily seen that there is exactly one contribution to the
gn+1,j term in f (n+1), coming from the identity term in f (n) and the gn+1,j term of the summation,

and so the coefficient of gn+1,j in f (n+1) is exactly [j]
[n+1] . Thus by induction the claimed result

holds for all values of n. �

Remark. An analogue of this ‘linear’ recurrence relation for idempotents in the sl3 spider (c.f.
[Kup96]) appears in Dongseok’s work [Kim07, Kim03], where it is called a ‘single clasp expansion’.

4. Unfolding the recurrence formula

Let’s now think about the map (diagram) 7→ (diagram)
∑n+1

i=1
[i]

[n+1]gn+1,i. Multiplying an n

strand diagram by gn+1,i can be thought of as ‘inserting a cap at the i-th position, and folding up
the right strand’:
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multiply by g7,3 //

insert

a cap

��

isotopy

��

fold up the

rightmost strand //

Each diagrammatic term in f (n+1) thus arises from a sum of contributions generated in this way.
Choose some diagram D in TLn+1. To determine which terms in f (n) contribute to the coefficient
of D in f (n+1), we should take D, and ‘fold down the right strand, then select and remove an
innermost cap’. It is only the terms in f (n) involving these diagrams which matter in calculating
the coefficient of D in f (n+1). Suppose we chose to remove an innermost cap at position i. The
resulting diagram, when multiplied by the gn+1,i, gives the original diagram D.

Proposition 4.1. Suppose D is a diagram in TLn+1. Let D̂ ∈ TLn,n+2 be the diagram obtained
by folding down the top right end point of D. Let {i} be the set of positions of innermost caps in

D̂, and Di ∈ TLn be the diagram obtained by removing that innermost cap. Then

coeff
∈f (n+1)

(D) =
∑
{i}

[i]

[n+ 1]
coeff
∈f (n)

(Di) . (4.1)

Example. Consider the diagram ∈ TL5. Folding down the rightmost strand gives .

There are now two innermost caps we can remove, at positions 2 and 5. Thus

coeff
∈f (5)

( )
=

[2]

[5]
coeff
∈f (4)

( )
+

[5]

[5]
coeff
∈f (4)

( )
.

We can continue in this way. The diagram folds down to give , with only one cap to

remove, and similarly folds down to . Thus

coeff
∈f (5)

( )
=

[2][3]

[5][4]
coeff
∈f (3)

( )
+

[5][2]

[5][4]
coeff
∈f (3)

( )
=

[2][3] + [5][2]

[5][4]
.

Thus the coefficient of a diagram is a certain sum over sequences of choices of arcs to remove.
Iterating the calculation in Equation 4.1 allows us to find the coefficient of any diagram. Although
this calculation is based on a recursive step, it is very different from Wenzl’s formula in Equation
2.2. In particular, we never need to perform any multiplications in the Temperley-Lieb algebra, and
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we can find the coefficient of a diagram without calculating the entire projection, by performing
simple combinatorial operations on the diagrams.

5. An explicit formula

It is possible to write down an explicit formula giving the result of this calculation, but it is
made somewhat awkward by the fact that the numbering of the strands changes as we successively
remove innermost caps.

A good way to think about the diagrams is as a ‘capform’ [Kau01], produced by ‘folding the
diagram down to the right’.

!

Now, for a diagram with n strands, let

S =

(s1, . . . , sn) ∈ Nn

∣∣∣∣∣∣∣∣∣
the si are all distinct, 1 ≤ si ≤ n + i − 1,
si is the position of the left end of a cap
for each i, and if s̃i denotes the position of
the corresponding right end, then if i < j,
and si < sj , then s̃i < sj also

 .

The sequences in S specify choices of orders in which to remove strands. The restriction 1 ≤ si ≤
n+i−1 ensures that we only remove a strand when its initial point is in the left half of the capform,
and the second restriction ensures that we remove only innermost caps.

This set S is not quite what is needed, because although it describes the orders in which we can
remove strands, the factors appearing in Equation 4.1 depend on the position of the cap at the
moment we remove it.

This position is given by the map τ : s 7→ s− κ(s), where

κ(s)i = # {1 ≤ j ≤ i− 1 | sj < si } .

Thus for example τ(s)2 =

{
s2 if s1 > s2

s2 − 2 if s1 < s2
.

Then we have

Proposition 5.1. The coefficient in f (n) of a diagram D with index set S, as given above, is

coeff
∈f (n)

(D) =
1

[n]!

∑
s∈S

[τ(s)], (5.1)

using the convenient notations [n]! = [n][n− 1] · · · [1] and [(t1, . . . , tn)] = [t1] · · · [tn].

Example. We redo the calculation of coeff∈f (5)

( )
. The index set has two elements, S =

{(2, 5, 7, 4, 1), (5, 2, 7, 4, 1}. Then τ(S) = {(2, 3, 3, 2, 1), (5, 2, 3, 2, 1)}, and so

coeff
∈f (5)

( )
=

[2][3][3][2][1] + [5][2][3][2][1]

[5]!
=

[2][3] + [5][2]

[5][4]
,

as we calculated before.
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6. k-moves

We’ll next apply this algorithm for computing coefficients to prove ‘k-move invariance’. A k-move
acts on the capform of a diagram transforming a collection of k nested caps with centre strictly
in the left half of the capform into k − 1 nested caps to the right of a single cap, while leaving
the rest of the diagram unchanged. We apply k-moves to rectangular Temperley-Lieb diagrams by
converting to a capform, applying the move as described, and converting back.

Thus, a valid 4-move is illustrated below.

7→

The condition that the centre of the capform must lie in the left half of the diagram requires
that the move does not decrease the number of through strands in the original diagram.

The following theorem relating the coefficients of diagrams obtained by k-moves allows very
efficient calculations in many situations.

Proposition 6.1. If D′ is obtained from a diagram D ∈ TLn by a k-move then

[k] coeff
∈f (n)

(D) = coeff
∈f (n)

(
D′
)
.

The proof is a somewhat complicated combinatorial argument, based on the algorithm above,
and manipulation of relations amongst the quantum integers.

We use the notation of Proposition 5.1. First we describe the structure of the index set S′ for
the diagram D′, in terms of the index set S for D.

Each s ∈ S describes an order in which to successively remove strands. In particular, it tells us
the (increasing) times at which we remove each of the k nested caps. Associated to this ordering we
have several possible orderings for the diagram D′. Instead of removing the k caps in order, we can
now remove the additional single cap at any point instead. Thus we obtain k different elements of
S′, which remove strands in the rest of the diagram at exactly the same times as s. At some point
(different for each of the k elements) instead of removing the current innermost cap of the k nested
caps, we remove the new single cap. It is not too hard to see that we obtain all valid sequences in
S′ this way, and each exactly once. This is formalised in the next paragraph.

Suppose the leftmost arc of the k nested caps in D is the a-th strand. For each s ∈ S, define
s(1), . . . , s(k) ∈ S′ as follows. Let j1 < · · · < jk be the positions in s of the numbers a+ k− 1, . . . , a,
and call these positions ‘marked’. Because of the nested structure, we have sji = a+ k − i. In the
following we’ll often need to describe the elements of a sequence of the marked positions, so we’ll
introduce the following notation:

((s)) = (sji)
k
i=1 = (a+ k − 1, a+ k − 2, . . . , a).

Now let s(i) be the same as s in the unmarked positions, and((
s(i)
))

= (a+ k, a+ k − 1, . . . , a+ k + 2− i, a︸︷︷︸
i-th position

, a+ k − i+ 1, . . . , a+ 3, a+ 2).

That is,
((
s(i)
))

= ((s)) + (1, 1, 1, . . . , 1, i− k, 2, . . . , 2, 2).

Lemma 6.2.
S′ =

{
s(i) | s ∈ S, i ∈ 1, . . . , k

}
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and so

coeff
∈f (n)

(
D′
)

=
1

[n]!

∑
s∈S

k∑
i=1

[τ(s(i))].

Proof of Proposition 6.1. We calculate τ(s(i)), then prove that
∑k

i=1[τ(s(i))] = [k][τ(s)].
Firstly, suppose ((κ(s))) = (κ1, . . . , κk), so τ(s)ji = a + k − i − 2κi. For brevity we’ll define

bi = a + k − i − 2κi. Outside the marked positions, κ(s(i)) agrees with κ(s), and
((
κ(s(i))

))
=

(κ1, κ2, . . . , κi−1, κi, κi+1 + 1, . . . , κk + 1). Thus((
τ(s(i))

))
= (a+ k − 2κ1, a+ k − 1− 2κ2, . . . , a+ k − (i− 2)− 2κi−1, a− 2κi, a+ k − (i+ 1)− 2κi+1, . . . , a− 2κk)

= (b1 + 1, b2 + 1, . . . , bi−1 + 1, bi − k + i, bi+1, . . . , bk).

We want to prove that
∑k

i=1[
((
τ(s(i))

))
] = [k][(b1, . . . , bk)]. To this end, define the partial sum

Tl =
∑l

i=1[
((
τ(s(i))

))
]. We will show that

Tk = Tl +

l∏
j=1

[bj + 1] · [k − l] ·
k∏

j=l+1

[bj ] (6.1)

for each l, and so, evaluating at l = 0, Tk = [k]
∏k

j=1[bj ], as required.

Certainly Equation 6.1 holds for l = k, since [0] = 0. Suppose it holds for some value l. We can
pull out the final term of the summation, and obtain

Tk = Tl +

l∏
j=1

[bj + 1] · [k − l] ·
k∏

j=l+1

[bj ]

= Tl−1 +

l−1∏
j=1

[bj + 1] · ([bl − k + l] + [bl + 1][k − l])
k∏

j=l+1

[bj ]

and by Lemma 1.1, this is

= Tl−1 +
l−1∏
j=1

[bj + 1] · [k − l + 1][bl] ·
k∏

j=l+1

[bj ].

Thus Equation 6.1 also holds for l − 1, establishing the result. �

7. Results of Ocneanu and of Reznikoff

A similar formula has previously been published for these coefficients, by Ocneanu [Ocn02],
although a proof of that formula was not given. His formula uses the alternative convention that
closed loops have value [2].

Subsequently, a proof of special cases of this formula was been provided by Reznikoff [Rez02,
Rez07]. The proof confirms Ocneanu’s formula for diagrams in TLn with n − 2 or n − 4 through
strings, and uses very different methods (via the Brauer representation of the Temperley-Lieb
algebra) from those employed here.

The method presented here readily reproduces Reznikoff’s results. Some examples of this are
given below. In doing so, this proves that Ocneanu’s formula and the formula here are equivalent
for diagrams with n− 2 or n− 4 through strings. However, I have been unable to obtain a direct
proof that the formulas agree for all diagrams.
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It is reasonably easy to prove that in limited cases the k-move invariance described in §6 holds
for Ocneanu’s formula as well. In particular, for two diagrams related by a k-move that involves
no through strings at all, the coefficients given by Ocneanu’s formula agree with Proposition 6.1.

This suggests a way to prove the equivalence of the formula here and Ocneanu’s directly. If
we knew the two formulas agreed on some class of simple diagrams, they would also agree on
all diagrams obtained from these by a sequence of k-moves and inverse k-moves. However, the
equivalence classes of diagrams under these moves are not particularly large; they each contain a
single diagram with no nested caps or cups.

8. An application to diagrams with n− 4 through strings

In this section, we give an explicit calculation of the coefficient of certain diagrams with exactly
n− 4 through strings. Although we only do one case here, all the other cases are no more difficult.

We use a combination of the summation formula of Equation 4.1 and the k-moves of the §6.
Hopefully this will illustrate the computational power of these techniques!

A diagram with n−4 through strings has exactly 2 caps and 2 cups. We restrict our attention to
those diagrams with no nested caps or cups. Consider such a diagram D. Thus we can unambigu-
ously refer to these as the ‘left cap’, ‘right cap’, ‘left cup’, and ‘right cup’. Suppose the leftmost
points of these arcs occur at positions b1, b2, t1 and t2. (And of course, b2 ≥ b1 + 2, t2 ≥ t1 + 2.)

Because the coefficients of diagrams are preserved when the diagram is reflected in a horizontal
line, we may assume that the right cap is no further to the right than the right cup, that is, that
t2 ≥ b2.

In this configuration, we can apply an inverse (n − t2)-move, moving to right cup as far to
the right as possible, obtaining the diagram D′, with t2 = n − 1. The coefficients are related by
coeff∈f (n) (D′) = 1

[n−t2] coeff∈f (n) (D), by Proposition 6.1.

We now apply the reduction formula. Folding down the top right point of the diagram turns the
right cup into a through strand. Next, we have to choose one of the caps, at positions b1 and b− 2,
to remove. The resulting diagrams are D′b1 , with a cap at position b2 − 2 and a cup at position t1,

and D′b2 with a cap at position b1 and a cup at position t1. Then Equation 4.1 then tells us

coeff
∈f (n)

(
D′
)

=
[b1]

[n]
coeff
∈f (n−1)

(
D′b1

)
+

[b2]

[n]
coeff
∈f (n−1)

(
D′b−2

)
. (8.1)

The coefficients appearing here depend on the relative ordering of b2− 2 and t1 (for the first term),
and of b1 and t1 (for the second term). We’ll assume now that t1 ≥ b2 − 2. (The other two cases,
b1 ≤ t1 ≤ b2 − 2 and t1 ≤ b1, are exactly analogous.) In this case, we can apply an inverse move to
each diagram, as above, to move the cup to the far right, and then use Equation 3.3. Thus

coeff
∈f (n−1)

(
D′b−1

)
=

[b2 − 2][n− 1− t1]
[n− 1]

coeff
∈f (n−1)

(
D′b−2

)
=

[b1][n− 1− t1]
[n− 1]

.

Putting this all together, we obtain

coeff
∈f (n)

(D) =
[b1]([b2] + [b2 − 2])[n− 1− t1][n− t2]

[n][n− 1]

=
[2][b1][b2 − 1][n− 1− t1][n− t2]

[n][n− 1]
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This agrees with the formula given as Equation 3 in [Rez07], for ‘Style 3’ diagrams. (The other two
styles of diagrams there correspond exactly to the other two cases described previously.)
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