
What can we learn from student-performance measures? Identifying
treatment in the presence of curves and letter grades

Glen R. Waddell and Jenni Putz ∗

October 2023

forthcoming, Journal of Human Capital

Abstract

Grade-based performance measures are often relied on when considering the efficacy of education-
related policy interventions. Yet, it is common for measures of student performance to be subjected
to curves and discretized through letter-grade transformations. We show how transformed grades
systematically challenge causal identification. Even without explicit curving, transformations to
letter grade are particularly problematic and yield treatment estimates that are weighted combi-
nations of inflated responsiveness around letter thresholds and “zeros” away from these thresholds.
Curving practices can also introduce false patterns of treatment heterogeneity, attenuating mea-
sured responses to treatment among high-performing students, for example, or inflating measured
responses among low-performing students.
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1 Introduction

Engaging with letter-grade measures of student performance is common for both practitioners and

researchers. If letter classifications or discrete measures of performance are not attached to individual

assignments or tests, they are very often the summary record that students receive at the end of a

class. It is also typical for measures of student performance to be further transformed by a “curve”

of some kind as they are being discretized. Thus, while researchers will look for systematic variation

in student grades to evidence the efficacy of policy interventions, it is rare that they observe un-

transformed measures of student performance—and it is in these pre-curved, untransformed measures

that the benefits of interventions would be best evidenced. Knowing how treatment-induced changes

in the latent performance of students identify the average treatment effect is important, as is the

interpretation of treatment estimates in this context.

Taking the practice itself as given, we provide a taxonomy of sorts—we consider the researcher’s

ability to assess the efficacy of educational interventions when there is letter-grade and curve-induced

measurement error in records of student performance. In the end, we demonstrate how letter-grade

transformations systematically distort our perceptions of treatment efficacy and fundamentally jeop-

ardize the ability of researchers to estimate unbiased treatment effects.

Letter-transformed grades present unique empirical challenges that are largely unexplored in the

literature. Letter grading does share some of the challenges that are more-typically associated with

ordinal measures of happiness and subjective notions of well-being (??). However, there are unique

aspects to grading practices that go beyond those of ordinal-measures data, and with important

implications. For example, unlike happiness scales (where one person’s happiness need not displace

another’s) letter-grade assignments often impose zero-sum conditions. In short, if an untreated student

must be displaced in letter grade for a treated student to improve in letter grade, “treated minus

control” differences in outcomes double count the effect of treatment.1 More generally, though, any

such displacement associated with the allocation of scarce letter grades amounts to a violation of the

stable unit treatment value assumption (SUTVA), and in this context manifests in inflated treatment
1 Note that expressing grading norms in terms of fractions of classes that can receive various letter grades directly

implies zero-sum competition. Princeton’s university-wide grade deflation policy did this, for example, by recommending
that each department should “award no more than 35% of A-range grades for course work,” and “no more than 55% of
A-range grades” for independent research typical of juniors and seniors. (Source: https://odoc.princeton.edu/faculty-
staff/grading-princeton.) Likewise, imposing maximums on the average grade imposes such tradeoffs (e.g., Wellesley’s
anti-grade-inflation policy, as described in ?, ?).
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estimates.

Even in the absence of any displacement around letter grades, however, letter grades will not

regularly retrieve unbiased estimates of treatment as there is another equally fundamental challenge

to identification associated with the discretized measurement of performance. Namely, to the extent

that treated students are far from letter-grade distinctions—far enough that a change in performance

doesn’t change their letter grade—treatment estimates will be attenuated. In essence, any time the

performance of treated students is not different enough to be observable in letter grades, they will be

accounted for as unresponsive to treatment. It is in these two ways that we characterize letter-based

grades as problematic. Ultimately, when researchers look to letter grades for evidence of treatment

they are retrieving estimates that are weighted combinations of (i) inflated responsiveness around

letter-grade thresholds due to the potential displacement of untreated students and (ii) “zeros” where

performance gains remain latent, away from any letter-grade thresholds.

Given that these are in tension, across a set of representative curving practices we demonstrate

the systematic ways in which bias can materialize in practice. In particular, we demonstrate the

implications of four different approaches to curving, each having their own shape parameters that

change the degree to which they bind. Some instructors will adopt these curves explicitly—an internet

search for “how to curve grades” will quickly identify these and guide instructors through applying

them. However, these are merely representative curves meant more as abstractions that cover the sorts

of shapes implied by the broader set of potential curving practices. That said, two of these curves

are explicitly used in popular learning management systems (LMS).2 For example, curving in Canvas

defaults into a “two-point transformation,” where instructors are given the ability to choose a new

mean and new minimum score. Curving in Moodle and in Blackboard defaults into allowing instructors

to add a constant to each student’s score—Blackboard describes “a simple method for curving grades

is to add the same amount of points to each student’s score.”3 In the end, we’ve captured a fairly wide
2 In the US and Canada, over 75 percent of higher education institutions use Canvas (34 percent), Moodle (21

percent), or Blackboard (20 percent) (Source: “State of Higher Ed LMS Market for US and Canada: Year-end 2021
Edition,” https://philonedtech.com/state-of-higher-ed-lms-market-for-us-and-canada-year-end-2021-edition). In Europe,
Moodle is used by roughly 65 percent of higher education institutions, followed by Blackboard (14 percent), and Canvas
(2 percent) (Source: “European LMS Market,” https://listedtech.com/blog/european-lms-market).

3 Blackboard goes on to describe what they refer to as a common method: “Find the difference between the highest
grade in the class and the highest possible score and add that many points.” Likewise, Moodle explicitly enables instructors
to introduce an “offset” in their grading of any test or assignment, which adds a number of points to each student’s
grade. This is similar in spirit to a “high-grade-to-100” curve, but is no-less generous to those with relatively low scores.
The high-grade-to-100 curve moves the highest-performing student to 100, just the same, but is less generous to students
the lower is their performance relative to the highest performer.
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range of potential practice in this set of curves—as it is the shape of a curve that is responsible for

introducing bias, one of these is likely to capture the essence of any curve being employed.4

After deriving the potential sources of bias in each curving environment, we simulate the random

treatment of students and consider our ability to retrieve an unbiased estimate of the effect of that

treatment. In the end, the ability to identify treatment effects will depend on the curve that was

adopted, which should be troubling to applied researchers given the lack of transparency around the

application of curves.5 Moreover, even where the bias is signable (which is not always the case) and

the curve is known, the measurement error introduced by curving mechanisms can in some cases

introduce false patterns of treatment heterogeneity (e.g., nonlinear “root” curves). In others, ignoring

curve-induced measurement error can even produce parameter estimates that are opposite that of

true treatment effects (e.g., when lowering the classroom mean). This has significant implications

for policy, which we discuss in our closing remarks.6 The main point remains, however—treatment

estimates are sensitive to letter-grade and curving practices, and we rarely know which curve has been

applied (or with what tuning parameters) so our confidence should be conditioned when relying on

letter-grade data in the evaluation of policy interventions.

As we proceed, we will remain agnostic about the interventions researchers are attempting to iden-

tify, though one could imagine treatments or policy experiments such as providing academic-support

services or financial incentives to students to improve academic performance (????), or academic and

behavioral interventions for disadvantaged youth (??). Likewise, one could have in mind the manip-

ulation of peer characteristics in the estimation of peer effects or social spillovers, as in ?.7 Of the
4 In our own curving practices we have introduced something quite like the “root curve” we will describe—more

generous to lower-performing students. More generally, it is appropriate to consider that many of the choices instruc-
tors make in the assignment of grades introduce variation that can potentially interfere with the ability to estimate
unbiased treatment effects. For example, giving extra help to low-performing students, or adding additional credit for
bonus question, or dropping the lowest-contributing assignment can each be considered “curves,” and can be implicated
in introducing bias in treatment estimates (i.e., as in slope-decreasing, slope-increasing, and slope-decreasing curves,
respectively).

5 See ? for a review of teachers’ grading practices and perceptions, which evidences massive variation across teachers.
6 There are several margins around which people have imagined “fixes” existing. We’ve collected some of our

related intuitions in Appendix A. In most cases, however, proposed fixes are merely approximations of the fundamental
mechanisms we’ve reported above. (For example, percentile ranks can be thought of as letter-grade transformations with
many thresholds, and thus does not offer a fix at all.)

7 ? describes clean inference being achievable in experiments where peers “are a mechanism for causal effects but
not themselves subjects for study.” For example, one can imagine subjects having been randomly allocated peers but
the researcher’s focus remaining on the original subjects who are treated to those new peers. In this way, “treatment”
in our simulated environments can also include otherwise-well-identified models of social interaction. As such, we will
suggest that even in these refined environments where one can learn of social interactions, curve transformations threaten
identification. (In other attempts to identify peer effects, the appropriate inference is often unclear even in the absence
of curve transformations. Adding curves to those attempts to identify peer effects complicates inference even further.)

3



many interventions one could have in mind—the interventions are not what is important here—our

main concern is that researchers routinely look to transformed grades for evidence of treatment.

In Section 2 we discuss the relevant implications of letter-grade transformations—the most-significant

takeaways likely exist here. In Section 3 we define four representative curving mechanisms and discuss

identification in each case. These act as examples of the transformations we anticipate being nested

within any letter-grade regime in practice, and further complicate the inference problems associated

with letter grades. Here, we also describe what is known about grade curving, though the literature

is surprisingly light. In Section 3 we demonstrate the implications of curving on treatment-effect esti-

mates across each curving rule in simulated environments that assure random treatment assignment.

To be clear, our intention is not to have letter-grade transformations and the wide variety of “curving”

mechanisms be thought of as substitutes. By discussing them separately, we merely hope to address

the challenges to identifying treatment that are driven by the discretization of performance into letters,

and then the particulars that depend on the curving mechanism adopted within that regime (i.e., on

the particular shape of the transformation of raw performance into letters). In Section 4 we offer some

related thoughts and important implications for policy moving forward, concluding in Section 5.

Before we continue with our focus on the researcher’s interest, it is likely right to also acknowledge

that students use grades to inform themselves of relative aptitudes and behave systematically with

this performance feedback (?). As such, even as we discuss the implications from the researcher’s or

policy maker’s point of view, we can imagine that students in their own attempts to identify the effect

of their own efforts on grade outcomes could also find their ability to interpret their own standing

hampered by the effects of grade transformations.8,9

8 For example, any student who has ever legitimately shared the sentiment of having “tried so hard this term” reveals
an experimentation with the degree to which their efforts have been rewarded with higher grades. High grading standards
matter to student outcomes at both the elementary and secondary levels (??)—to the extent curves obstruct the ability
of students to update their own priors, we might also worry about the implications from that perspective.

9 Moreover, our concern that transformed grades do not reliably inform us about student-level treatments should not
be interpreted as implicitly sanctioning other group-level interactions. For example, the fundamental non-comparability
we describe here is of the sort that can also give rise to non-comparability at higher levels of aggregation. Along these
lines, ? identifies the role of scaling in ordinal measures of performance, suggesting caution when using test scores to
determine when black-white test-score gaps first emerge, and whether or how they widen throughout early school years.
? shows that measurement error in test scores underestimates the black-white test-score gap (and adjust the gap by using
an instrumental-variables approach). ? also addresses a related concern in the use of value-added measures to determine
teacher compensation and retention, lamenting that “economic studies of education commonly proceed as if the intervals
between scores always mean the same thing, as if top- and bottom-coding did not exist, and as if fourth- and fifth-grade
test scores are really comparable.” Likewise, ? finds dramatic decreases in the achievement gap between youth from high-
and low-income households using scale-independent tests that maintain cardinal and inter-group comparability.
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2 Letter-grade transformations

2.1 The identification problem

In the end, transformations to letter grade will yield treatment estimates that are weighted combi-

nations of “zeros” for those away from letter-grade thresholds and inflated responsiveness for those

close to thresholds. Moreover, these weights will be endogenous to curving practices, which leaves

treatment estimates both sensitive and manipulable. To see the origins of these competing weights,

consider that treatment of size β (in raw scores) can only ever be evidenced in letter grades if the

treated individual is already within distance β of a letter-grade cutoff in the absence of treatment.

By implication, when derived from letter grades, treatment estimates do not reflect the treatment of

all treated individuals in a class. (This is most clear for the highest-performing students, who may

well perform better with treatment but simply cannot measurably improve with treatment. However,

the same is true of any treated student who is more than β below a letter-grade distinction.) In

letter-grade spaces, then, we should always reflect on treatment estimates having been contributed to

differently by those who are more than β away from letter-grade distinctions and those who are within

β of a letter-grade distinction.10

The first of these two mechanisms is more obvious—if the empirical design retains treated students

who are more than β from a letter-grade distinction, they will only contribute weight to zero in the

estimator, as though they were unresponsive to treatment. Thus, average treatment effects will be

attenuated in designs that are unable to distinguish students by how far they are from letter-grade

distinctions in the absence of treatment.

At the same time, a more-complex interaction contributes to identifying treatment “within βs”

of letter-grade distinctions, and ultimately leads to a violation of the stable unit treatment value

assumption (??). This violation is due to the zero-sum competition among students that accompanies

all relative grading system, and materializes precisely around letter-grade thresholds. For example,

consider a grading rubric in which the top-30 percent of a class receive As and the next-highest
10 In Section 3 we consider that before the transformation to letter grades raw scores xi can also be acted on by a

curve g(·). In the presence of curved scores, then, these distances would be characterized in some g(β)-denominated
distances around cutoffs, with the distance varying with the curve applied and the densities of students there. Given any
non-linearity in g(·), for example, they need not be symmetric around a given threshold or common across thresholds.
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30 percent receive Bs, etc.11 For a given class size, then, the number of As is fixed, and for any

treated student “within a treatment effect” of an A there must therefore be an untreated student

that is at the margin of being displaced by treatment—a student who would have received an A in

the absence of treatment but receives a B when treatment affords other students an advantage.12

Any zero-sum environment faces this challenge. Furthermore, in a strictly enforced zero-sum rubric,

for treatment to have changed the letter grade of a treated student it must have also changed the

letter grade of an untreated student. In that way, treatment is inseparable from untreated students

coincidently suffering an equal but opposite change in grade, which implies that this bias will be by a

factor of two.13 As the degree of displacement is often an instructor’s choice (and unobservable to the

researcher), we conclude more generally as follows: For the students who are within β of letter-grade

distinctions, their contributions to treatment will be inflated when there are any limits imposed on the

number of students who are to receive letter grades, as these limits force the displacement of untreated

students and thereby exhibit identifying variation in the opposite direction. In short, any amount of

displacement violates the “all-else-equal” condition that is necessary to make a causal claim.

We take a first pass at illustrating these biases in Figure 1 by visualizing a zero-sum scheme in

which the top-30 percent of students receive As, the next-highest 30 percent receive Bs, and the

bottom-40 percent receive Cs. In Panel A we see the distribution of performance for treated students,

which shifts to the right with treatment from xi ∼ N(70, 10) to xi ∼ N(72, 10). In Panel B the

performance of students in the control group is N(70, 10) before and after treatment.14 In both, we

identify the cutoff that separates Cs from Bs and the cutoff that separates Bs from As. Due to the

zero-sum nature of grades, the performance required in order to be awarded a B or an A is higher after

treatment—this is true for students in both the treated and untreated groups, and is proportional to

how many treated students now compete better for the higher letter grades. (We’ve assumed that half

of students are in the treated group.) The source of attenuation is clear in Panel A, as 92.7 percent of
11 This roughly approximates the established norms in our own upper-division Economics classes, but also reflects

the way that grade deflation policies often communicate grading norms (e.g., recall Princeton’s “no more than 35% of
A-range grades for course work” rule).

12 Similar sources of bias have been considered in other contexts. For example, ? refers to the potential for labour-
market interventions to induce “a game of musical chairs among unemployed workers,” that would result in overstating
the impact of treatment by comparing a treated worker to a non-treated worker in a given area—the SUTVA violation
is that the employment rate among workers in the control group is lower than it would have been absent the program.

13 See Appendix B for a mathematical demonstration of this “doubling” effect.
14 N(70, 10) has an inner-99.9 percent ranging in expectation from 46.737 to 93.263. This will later serve as the

baseline when we consider the influence of curving in a simulated environment.
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treated students do not realize a change in letter grade in response to treatment.15 Here, we strictly

enforce the grading rubric so the source of double counting is evident in Panel B, which identifies the

displacement of control students. Just as 3.9 percent of treated students were induced from C to B

and 3.5 percent were induced from B to A, a full 3.9 percent of control students are displaced from B

to C and 3.5 percent from A to B.

In general, then, we characterize opposing forces at play. To the extent that the mass of treated

individuals is not within “a treatment effect” of a letter-grade threshold, the estimated average treat-

ment will necessarily attenuate. After letter-grade transformations, responses to treatment are only

partially observable to the econometrician, and the treatment of individuals outside of these β-related

distances puts weight on zero in proportion to the mass of treated individuals who fall outside of

these intervals. Within these intervals, however, zero-sum grading implies that the individual con-

tributions to the identification of treatment are inflated. In zero-sum grading environments, when

positive treatment is large enough to close the gap between the highest-performing B student and

the lowest-preforming A student, treatment will be double counted in a way. The possibility that

double-counting treatment within these intervals therefore offsets that there is weight being put on

zero outside of these intervals. However, retrieving something like the true effect of treatment on

student performance would only be by chance.16

2.2 Implications

If the number of letter grades is fixed (e.g., instructors do not respond to performance-enhancing

treatment by rewarding “better” classes with more As) then contributions to estimated treatment

effects are double counted at each letter-grade margin. Alternatively, if the generosity of a grading
15 In this case, 36.1 percent receive a C both before and after treatment, while 30 percent receive an A both before

and after treatment. The B category has more turnover within it—26.5 percent of students who were in the B category
remain in the B category, despite improving in their raw performance.

16 Though not representative of the educational environments one typically experiences, an easy special case to
envision (where the weighted changes in grade point perfectly offset in a way that leaves the average treatment effect
identified) assumes (i) that the density of raw performance is uniformly distributed, (ii) that internal grade categories
divide students into bins of equal size (given uniformity, this implies equal mass), (iii) that the true treatment effect (i.e.,
the distance treated students improve in their raw performance) is exactly one third of the distance between letter-grade
thresholds, and (iv) that the two outermost letter-grade categories (e.g., F and A+) each account for two-thirds of the
mass that is accounted for in each of every other letter-grade category. This set of conditions implies that the mass
of treated students who are “double counted” is perfectly offset by twice the mass of treated students who are too far
from the next-higher letter grade for treatment to close that gap (i.e., and thereby contribute to attenuating treatment
estimates). While there is good intuition in envisioning this and other such special cases, they are unlikely to exist
in practice. Moreover, our main point remains—that we are unlikely to know that a student was evaluated in such
an environment, or which students were evaluated in such environments and which were not. In the end, treatment
estimates are sensitive to the number of letter-grade categories, and (in non-trivial ways) the mass therein.
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regime is endogenous to treatment (e.g., if instructors do reward better classes with more As) then

competition for grades is not strictly zero-sum and estimated treatment effects will depend on how

sensitive instructors are to student performance. In terms of direction, treatment estimates will be

attenuated where instructors are more generous in response to positive treatment (as generosity implies

that there is less double counting). However, as these distinctions are largely unobservable in practice,

it is productive to ask “How zero-sum is the environment treatment is occurring in?” when interpreting

policy evaluations that rely on letter-transformed student performance.17

To illustrate several ways in which “who is at the margin” might matter, in Figure 2 we’ve plotted

simulated student performance to illustrate the influence of two different letter-grade mappings. (We’ve

again assumed that the continuous performance of student i in class c, xic, is distributed N(70, 10).)

In Panel A of Figure 2 we plot the CDF of these raw scores, demonstrating their mapping into

letter grades assuming that As are assigned to the top-30 percent of the class, Bs are assigned to the

next-highest 30 percent, and Cs are assigned to those between the 10th and 40th percentiles (i.e., a

zero-sum regime). In Panel B we assume a more-generous rule—As assigned to the top-40 percent, and

Bs assigned to the next-highest 40 percent. In each panel, we’ve highlighted the margins within which

treatment-induced movements in the measured performance of students will have even the potential

to identify estimates of treatment. With this context in mind, we find several noteworthy implications

of letter-grade measures of student performance deserving of mention.

The larger is β itself, the larger is the proportion of students who fall into a β-determined interval

around a letter-grade cutoff. This itself introduces an awkward association between the magnitude of

treatment and the ability to identify treatment without bias. Where treatment is more effective at

increasing student performance (i.e., where β is larger) there is less attenuation in estimated treat-

ment effects (as unmeasurable improvements in performance now become measurable) but also more

potential for double counting (where treatment was measurable)—mechanically this is so. Thus, the

bias in estimated treatment is itself a function of the magnitude of treatment.

The more generous is the grading rubric, the more likely treatment will be identified off of lower-

performing students. This is evident in comparing panels A and B of Figure 2, for example, as the

students contributing to measuring treatment at the B and A margins in Panel B are to the left
17 Notably, where grades are inflated more, there is a parallel intuition—with a larger fraction of students receiving

the highest-available grades, there are fewer students who can measurably improve performance and the lower will be
any estimated treatment effect. Grade inflation has been documented in the US context (??), and also in Canada (??),
Germany (?), and the UK (??), for example.
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of those in Panel A.18 Moreover, even if there are norm-setting rules for generosity—a department

governing the proportion of students who receive As or Bs, for example—any underlying variation in

student performance will drive changes in the type of student ending up within β of a threshold, and

therefore the type that ends up away from them (i.e., adding weight to zero).

The larger is the number of letter-grade thresholds, the larger will be the fraction of students within

a β of a letter-grade cutoff—the less attenuation bias there will be and, in zero-sum environments,

the more “double” counting there will be. While the bias is generally unsignable within institutions,

we can anticipate systematic distinctions across institutions with different grading practices. For

example, parameter estimates identified in schools that allow partial-letter distinctions in letter grade

(compared to schools only offering A/B/C distinctions) will suffer from less attenuation bias (as there

are more students for which their treatment is measurable). Assuming a zero-sum competition for

letter grades, there will also be more double counting with additional letter-grade distinctions. Thus,

treatment effects should clearly be larger in magnitude in regimes that offer students plus/minus-

modified letters, for reasons other than the efficacy of treatment. This, in particular, we illustrate

in Figure 3.19 Identical policy initiatives should appear better in institutions that allow plus/minus

distinctions in their grading rubrics. Likewise, if there is a move toward rubrics that allow plus/minus

grades, this implies that similar policy may appear to perform better over time, not due to any change

in the efficacy of the treatment but simply due to the change in rubric.20 By extension, we note

that similar claims may be made about international comparisons, as they are driven by grading

systems that collapse on discrete ordinal measures of performance. hus, as France assigns grades on

a twenty-point scale, we may anticipate more opportunities for “double” counting of treatment than

in Germany, where it is more common for students to experience scales as low as five or six points.

Likewise, the typical ten-point scale in Spain may fall somewhere in between.

There is a potential confounding of returns to effort at the margin of letter-grade distinctions.

Insofar as the behavior of students around letter-grade margins is not representative of all students—

our intuition has us anticipating that, if anything, incentives to perform are heightened around letter-
18 In this environment, the groups able to identify positive treatment effects when the top 60 percent receive As and

Bs are those within β of 67.5 and 75.2. When the top 80 percent receive As and Bs positive treatment is identified off
of those within β of 61.6 and 72.5.

19 In Appendix B we offer a mathematical demonstration of this same comparison.
20 To our knowledge, most grading systems in the US follow “plus/minus” rules around A, B, C, and D, plus an

unmodified F. There are exceptions to this rule—and among them, institutions such as Texas A&M University, Carnegie
Mellon University, The University of Oklahoma, and Kansas State University. However, the 13-point scale is considered
the norm from which institutions might deviate.
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grade distinctions—then contributions to identifying treatment in the vicinity of cutoffs will confound

treatment and effort. Assuming that proximity to letter-grade margins is known to students, if students

respond similarly on both sides of the cutoff then there could be an argument made that this effort

response drops out of the identifying variation (i.e., if students above and below both work harder,

then neither gains relative to the other). However, if students respond differently on the different sides

of letter-grade thresholds—and there is evidence that this is the case—signing the bias is made even

more problematic.21 Namely, it will depend on the returns to those marginal increases in effort and

whether additional effort moves students to within β of the letter-grade threshold in the absence of

treatment, after which treatment then bumps them above the threshold. (The larger that return, the

larger is estimated treatment relative to true treatment.) As a rule, then, we might anticipate that

any incentive-type effects that are active around letter-grade cutoffs generally, are going to confound

treatment estimates—inflating treatment estimates if those just below are more responsive to the

potential increase in letter grade, and attenuating treatment estimates if those just above are more

responsive to the potential decrease in letter grade.22

3 Curves

3.1 Motivating framework

We have not proposed that the use of letter grades is bad practice. Likewise, we will not propose that

curving is bad practice. We are instead proposing that researchers should maintain a broad skepticism

and exercise caution when anticipating that treatment effects can be cleanly identified in grade-based

measures of student achievement. As it turns out, this will be especially true across students with

different ability.

In order to consider the implications of various curving mechanisms on the treatment estimates

that are recovered from letter grades and curves, a common comparator is necessary—a space in

which achievement measures (and treatment) are observable absent any curve. We therefore define
21 ? use a regression-discontinuity approach to evaluate how student performance changes around letter-grade cutoffs.

Specifically, they use raw numerical scores on exams and find that students scoring slightly below an 80 (the cutoff for a
B) on the first exam perform five percentage points better, on average, on the second exam compared to students who
score slightly above an 80 on the first exam. ? finds that students tend to perform at levels just above the minimum
thresholds for various grades and that students who are closer to a grade boundary going into the final exam tend to
perform better on the final exam.

22 In Appendix A we discuss the challenges to identification in percentile rankings, in pass/fail rules, and in gains
measures.
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a common measure of achievement across students and classes in “raw” scores, and consider the

implications of attempting to identify the effect of treatment that operates on students’ raw scores but

is only observable in students’ curved scores. Doing so, we make clear that treatment estimates can

vary with how generous an instructor’s curve is to toward low-performing students, for example, and

that identifying variation can be influenced by how well top-performing students perform. Neither of

these is desirable, obviously—especially so given that we can rarely observe “teacher generosity” or

the raw scores of students in a class, for example. More generally, though, as classrooms typically

adopt different curves, or parameterize common curves differently, or realize different inputs that

endogenously drive the non-linearities that some curves are shaped by, defining both achievement and

treatment in a common space serves to enable the legitimate consideration across various curving

environments.

That said, we do care about post-transformation achievement measures—we are not positing that

one is more important than the other, per se, or that it is right to record only raw scores. Merely, we are

demonstrating that we can learn something about the role of curve- and letter-grade transformations,

tools commonly employed in the classroom and measures that we heavily rely on in the economics

literature.23 It strikes us as relevant to ask whether raw or curved scores are the stronger predictors

of later outcomes—though, to the best of our knowledge, there is no answer to that question in the

literature.24 There is little evidence identifying the causal role of grading mechanisms on outcomes,

unfortunately. One exception to this rule is ?, which identifies off of discrete differences in letter grades

for students with similar (underlying, continuous) scores at the National University of Singapore—

better letter grades result in higher earnings post-graduation. Thus, locally, where raw scores are

smooth through the threshold, apparent returns to letter-grade distinctions is consistent with the

returns to letter grades being higher than the returns to underlying continuous measures. ? also

well identifies a role for grades, in the learning that goes on in students as information is revealed to
23To be clear, we can imagine several motivations for the adoption of a curve, and therein for curved scores to fulfill

some worthwhile objectives. For example, instructors may apply curves to keep students happy, or to comply with long-
standing grade-distribution policies, to manage student expectations, or to transform raw scores to reflect nationally
normed percentiles. Alternatively, we imagine instructors adopting curves in order to manage teaching evaluations, for
example. Grade inflation has also motivated norm-setting policies—controlling the fraction of As or Bs received in a
class, for example. In practice, curving can also be adopted in response to particularly difficult exams—arguably the
fault of an instructor, to which a curve is a sort of best response—or to conditions that are believed ex post to support
that students may have read or interpreted a question differently than what was intended.

24 We do know that test scores are predictive of outcomes—the long tradition of including the AFQT in wage equations
comes to mind, where it is the percentile score that is typically entered, as this is provided in the National Longitudinal
Surveys.
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them—grades play a role in determining choices and therefore outcomes. Thus, to the extent variation

in letter grades are inducing changes in outcomes, we should take seriously their construction and the

implications of transformations that can imply systematic differentials in the efficacy of policy across

students who experience different curves (across classes) or experiences different fallout from the

application of curves (within classes).25

3.2 Representative transformations

In general, consider some function g(xic), where xic is student i’s continuous raw score in class c, and

g(xic) is that student’s curved score. In our context, g(·) should be rank preserving—if xA ≥ xB then

g(xA) ≥ g(xB). This forbids that student A scores higher than student B before the curve, but lower

than student B after the curve. However, as a matter of policy, we have found little conformity around

curve adoption other than the adoption of a curve of some sort being common.26

In Figure 4 we demonstrate the transformation associated with each of these four families of curves,

with the mapping of raw scores xic into curved scores g(xic). In each, we will also convey some of the

sensitivity available through various parameterizations within these families.

In Panel A we depict “slope-decreasing curves,” captured broadly with

f(xic, a) = axic + (1− a)100 , (1)

where xic is the raw score of individual student i in classroom c and a ∈ (0, 1) is a shape param-

eter. Sometimes referred to as flattening curves, generally, or as a “four-fifths plus 20” curve when

parameterized as .8xic + 20, these curves are considered favorable to the lower end of the class, with

a controling just how generous to the lower end of the class the f -type curve will be.27

In Panel B we depict several slope-increasing curves, in the form of “high-grade-to-100” rules—

curves that move the highest-scoring student to 100 by normalizing student performance by the highest-
25 See ? for a consideration of the role of grades (as opposed to individual test scores, for example) from a different

perspective—grades being correlated with aspects of personality that have been shown to be predictive in their own
right.

26 We will not drill down as far as to reflect on the implications of allowing students to submit work for regrading,
or for extra credit, or the implications of variation in withdrawal dates. However, these practices (which can also be
implicated as examples of “curves”) each have the potential to likewise obscure our ability to identify treatment effects in
student-performance data. Note also that ? documents bunching in Swedish test-score distributions that is interpreted
as instructors inflating students who have “bad test day.” To the extent systematic, this would again influence our ability
to retrieve unbiased estimates of treatment.

27 ? reports on the use of curves, reporting that undergraduates students imagine that 63 percent of their courses
had curves that moved low grades upward.
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scoring student in classroom c.28 This implies that students’ grades are computed as the percentage

of the maximum, or, in general,

h(xic) =
100xic

maxc(xic)
. (2)

Some might object to the use of “high-grade-to-100” mechanisms as they are more generous to stronger

students than to weaker students. (For example, where maxc(xic) = 90, a student with a raw score of

90 percent, gets a 10-point curve, while a student with a raw score of 60 percent only gets a 7-point

curve.) That said, we consider it part of the set of potential curves that are adopted in practice.

Root curves, which we depict in Panel C, have the property that students with raw scores of 0 or

100 receive no curve, while those with lower scores receive a larger boost than do those with higher

scores. A root curve can be captured in

r(xic, b) = 1001−bxbic , (3)

where b ∈ (0, 1) is a shape parameter.

Last, we consider a family of curves that allow instructors to take any two points in a distribution

of scores and move one or both of them to known places. For example, suppose that one was interested

in moving the minimum and mean scores—these are functions of the xic in class c, so we notate them as

minraw
c (xic) and µraw

c (xic). Defining their new locations as parameters minnew
c and µnew

c , the two-point

transformation that accomplishes this can be written as

t(xic,minnew
c , µnew

c ) = minnew
c +

µnew
c − minnew

c

µraw
c (xic)− minraw

c (xic)
(xic − minraw

c (xic)) . (4)

While not all applications of this rule will be as formally defined, (4) captures the essence of what

might be accomplished in many different ways as instructors aim to manage the minimum and/or

mean scores of a classroom.29 The flexibility of such a transformation is made evident in Panel D of

Figure 4.
28 In other uses of “high-grade-to-100” the implication is to increase all scores by 100 − maxc(xic), thus having the

effect of level-shifting all students in classroom c by the same degree. In such cases—this is at times referred to as an
“offset”—treatment effects remain identifiable as the slope of such a transformation is unperturbed.

29 In a survey of 119 law school programs, ? finds that 64 percent of schools implemented a curve. When asked
about the type of curve used, many programs report using some type of curve to set a fixed mean for the course and few
programs set a fixed percentage of each letter grade.
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3.3 Identifying variation in the presence of common transformations

It is often in curved environments such as these that researchers are interested in retrieving estimates

of treatment—wanting to evaluate the effect treatment that originated in raw score of student i in

class c, xic, while having only the curved score, g(xic). Below, we consider the effect of f , h, r, and

t transformations on the researcher’s ability to interpret estimates of treatment from specifications of

the form

g(xic) = α+ β1(Treatedi) + εic , (5)

given that treatment is operative in raw scores, xic. In the presence of curved scores, even when

1(Treatedi) is exogenous with respect to εic, treatment estimates will not reliably retrieve the causal

effect of treatment across individuals.

Signing the bias introduced across student-level contributions to treatment variation requires diag-

nosing the gradient of the curve. Where the gradient is equal to one, changes in student performance

map directly into “curved” performance and there is no bias introduced into the estimation of β̂. For

example, instructors often “offset” the performance of students by adding a constant to the measured

performance of all students in a class. Despite this being described as a “curve,” it is helpful to draw

an important distinction—offsets leave the mapping of raw performance to curved performance un-

changed in its first derivative. In that way, offsets do not curve performance the same way that other

shapes will. For example, if xic is the raw score of individual student i in classroom c and we add a

constant, such that the “curved” performance is o(xic) = xic + constant , then any treatment induced

change or difference in xic will map into o(xic) fully, and E[β̂] = β in such an environment.30

As a general rule, if curved scores follow some general function g(·), then any treatment-induced

variation in xic will identify something of greater magnitude than the true treatment effect where

g′ > 1. Likewise, anywhere that g′ < 1, variation in xic will identify in g(xic) something smaller than

that true underlying variation in performance. In other words, where slopes in Figure 4 are steeper

(flatter) than the 45-degree line, treatment-induced contributions to curved outcomes will be inflated

(attenuated) relative to their true values—since true treatment lives in the domain space of raw scores,

xic, we are generally unable to recover treatment from data on curved scores, g(xic).31

30 Blackboard, for example, provides online instructions that suggest a “simple method for curving grades is to add
the same amount of points to each student’s score.” Likewise, Moodle explicitly offers an “offset” feature to instructors.

31 An exception remains, though, in the “offset” practice—instructors adding a fixed number of points to each student’s
raw score, leaving the slope coefficient unchanged. In such an environment the ability of the researcher to retrieve the
causal parameter is unabated.
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In Figure 5 we demonstrate the contributions to treatment-identifying variation across students’

raw scores. In panels A and B we consider the two simple linear environments—the slope-decreasing

and slope-increasing mechanisms. In such environments, the bias is knowable (subject to parameters)

and follows this g′ rule quite cleanly. For example, f ′(xic) = a < 1 and h′(xic) = 100/maxc(xic) ≥ 1.

That is, no student in an f(·) or h(·) environment contributes to identifying treatment without bias—

mechanisms that are more generous to low-performing students attenuate treatment estimates (e.g.,

slope-decreasing, or “four-fifths plus 20” rules), and mechanisms that are more generous to high-

performing students inflate treatment estimates (e.g., slope-increasing, or “high-grade-to-100” rules).32

By implication, only an upper bound on treatment can be identified in an f(·) environment, and only

a lower bound on treatment can be identified in an h(·) environment.

Where g(·) is itself non-linear in raw scores, as is the case with a root curve, for example, we find a

more-complex series of treatment-identifying biases. As was illustrated in Figure 4, root curves tend

to boost lower scores more, and taper out gradually for higher raw scores—the measured contributions

to identifying treatment are therefore inflated among low-performing students, while deflated among

high-performing students. In general, the bias in the estimated average treatment effect is therefore

unsignable, as

r′(xit) = b 1001−bxb−1
ic , (6)

which crosses one, given b ∈ (0, 1). This is evident directly in Panel C of Figure 5. In practice, however,

as treatment estimates are inflated only among the lowest performers, we imagine that the practical

concern from root-curve transformations will be one of attenuating estimated treatment effects and in

that way inflating type-II errors.

In root curves, we also uncover something of a general implication—nonlinear curves can mimic

heterogeneity in the efficacy of treatment where there is no such heterogeneity. By extension, where

one boosts the scores of low-performing students more than the scores of high-performing students—

not an uncommon practice, we gather—efficacy tests that rely on grade-based measures of student

performance may falsely motivate investing the marginal dollar on lower-performing students, and

away from high-performing students.

Two-point transformations are still-more complex, as the unsignable biases resulting from them is
32 Note the special case of treatment in a high-grade-to-100 environment where xic = 100—any such treatment must

attenuate treatment estimates if the raw scale is strictly bound to xic ∈ [0, 100], since there are no measurable gains in
xic for one who has already achieved xic = 100.
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likely to remain in practice. Some of this complexity was evident in our earlier representation of the

mapping from xic to t(xic), in Figure 4. In those figures, it was clear that reasonable parameterizations

could yield both t′ > 1 or t′ < 1, driven by the curve’s shape parameters (i.e., instructor preferences).

What was not so apparent, though, was the endogenous effects coming from the distribution of raw

scores themselves, through the classroom mean. This complexity sets t-type transformations apart

from other transformations in interesting ways.

Under t(·) mechanisms, individual contributions to identifying treatment again depend on where

in the distribution of raw scores i resides—contributions in t environments are larger in magnitude

among low-performing treated students (though possibly still attenuated relative to true treatment)

and smaller in magnitude among high-performing treated students. (Like root curves, t-type curves

produce a false heterogeneity.) However, individual contributions to identifying treatment are also

indirectly influenced in t environments, whether or not individual i is among the treated. The treatment-

induced β-change itself induces changes in the class mean, µraw
c , which then indirectly influences t′(·)

for all i. To better diagnose the contributions to identification, assume for example that treatment

falls randomly on N?
c of the Nc students in class c, which allows us to separate the implications of β

and xic on post-treatment mean scores as

µraw
c (xic) =

(∑N?
c

j=1(xjc + β) +
∑Nc

j=N?
c +1 xjc

)
/Nc

=
(∑Nc

j=1 xjc +N?
c β

)
/Nc

= µ
raw(−β)
c + pβ ,

(7)

where p = N?
c /Nc is the fraction of classroom c that is treated. It will also help to make the role of

treatment in mean-shifting mechanisms more explicit, which we attempt to do by redefining t(·) as

t?(xic,minnew
c , µnew

c , p, β) = minnew
c +

µnew
c − minnew

c

µ
raw(−β)
c + pβ − minraw

c

(xic + β1(Treatedi)− minraw
c ) , (8)

where we separate the roles of raw score (xic), treatment magnitude (β), and the fraction treated (p).

While untransformed scores change one-to-one with treatment (i.e., ∂xic/∂β = 1 for all treated i),

among treated individuals, t-transformed scores respond to β as

∂t?(·)
∂β

|Treatedi=1 =
µnew
c − minnew

c

µ
raw(−β)
c + pβ − minraw

c

− p
µnew
c − minnew

c

(µ
raw(−β)
c + pβ − minraw

c )2
(xic + β − minraw

c ) . (9)

This highlights what amounts to a contaminated-control problem, through the influence of β on treated

individuals who then contribute to the class mean, which then influences individuals in the control
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group according to

∂t?(·)
∂β

|Treatedi=0 = −p
µnew
c − minnew

c

(µ
raw(−β)
c + pβ − minraw

c )2
(xic − minraw

c ) . (10)

As treated individuals experience β-increases in raw scores, which are transmitted through t(·) to

the control group—specifically through the inclusion of µraw
c (xic)—untreated students do not merely

experience the absence of β increases but are also hurt by β > 0 through the curve itself.33

In Figure 6 we plot this identifying variation across raw scores—given the contamination of control

groups induced by t-type mechanisms, we plot the identifying variation coming from treated and

control individuals separately. The estimated treatment effect is then the weighted average of the two,

where the weights are merely the fractions of c that are in the treated and control groups. (We report

these differences in each panel, where it is the difference between the treatment and control lines that

is identifying treatment.) While random treatment implies that this weighted average is constant

across xic for a given class, treatment estimates are likely to differ across classes, as the distribution

of students across xic itself differs across c.

In panels A and B we plot this relationship as it relates to the instructor’s preference for the new

mean score, and to the average raw score of students in a class. In general, the lower is the instructor’s

preferred mean (µnew
c ) relative to the raw mean, the lower will be estimated treatment effect. Though

not directly shown in the figure, there is potential for estimates of treatment to flip sign—to reduce the

mean further would eventually produce negative treatment effects in this figure.34 (While we attempt

to avoid confusion in the theoretical plots, we do demonstrate this phenomenon in the simulation

results that follow, where we show that the lowering of mean scores flips the sign of the treatment

effect from positive to negative.)

In panels C and D of Figure 6 we leave the raw mean unchanged (at 70) and demonstrate the

roles played by variation in minimum scores and in the fraction of students treated. In each case, the

t-transformation (even without mean shifting) continues to retrieve unbiased estimates of treatment—

note also, that the weighted average of treated and control contributions tends to be more negative
33 For expositional purposes we assume that the minimum score originates in control group. In the simulated envi-

ronment below we relax this assumption.
34 Note that there is bias in the retrieval of treatment estimates even when the t(·) transformation leaves means scores

unchanged. Specifically, it can be shown that if µraw(−β)
c +pβ = µnew

c (i.e., no change in mean), and minraw
c = minnew

c = 0
(for simplicity), then for any xic,

∂t?

∂β
|Treatedi=1 −

∂t?

∂β
|Treatedi=0 = 1− pβ

µnew
c

< 1 . (11)

This is evident in Panel D, in particular, where the attenuation is smaller for smaller p.

17



at higher levels of raw performance. In Panel D we see that only as p → 0 are unbiased estimates

of treatment available to researchers—in the limit, treating just one student in a class minimizes the

potential feedback through that student’s influence on the class mean, but that influence is still not

zero.

3.4 Estimating treatment in the presence of curve transformations

Even in environments where the type of curve is known, estimating the effect of treatment in grade-

based performance should clearly be considered with great care. Moreover, variation in the application

of curves across classes—or even just in the endogenous inputs into a commonly applied curve that

vary by class mean, or class minimum, or class maximum—leaves researchers largely unequipped

to identify treatment. For example, under both root curves and two-point transformations, even

diagnosing whether one has retrieved estimates that are too low or too high requires information

about the shape of r(·) or t(·) that the researcher is not likely to have. The point is less about these

particulars, though, than it is about the potential for curves of unknown mechanism to impart bias of

unknown sign and magnitude, leaving researchers unable to identify the effects of treatment.

We next take these diagnoses of individual contributions to the identification of treatment into

forming something of an aggregate expectation of the estimated treatment effect (i.e., the weighted

average of student contributions across classes). To keep things simple, we will again assume that

the raw score is a percentage (between 0 and 100) and that a curved or scaled grade is again a score

between 0 and 100. We have in mind that the practitioner applies this curved score to a straight scale,

where scores between 90 and 100 are awarded As, scores between 80 and 90 are awarded Bs, scores

between 70 and 80 are awarded Cs, and so on—this is similar to what we depict in Figure 4.

With treatment varying at the individual level, we define raw scores of student i in class c as

Rawic = α+ β1(Treatedi) + εic . (12)

If half of individuals are treated to a true treatment of β = 1, then α = 69.5 will yield an expected

class average of 70 out of 100 points—without loss of generality, this will be a convenient benchmark,

so we make this assumption unless otherwise noted. (This convenience becomes relevant, in particular,

where we consider the “two-point transformation” environment, which is a function of the mean raw

score.) As part of the data-generating process, we allow εic to be additively separable in unobserved
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heterogeneity at the student level, εi ∼ N(0, 5), and classroom level, εc ∼ N(0, 5). In expectation,

then, raw scores are distributed N(70, 10), with an inner-99.9 percent ranging in expectation from

46.737 to 93.263.

Having illustrated student-level mappings from raw to curved scores, we have argued for the

inability to retrieve an unbiased estimate of the treatment parameter β. In figures 7 through 10

we show the aggregate effects of the curve-induced biases—biases entering at the individual level,

as in figures 5 and 6, but here reflected in the aggregate identification of the estimated treatment

effect. Under each curving mechanism, we plot the distribution of estimated treatment parameters

from models of Rawic and of g(Rawic), showing estimates derived from models with and without the

inclusion of classroom fixed effects.35 As identifying variation exists within classes, and the biases

are introduced across students within classes, absorbing classroom heterogeneity into the error term

will not “fix” the problem—researchers will retrieve biased estimates of treatment in both modeling

approaches.

In Figure 7 we plot estimates from the first of these four environments, a slope-decreasing en-

vironment, like f(·) described above. Given the signable biases associated with linear curves that

either decrease or increase the slope, here we find the evidence of this in the associated simulations.

In Figure 7 treatment estimates are attenuated. The most common application of f -type mecha-

nisms is the .8x + 20 rule, in which case estimated treatment is .8β. (As a general rule, where

f(xic, a) = axic + (1 − a)100, recall that β̂ = aβ.) In Figure 8 we find the opposite—treatment

is biased upward throughout the distribution of students, so produces aggregate estimates that are

unambiguously inflated.

While root curves can, in theory, produce very large treatment effects relative to β, in practice we

imagine this being unlikely, as “very large” contributions are also very low in the distribution of raw

scores. As such, what is evident in the simulated environment reflects where in the distribution of

scores the mass is. In this case, the mass is largely above the low scores that inflate estimates—recall

from Panel C of Figure 5 that upward bias occurred among students below 25 out of 100. Thus, the

plots of treatment estimates in Figure 9 are all attenuated. With identifying variation within classes,

these biases are again robust to classroom fixed effects.
35 Specifically, in panels A of figures 7 through 10 we’ve modeled curved scores g(Rawic) without regard for the c-

specific component, as in g(Rawic) = α+β1(Treatedi)+εic, and in panels B we’ve accounted for the c-specific component
estimating g(Rawic) = α+ β1(Treatedi) + εi + εc.
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In Figure 10 we produce two sets of plots—in Panel A we vary instructor preferences for a new

mean (µnew
c ) while varying student scores, and in Panel B we vary student scores (µraw

c ) holding in-

structor preferences constant. Here, the simulated environment evidences the weighted average of the

identifying variation coming from the treated units and (given t-type curving) the set of contaminated

controls. Recall from Figure 6 that the higher is raw performance, the lower is the weighted contribu-

tion to the treatment estimate—Figure 10 makes evident that this can be sufficient to flip the sign of

treatment estimates, when the instructor moves raw scores with mean 70 to curved scores with mean

50. As before, absorbing classroom heterogeneity into the error term is insufficient to identify treat-

ment without bias—false heterogeneity (also within classroom) in the effect of treatment on outcomes

remains, regardless of any estimation of level differences in classroom performance.

4 Policy relevance

In terms of going forward, we find ourselves reevaluating policy interventions in light of this fundamen-

tal sensitivity we consider. For example, while not always knowable—the implications of two-point

transformations are maybe the most complex—the biases introduced by some curves are at least

signable. This, we believe, elevates the value and importance of having institutional knowledge as

researchers contemplate policy evaluations that rely on grade-based outcomes. In particular, the sen-

sitivity of parameter estimates to curving environments highlights the need for empirical researchers

to acquaint well with their empirical environments, and to fully respect that institutional knowledge

benefits good inference. Quite simply, there is a role for institutional knowledge in aspects of both

internal and external validity, and knowing the local environment with respect to curving and letter-

grade assignment is a first-order concern. For example, if we know that the method used to transform

grades likely causes the measured gains of a program to appear lower than they otherwise would ap-

pear, this is relevant to how we interpret any cost-benefit analysis of the program. We should note

again that a shared intuition is also available in the consideration of subjective-happiness measure-

ment (?). In both environments, the researcher is wanting to know about a latent object (i.e., true

performance in our case, true happiness in ?, ?) and is charged with drawing good inference from

differences or changes in what is observable to the researcher. ? demonstrates the strong identify-

ing assumptions required to draw inference from subjective measures of happiness and that results
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based on subjective-happiness scales should be heavily conditioned.36 In educational environments,

however, there is the additional complexity associated with competition for letter grades often being

zero-sum in nature. We likewise caution that results based on measures of student-performance should

be conditioned—especially when those measures are implicate unknown transformations.

In place of grade-based outcomes for policy evaluation, this analysis also implicitly elevates the

importance of other outcomes—high-school graduation and postsecondary education enrollment (?),

the decision to enroll and remain in college (?), college entry, college choice, and degree completion (?),

earnings and employment (?). Notably, the displacement of those in the control group—this is what

plagues identification in discrete letter-based measures of student performance—is less likely to occur

in these outcomes as the zero-sum tradeoffs are relaxed. In that way, these outcomes immediately offer

the potential for cleaner identification. Moreover, while letter-grades might be the earliest indication

of treatment-induced benefits, they are themselves an intermediary. For example, policy makers might

care about having higher grades only to the extent that they are leading indicators of better longer-run

outcomes. By looking at the domain spaces of these longer-run outcomes directly, it is again directly

meaningful. That is, the absence of any measurable change in outcomes associated with treatment

(e.g., for treatment to not have induced changes in graduation, or in employment outcomes, or in

wages) is meaningful for those who do not cross the (latent) threshold. However, as these other

outcomes could have a lag of many years after an intervention they, as a result, present their own

challenges to causal inference. Alternatively, we can imagine scenarios where treatment effects could

be re-characterized as lower bounds, given that outcomes were GPA-based. While we also acknowledge

the potential for curve-transformed grades to themselves drive other outcomes, variation in non-grade

outcomes possibly offer more-meaningful territory in which to be evaluating the efficacy of policy.37

Stepping back from the specifics of measurement and identification for a moment, we note that the

false heterogeneity produced by some curve transformations also suggest that we should be cautious

of the results from pilot experiments, in particular. For example, imagine the political economy sur-
36 See ? for attempts to replicate key results from the happiness literature, showing that none of the findings can be

obtained relying only on nonparametric identification.
37 In related work, ?? addresses the challenges associated with modeling skill-formation and child development—these

are likewise hampered by imperfect measures of children’s skills. In that context, measures of children’s skills “can be
arbitrarily located and scaled, and provide widely differing levels of informativeness about the underlying latent skills
of the child.” In our context, the associated “scales” on which performance is recorded are typically unobservable choice
variables in the data-generating process, through the adoption of curves and letter-grade transformations. While we
are not modeling the path of skill acquisition, per se, in the end we do share that identifying the contributions to skill
development in the presence of curve-induced measurement error is particularly challenging.
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rounding policy innovation. In one world, policy initiatives that are targeted toward students deemed

most in need may appear strong among early initiates while failing at scale—the existence of root

curves would set this in motion, for example. On the other hand, if selection into program partic-

ipation has early adoption tip toward higher-performing classrooms and instructors there have also

chosen curving mechanisms that are generous to low-performing students, contributions to identifying

treatment among the high-performing students are attenuated. By extension, there is the very real

opportunity for early experimental results to appear to have failed efficacy tests and never make it to

scale, all the while producing real gains in actual student performance that went unmeasurable simply

due to curving practices. In this way, one might imagine policy makers lamenting their fears that

“It didn’t work on our best students, how could it possibly work at scale?” may be curve-enabled.

In a world where we already trade off type-I and type-II errors out of necessity—we’re describing a

situation in which curves may be tipping us toward excessive type-II error—it is quite possible that

there are initiatives worth revisiting.38

That policy evaluation is sensitive to curve and letter grading also highlights that treatment esti-

mates can be influenced by instructors through their choice of curving mechanism. In Figure 11 we

return to our simulated environment—5,000 draws of 150 classrooms of 25 (n = 3, 750), with treatment

randomly imposed on half of students. However, here we assign a curve randomly to each classroom

and plot treatment-effect estimates by type of curve adopted by the classrooms. Clearly, where in-

structor interests align with demonstrating gains with treatment, a “high-grade-to-100” curve could

be chosen which would tip toward demonstrating gains (though, two-point transformations that raise

the mean are superior). Where there is a misalignment of those incentives, choosing a slope-decreasing

or root curve would attenuate estimates. Alternatively, consider ranking instructors by their ability to

encourage treatment responsive among underperforming students—without regard for transformation,

those adopting “high-grade-to-100” curves would excel, with root curves yielding something akin to

having a comparative advantage with lower-performing students. At the very least, it would be wise

to exercise an additional layer of care when considering apparent heterogeneity across environments,

as variation in curving practices can confound heterogeneous treatment effects.
38 On a related note, see ? for an approach to modeling experiments that informs the researcher about how well a

program is likely to work at scale without having to actually test it at scale.
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5 Conclusion

Ideally, grades should reflect performance on specific learning criteria and thereby inform students and

educators about relative aptitudes. Grades allow students to make better decisions amid uncertainty,

and allow policy makers to evaluate the merits of pedagogy or benevolent interventions aimed in one

way or another at improving the lives of youth and investing in their futures. Motivated in part by

the importance of human capital in promoting health and welfare, researchers often look to grades to

measure progress and benchmark policy innovations. However, as part of common practice, available

performance metrics are typically transformed by both letter-grade assignments and curves.

With respect to letter-grade transformations we highlight two concerns, in particular. First, letter-

grade transformations induce attenuation bias to the extent treated individuals are not close enough

to letter distinctions (in the absence of treatment) for treatment itself to induce a change in letter

grade. Second, identification is further challenged by the contamination of the “control” group when

untreated students are displaced in letter grade when those in the treated group (who now outperform

them) compete better for scarce grades. This is a crowding out, in effect, and amounts to a SUTVA

violation that inflates treatment estimates. In the end, letter-grade transformations imply a complex

and unknowable re-weighting of students that yields average-treatment effects that are a function of

(i) whether the grading regime implies zero-sum tradeoffs across student grades, (ii) the generosity of

the letter-grade assignment generally, and (iii) how many letter-grade distinctions are adopted.

We also document several curve-type environments that capture the essence of what is often less

formal in practice, and several letter-grade transformations that represent various levels of generos-

ity. Collectively, we demonstrate their implications with respect to the researcher’s ability to retrieve

unbiased estimates of treatment. In the end, the measurement error introduced by these transforma-

tions that interfere with our ability to reliably inform ourselves about the implications of treatment.

Biases can be large in magnitude, and estimates of treatment can be of the wrong sign. In common

transformations (e.g., moving the mean of a distribution) the direction of bias is often unsignable.

Possibly most troubling, researchers should anticipate that even with approaches to curving that

seem quite commonplace (e.g., setting a curve that is more generous to students at the bottom of the

class than to those at the top) we find curve-induced patterns of treatment heterogeneity. Some curves

attenuate apparent responses to treatment among high-performing students, while inflating apparent

responses among low-performing students. Among other things, this sort of false heterogeneity raises
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concern that efficacy tests that rely on curved measures of student performance might encourage

spending the marginal dollar inefficiently, to the detriment of student welfare.

We demonstrate that the identification of treatment effects is curve dependent. If the particu-

lars of a curve are known (e.g., as they might be in a single class), we offer guidance on how to

interpret treatment evaluation. However, if the particulars are unknown, or it is likely that the stu-

dents who are contributing to identification experienced different peer performance or different curves

altogether, a strict reading of our analysis suggests that strong inference statements arising from

student-performance data are unwarranted. Despite its wide applicability, little is known about curv-

ing in practice. Thus, the pursuit of careful descriptive work on the topic is likely to be informative.

Meanwhile, the formal recording of curving parameters should also be considered among best practices.

24



Figure 1: How treatment is measured (and not measured) in letter-grade distributions

The density of treated-student performance (in Panel A) shifts with treatment, yet increases in letter-grade are only
experienced by some treated students. The performance of untreated students (in Panel B) does not change, but
the letter-grade thresholds increase due to the increase in treated student performance (which is transmitted due to
restrictions on the number of each letter). In this strict zero-sum example, for every treated student who experiences
an increase in letter grade there is an untreated student who experiences an offsetting decrease in grade (i.e., a SUTVA
violation that here leads to double counting).

Panel A: Treated students

Panel B: Untreated students

Notes: In each panel we plot the PDF of xic ∼ N(70, 10), separated (by color) into letter-grade categories according
to a rule in which the top-30 percent of the class receive As, the next-30 percent receive Bs, and those below the 40th
percentile receive Cs. In Panel A we also plot the post-treatment PDF of xic ∼ N(72, 10).

25



Figure 2: The intervals of domain space that identify treatment effects in letter-grade transformations

Panel A: The CDF of a GPA-transformation with the
top 60% splitting As and Bs

Panel B: The CDF of a more-generous GPA-transformation
with the top 80% splitting As and Bs

Notes: In each, we plot the CDF of xic ∼ N(70, 10), with letter-grade cutoffs and the students that contribute to
treatment (i.e., those within a treatment effect of letter-grade cutoffs) indicated by the shaded regions. In Panel A the
top-30 percent of the class receive As, the next-30 percent receive Bs, and those between the 10th and 40th percentiles
receive Cs. In Panel B the top-40 percent of the class receive As, the next-40 percent receive Bs, and those between the
10th and 20th percentiles receive Cs. At each letter-grade distinction there exists an interval ±β (shaded in gray) within
which treatment is measurable. 26



Figure 3: Allowing for plus/minus letter grades increases the domain space that identifies treatment

The CDF of a GPA-transformation with
the top 60% splitting As and Bs, with plus/minus

Notes: We plot the CDF of xic ∼ N(70, 10), with letter-grade cutoffs and the students that contribute to treatment
(i.e., those within a treatment effect of letter-grade cutoffs) indicated by the shaded regions. The top-30 percent of the
class receive As, the next-30 percent receive Bs, and those between the 10th and 40th percentiles receive Cs. At each
letter-grade distinction there exists an interval ±β (shaded in gray) within which treatment is measurable.
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Figure 4: Various transformations of raw scores into curved scores

Panel A: Slope-decreasing curves Panel B: Slope-increasing curves
e.g., f(xic, a) = axic + (1− a)100 e.g., h(xic) =

100xic
maxc(xic)

Panel C: Root curves Panel D: Two-point transformations
e.g., r(xic, b) = 1001−bxb

ic t(xic,minnew
c , µnew

c ) = minnew
c +

µnew
c −minnew

c

µraw
c −minraw

c
(xic − minraw

c )

Notes: See Section 3.2 for related discussion. (In Panel D we assume a minimum raw score of 40.)
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Figure 5: Individual contributions to identifying treatment in f(·), h(·), and r(·) environments

Panel A: Slope-decreasing curves attenuate Panel B: Slope-increasing curves inflate
estimates of treatment estimates of treatment

Panel C: Root curves yield unsignable biases in estimated treatment and induce false heterogeneity

Notes: As in Figure 4, slope-decreasing curves are captured by f(xic, a) = axic+(1−a)100, slope-increasing curves are captured by h(xic) =
100xic

maxc(xic)
,

and root curves are captured by r(xic, b) = 1001−bxb
ic.
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Figure 6: Individual contributions to identifying treatment for two-point transformations, t(·), and
the contamination of controls

Panel A: Varying instructor preference for mean Panel B: Varying student performance
(For a given distribution of student performance, treatment (For a given instructor preference, treatment

estimates are larger the higher is the chosen mean) estimates are larger the lower was student performance)

In panels C and D we assume a mean raw score of 70, unaltered by instructor preference.

Panel C: Varying instructor preference for minimum Panel D: Varying the fraction of students treated
(For a given distribution of student performance, treatment (Treatment estimates are smaller, the larger is

estimates are larger the higher is the chosen minimum) the fraction of students treated)

Notes: In all panels, the estimated treatment is the average of treatment- and control-unit contributions, from equations (9) and (10). In reality,
this would be weighted by the density of students in xic. As in Figure 4, two-point transformations are captured in t(xic, minnew

c , µnew
c ) =

minnew
c +

µnew
c −minnew

c
µraw
c −minraw

c
(xic − minraw

c ).
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Figure 7: “Slope-decreasing” curves attenuate treatment-effect estimates

Panel A: Without classroom FE Panel B: With classroom FE

Notes: In all cases, we plot the distribution of estimated treatment effects from models of f -transformed raw scores of
individuals i in classrooms c, as in f(Raw scoreic) = α+ β1(Treatmenti) + εic, where f(xic, a) = axic + (1− a)100.

Figure 8: “Slope-increasing” curves inflate treatment-effect estimates

Panel A: Without classroom FE Panel B: With classroom FE

Notes: In all cases, we plot the distribution of estimated treatment effects from models of h-transformed raw scores of
individuals i in classrooms c, as in h(Raw scoreic) = α+ β1(Treatmenti) + εic, where h(xic) =

100xicmaxc(xic)
.
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Figure 9: In practice, root curves attenuate treatment-effect estimates

Panel A: Without classroom FE Panel B: With classroom FE

Notes: In all cases, we plot the distribution of estimated treatment effects from models of r-transformed raw scores of
individuals i in classrooms c, as in r(Raw scoreic) = α+ β1(Treatmenti) + εic, where r(xic, b) = 1001−bxb

ic. Only when
the mass of students falls roughly below 25 percent on a raw scale of 0–100 will root curves inflate treatment effects. It
is in this way that we imagine the implications of root curves largely leading to attenuation bias.
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Figure 10: Two-point transformations lead to unsignable biases in treatment-effect estimates

Panel A: Variation in instructor preference around student performance

(i) Without classroom FE (ii) With classroom FE

Panel B: Variation in student performance around instructor preference

(i) Without classroom FE (ii) With classroom FE

Notes: In all cases, we plot the distribution of estimated treatment effects from models of t-transformed raw scores of
individuals i in classrooms c, as in t(Raw scoreic) = α + β1(Treatmenti) + εic, where t(xic,minnew

c , µnew
c ) = minnew

c +
µnew
c −minnew

c

µraw
c (xic)−minraw

c (xic)
(xic − minraw

c (xic)).
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Figure 11: Estimated treatment effects across classrooms
adopting different curves

Notes: We plot distributions of treatment-effect estimates from each of the curve mechanisms and parameterizations
described in Section 3.2.
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A Recasting the biases in other environments
There are several margins around which some may imagine “fixes.” Here, we offer some of our intuition.

A.1 Is this problem avoided by using percentile ranks?

Some may have the intuition that percentile ranks avoid the challenge to identifying the effect of
intervention in curved and letter-grade transformations—indeed, this intuition has been shared with
us. Yet, percentile rankings are simply an example from the large set of zero-sum, discretized measures
of student performance—as one can imagine five or thirteen letter grades, one can likewise imagine
100 percentiles.

In Section 2 we discuss two margins that combine to bias estimates of the effect of treatment in
letter-grade-transformed performance measures. First, we note that discretized transformations limit
identifying variation to those who are within β of a threshold—this attenuates estimated treatment
effects. On this margin, percentile ranks likely mitigate bias, as they relax the “within β of a letter-
grade” constraint in favor of a “within β of a percentile.” In that way, the opportunity to advance in
rank is easier, on average, than the opportunity to advance in letter grade. As researchers, we are
therefore apt to see the evidence of treatment in rank-based metrics in a way that we could miss in
letter grades.

That said, the second margin that is in play in rank-based metrics is one around which percentiles
are challenged to an even-greater extent than are simpler letter-grade transformations. Namely, the
zero-sum-driven “double counting” within β of every letter-grade distinction potentially occur more
often in a percentile-ranking regime. The implications here will depend on the class size, as the
distances that matter are fundamentally driven by the proximity (in x) of nearest-neighbour students—
the probability that a treatment of size β is likely to induce treated students into leap frogging students
in the control group. In expectation, this source of bias is exaggerated in percentile ranks.

In general, the more ranks there are available to distinguish students (e.g., percentiles measured to
one decimal of precision allow more “ranks” than strict integer percentiles) the less we should worry
about attenuation and the more we should expect the estimated treatment effect to reflect a “double”
counting.

A.2 Is this problem avoided by using pass/fail measures?

As with traditional letter-grade transformations, collapsing to pass/fail distinctions does not alleviate
the threat to identification. In expectation, pass/fall outcomes behave like one-margin letter-grade
transformations—the effect of treatment is only measurable within β of the pass/fail margin. Those
who experience treatment and are within β of a passing grade will contribute to identifying variation.
As no other treated individual is positioned in such proximity to have treatment move them across
the pass/fail threshold, treatment occurring outside of this interval only attenuates estimates of the
average treatment effect. Within β of the threshold, we again experience the “double-counting” issue—
for those within β of the pass/fail threshold, the zero-sum implications lead to inflated estimates of
treatment. With treatment effects double counted only at one threshold, though, we it would be
reasonable to anticipate that collapsing around pass/fail tends to under estimate the true effect of
treatment.

A.3 Does this problem also exist in “gains” measures?

It is reasonable to inquire into the extent models based on students’ gains are equally problematic.
Inputs into gains-type models rely on inputs, though, so nest multiple observations of students across
time. Fundamentally, then, they nest observations across curves. Even if the curves students are
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exposed to across classes and/or time are common, the implications of their application are endogenous
to the students contributing to those classes. Thus, to reflect on the efficacy of a given intervention in a
model of gains is to subject researchers to the same pitfalls we have shown. Outside of the assumption
that all curves in all classes for all students in the model, inclusive of the parameters of all of those
curves, are common, and all raw measures of performance for all students contributing to those curves
are also common, treatment is not well-identified.

While we have sided with parsimony in the manuscript, we have simulated a panel of observations,
with treatment falling in the middle of the time series. With or without the use of the simulated
control group, we find patterns of bias similar to those we report. As the transformation-induced
perturbations are within the identifying variation, difference-in-differences designs do not retrieve an
unbiased estimate of treatment.

A.4 Is this also a problem in standardized tests?

Where testing services “equate” raw scores or otherwise adjust scores in such a way as to maintain
comparability across testing dates, care again should be taken. In short, transformations need not leave
behind a common slope coefficient—given whatever is comparable to g′(·) in this space—from year
to year.39 Even prior to equating, however, there are often transformations implicit in standardized
tests. For example, in Panel A of Figure A1 we reproduce the mapping of raw scores (number of
questions answered correctly in this case) into scaled scores that the College Board suggests one use
when “Scoring Your SAT® Practice Test #1.” In Panel B we note changes in the reward (in scaled
score) available with one-question improvements in the raw score. Clearly, this is suggestive that
even standardized-testing might suffer similarly, and induce heterogeneity depending on where in the
distribution of raw performance the treated individuals are. Moreover, with the heaviest mass of scores
in the 540 range, we should anticipate attenuation bias for the average student on the SAT (where
one-question improvements can be rewarded with no-point scaled improvements), and the bias is to
inflate treatment estimates among those in the lower tail (where many one-question improvements can
be rewarded with 20-point scaled improvements).40

39 In their description of scaled scores, the College Boards describes the process to test takers as follows: “Your raw
score is converted to a scaled score of 200 to 800 points, the score you see on your score report. We use a process that
adjusts for slight differences in difficulty between various versions of the test (such as versions taken on different days).
We do this to make sure there’s no advantage in taking the test on a particular day. A score of 400, for instance, on one
day’s test means the same thing as a 400 on a test taken on a different day—even though the questions are different,”
(Source: https://collegereadiness.collegeboard.org/sat/scores/how-sat-is-scored). Relatedly, ? and ? caution against
the use of z-standardized test scores, in particular, noting that distributions of test scores can vary across contexts.

40 ? discusses an interesting environment in which there is access to both internal and external performance measures,
and document negative externalities associated with having high-performing students in one’s class—this is interpreted
as curve induced. They suggest caution when using internal grades (i.e., those subject to curve-like transformations) to
compare students across schools and classes. Recall again, as they are also relevant here, the examples of ?, ?, and ?.
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Figure A1: How raw scores on the SAT Practice Test are converted into scaled scores

Panel A: The transformation of correct Panel B: The change in scaled SAT math score
responses into scaled math score with a one-question improvement in raw score

Notes: For more, see the “Raw Score Conversion Table” at https://collegereadiness.collegeboard.org/pdf/
scoring-sat-practice-test-1.pdf.

A.5 Are bounds on β informative?

We have already shown that it is an upper bound on β that is identified in anf(·) environment, and
a lower-bound on β that is identified in an h(·) environment. We have also argued that retrieving
unbiased estimates of treatment is challenged by non-linear curve transformations. However, given
g(xic + β) for treated units and g(xic) for control units, it is tempting to imagine that there is still
interpretable information in the within-classroom differences available to the econometrician. So we
do want to spend just a little time with the potential to bound β in this environment before moving
on, and possibly highlight some intuition at the same time. (Note that with the transformation to
letter grade, still to come, no matter the hope offered here the researcher will have little ability to
retrieve an unbiased estimate of treatment.)

Recall, then, that if g(xic + β) is additively separable then the difference between g(xic + β) and
g(xic) would contribute to identifying something at least proportional to β. A slope-decreasing curve,
for example, would allow for the identification of aβ, and a slope-increasing curve (e.g., high-grade-
to-100) would allow for the identification of 100

maxc(xic)
β. Thus, even additive separability is insufficient

to identify treatment separate from a shape parameter. More relevant, however, is that researchers
rarely know the even family from which curves are adopted, or the mixture of curves adopted across
classrooms, never mind their various shape parameters. And among the likely curves are nonlinear
transformations.

In Figure A2 we plot the PDFs of treated and control units for a simulated sample. We plot the
raw scores in Panel A, which we simply draw from N(70, 10). Implicit here is that the mean difference
(given random treatment assignment) identifies β, and it does. In Panel B we plot the first transformed
version of this sample—a slope-increasing curve with a = .6, which yields an estimate of β̂ = .6β.
This illustrates that we identify only an upper bound of β in a slope-decreasing environment, as the
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parameter is proportional to β and governed by a ∈ (0, 1].41 Without knowledge of a, in a slope-
decreasing environment we are limited to identifying only bounds on treatment—namely, β ∈ [aβ̂, β̂].

Unlike in a linear rule, however, a nonlinear transformation does not offer that same ability to
bound β. In Panel C of Figure A2 we plot the raw scores transformed by a root curve—this one
happens to have been parameterized as b = .4. Notably, while the control group will again have
greater density at the bottom of the performance distribution, and the treated group more at the top,
the non-linearity in r(·) has also perturbed the shape of the treatment distribution—the additional
loss of symmetry in the PDFs around their means is evident, for example. We’ve seen this already (in
Figure 5C)—as root curves are less generous at higher xic, treatment-induced changes in raw score
(by β) are implicitly taxed away at a higher rate, the higher is xic. (Clearly, this leads to downward
bias here, though recall from earlier that one could construct an example with sufficient mass in the
distribution at low xix that the bias was positive.)

While the shape of any g(xit) is itself perturbed in non-linear transformations, it is where g(·)
acts on xit and on xit + β differently that we lose the ability to identify β. Let us imagine applying
mean-difference estimator to the data in Panel A of Figure A2. Specifically, the mean difference in
g-scaled scores is ∫ 100

0
x
[
gT (x+ β)− gC(x)

]
dx, (13)

where we use g(·) to capture some generic probability density of scaled scores, adding the notation
gT and gC to make clear that we are subtracting densities associated with treated and control units.
With positive treatment, the density of the treated group has moved to the right, leaving the control
group with greater density at the bottom of the distribution. However, just as the shape of the
density reflects g, the change in the density of the treated group reflects a g-transformed β—it is these
perturbations in particular that challenge identification, and that they potentially vary across raw
scores.

? characterizes bounds in a related environment by a re-weighting of outcomes that makes the
treatment group’s lead on the control group appear either as small or as large as possible. We have
considered similarly motivated re-weighting schemes—bounding the difference from below using the
distance between the two densities (see Panel B of Figure A2) to increase the weight on low outcomes
(where the control group is dominant) and decrease the weight on higher values (where the treatment
group is dominant. Or, alternatively, bounding the difference from above by making the treated group’s
lead appear larger by overweighting high outcomes and underweighting low outcomes. However, in
this environment we see little benefit to producing bounds, as they often fail to resolve even the sign
of treatment with any confidence when the curve is known. ? produces something of a “worst-case
bounds” scenario by re-weighting according to the sup norm of the distance between gT (·) and gC(·).
However, bounds based on the sup norm (across all x) of the distance between gT (x + β) and gC(x)
must be larger than the bounds based on the observed distances between gT (x+β) and gC(x) at each
x, so this again has us inclined to adopt the safer and more-conservative conclusion—we see reason to
question inference statements based on treatment estimates that are retrieved from environments in
which performance was either curved or transformed by letter grade.

41 Recall, f(xic) = axic + (1− a)100. Therefore, for treated units f(xic + β) = a(xic + β) + (1− a)100 = axic + (1−
a)100 + aβ = f(xic) + aβ. As such, a “treated minus control” difference in this environment yield β̂ = aβ.
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Figure A2: PDFs by treatment classification, and their (treated – control) differences

Panel A: Raw scores (xic ∼ N(70, 10))

Densities of “treatment” (xic + 1) and “control” (xic) The “xic + 1” less “xic” difference

Panel B: A slope-decreasing curve (a = .6)

Densities of f(xic + 1) and f(xic) The f(xic + 1)− f(xic) difference

Panel C: A root curve (b = .4)

Densities of r(xic + 1) and r(xic) The r(xic + 1)− r(xic) difference

Notes: In Panel A we plot the PDFs of xic ∼ N(70, 10) for the control group and xic ∼ N(71, 10) for the treated group.
In Panel B we apply those data to the slope-decreasing curve (with a = .6) and in Panel C we apply those data to a root
curve (with b = .4). See Section 3.2 for related discussion of curves.
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B ATE estimates in letter grades

B.1 Contributions to estimated treatment effects

In our analysis we have imagined a world in which instructors have grading standards that are exoge-
nous to treatment—with grading cutoffs held constant, treatment induces improvements in the raw
performance, xic, of some students i in class c. In all such regimes, there is an attenuation of estimates
of treatment in proportion to the number of treated students not within β of a letter-grade threshold.
More formally, in a five-letter regime (i.e., grades of F, D, C, B and A) we can express contributions
to the estimated average treatment effect as a function of the induced changes in letter grade, given
induced changes in xic,

close enough to change letter grade︷ ︸︸ ︷∫ D

D−β

the treated︷ ︸︸ ︷
f(xi)1(Ti = 1)

change in grade︷ ︸︸ ︷
(D − F ) dx +∫ C

C−β

f(xi)1(Ti = 1)(C −D)dx +∫ B

B−β

f(xi)1(Ti = 1)(B − C)dx +∫ A

A−β

f(xi)1(Ti = 1)(A−B)dx ,

(A5.1)

where all other treated students (i.e., those not within β of the next-higher letter-grade threshold)
contribute to the weight on zero. Implicit in (A5.1), these weights can be formally defined as∫ D−β

0

f(xi)1(Ti = 1) · 0 dx +

∫ C−β

D

f(xi)1(Ti = 1) · 0 dx +

∫ B−β

C

f(xi)1(Ti = 1) · 0 dx +∫ A−β

B

f(xi)1(Ti = 1) · 0 dx +

∫ 100

A

f(xi)1(Ti = 1) · 0 dx .

(A5.2)

In (A5.1), then, we have the unambiguous result that estimates of the average treatment effect are
attenuated in letter-grade transformations. With additional letter-grade distinctions (e.g., plus/minus
letter grades), some among those who were attenuating estimates of the average treatment effect
will now find themselves within β of letter-grade margins, and treatment—though just as real in raw
performance as without plus/minus letters—will now be evidenced in letter grades. Thus, we conclude
that in the absence of zero-sum tradeoffs around letter, treatment estimates are higher in regimes with
more letter-grade distinctions.

Many grading regimes are zero-sum, however. For example, any regime that awards letter grades
with the top-30 percent of the class sharing in the available As, with Bs assigned to the next-highest
30 percent, and so on, induces zero-sum competition among students (sometimes referred to as relative
grading).

Where the grading regime is zero-sum, there is a “double counting” of treatment around each letter-
grade threshold, which inflates estimates of ATE—this is due to treated students displacing control
students within these β-determined intervals. (Recall our discussion of the SUTVA violation implied
by the grades of some untreated students being lowered as treated students receive the benefit of
treatment, where we argued that “where treatment is large enough to be measurable and letter-grades
assignments are zero sum, it is double counted.”)

In a five-letter regime with zero-sum tradeoffs, contributions to the estimated average treatment
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effect can be expressed as differences between treated and control students,

close enough to pass︷ ︸︸ ︷∫ D

D−β

the treated︷ ︸︸ ︷
f(xi)1(Ti = 1)

change in grade︷ ︸︸ ︷
(D − F ) dx −︸︷︷︸

their difference

close enough to be passed︷ ︸︸ ︷∫ D+β

D

the untreated︷ ︸︸ ︷
f(xi)1(Ti = 0)

change in grade︷ ︸︸ ︷
(F −D) dx +

∫ C

C−β

f(xi)1(Ti = 1)(C −D)dx−
∫ C+β

C

f(xi)1(Ti = 0)(D − C)dx +∫ B

B−β

f(xi)1(Ti = 1)(B − C)dx−
∫ B+β

B

f(xi)1(Ti = 0)(C −B)dx +∫ A

A−β

f(xi)1(Ti = 1)(A−B)dx−
∫ A+β

A

f(xi)1(Ti = 0)(B −A)dx ,

(A5.3)
where all other treated students (i.e., those not within β of the next-higher letter-grade threshold)
again contribute to the weight on zero.

As (A5.3) makes clear, the estimated average treatment effect is contributed to by treatment-
induced changes in letter grades for treated students (i.e., F to D, D to C, C to B, or B to A) but also
by the coincident changes in the letter grades of untreated students (i.e., D to F, C to D, B to C, or
A to B). Distributing the negative, (A5.3) can be expressed as

treated students︷ ︸︸ ︷∫ D

D−β

f(xi)1(Ti = 1)(D − F )dx+

untreated students︷ ︸︸ ︷∫ D+β

D

f(xi)1(Ti = 0)(D − F )dx +∫ C

C−β

f(xi)1(Ti = 1)(C −D)dx+

∫ C+β

C

f(xi)1(Ti = 0)(C −D)dx +∫ B

B−β

f(xi)1(Ti = 1)(B − C)dx+

∫ B+β

B

f(xi)1(Ti = 0)(B − C)dx +∫ A

A−β

f(xi)1(Ti = 1)(A−B)dx+

∫ A+β

A

f(xi)1(Ti = 0)(A−B)dx ,

(A5.4)

which further illustrates the upward biased in the estimated average treatment effect due to the
untreated students also experiencing changes coincident with treatment. From here, there are two
convenient ways of arguing that this source of bias is a literal “doubling.”

First, the notion of zero-sum grading is alone a give away, intuitively. That treatment increases
the performance of treated students (both real and measured) is indistinguishable from it coincidently
decreasing the measured performance of untreated students—zero-sum grading schemes imply that
for every treated student who receives a higher grade there must be an untreated student who now
receives a lower grade. That is the only thing treatment can do in such an environment—it has some
treated students switch letter grade with untreated students. This is a SUTVA violation that creates
a wedge between treated and untreated students, inflating estimated treatment by a factor of two. As
a second approach to seeing the doubling of these contributions, one can infer from treatment being
random with respect potential outcomes that treated and untreated students are distributed similarly
in their pre-treatment raw performance. In expectation, then, the number of treated students who are
close enough to a higher letter grade for β to induce a letter-grade difference will equal the number
of untreated students who are close enough to the same margin to be overtaken by treated students.
That is,

∫ λ
λ−β f(xi)1(Ti = 1)dx =

∫ λ+β
λ f(xi)1(Ti = 0)dx for all λ ∈ {A, B, C, D, F}. As an equal

number of untreated students on the right side of a letter-grade cutoff contribute to estimates of the
average treatment effect by exactly the same degree as their treated counterparts do on the left side
of the same letter-grade cutoff (in the opposite direction), this amounts to a double counting.
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B.2 How do plus/minus distinctions affect estimates of treatment?

With the additional letter-grade distinctions associated with a plus/minus regime, the component
parts of the estimated average treatment effect can be expressed as∫ Dm−β

0

f(xi)1(Ti = 1) · 0 dx+

∫ Dm

Dm−β

f(xi)1(Ti = 1)(Dm− F )dx−
∫ Dm+β

Dm

f(xi)1(Ti = 0)(F −Dm)dx +∫ D−β

Dm+β

f(xi)1(Ti = 1) · 0 dx+

∫ D

D−β

f(xi)1(Ti = 1)(D −Dm)dx−
∫ D+β

D

f(xi)1(Ti = 0)(Dm−D)dx +∫ Dp−β

D+β

f(xi)1(Ti = 1) · 0 dx+

∫ Dp

Dp−β

f(xi)1(Ti = 1)(Dp−D)dx−
∫ Dp+β

Dp

f(xi)1(Ti = 0)(D −Dp)dx +∫ Cm−β

Dp+β

f(xi)1(Ti = 1) · 0 dx+

∫ Cm

Cm−β

f(xi)1(Ti = 1)(Cm−Dp)dx−
∫ Cm+β

Cm

f(xi)1(Ti = 0)(Dp− Cm)dx +∫ C−β

Cm+β

f(xi)1(Ti = 1) · 0 dx+

∫ C

C−β

f(xi)1(Ti = 1)(C − Cm)dx−
∫ C+β

C

f(xi)1(Ti = 0)(Cm− C)dx +∫ Cp−β

C+β

f(xi)1(Ti = 1) · 0 dx+

∫ Cp

Cp−β

f(xi)1(Ti = 1)(Cp− C)dx−
∫ Cp+β

Cp

f(xi)1(Ti = 0)(C − Cp)dx +∫ Bm−β

Cp+β

f(xi)1(Ti = 1) · 0 dx+

∫ Bm

Bm−β

f(xi)1(Ti = 1)(Bm− Cp)dx−
∫ Bm+β

Bm

f(xi)1(Ti = 0)(Cp−Bm)dx +∫ B−β

Bm+β

f(xi)1(Ti = 1) · 0 dx+

∫ B

B−β

f(xi)1(Ti = 1)(B −Bm)dx−
∫ B+β

B

f(xi)1(Ti = 0)(Bm−B)dx +∫ Bp−β

B+β

f(xi)1(Ti = 1) · 0 dx+

∫ Bp

Bp−β

f(xi)1(Ti = 1)(Bp−B)dx−
∫ Bp+β

Bp

f(xi)1(Ti = 0)(B −Bp)dx +∫ Am−β

Bp+β

f(xi)1(Ti = 1) · 0 dx+

∫ Am

Am−β

f(xi)1(Ti = 1)(Am−Bp)dx−
∫ Am+β

Am

f(xi)1(Ti = 0)(Bp−Am)dx +∫ A−β

Am+β

f(xi)1(Ti = 1) · 0 dx+

∫ A

A−β

f(xi)1(Ti = 1)(A−Am)dx−
∫ A+β

A

f(xi)1(Ti = 0)(Am−A)dx +∫ Ap−β

A+β

f(xi)1(Ti = 1) · 0 dx+

∫ Ap

Ap−β

f(xi)1(Ti = 1)(Ap−A)dx−
∫ Ap+β

Ap

f(xi)1(Ti = 0)(A−Ap)dx +∫ 100

Ap+β

f(xi)1(Ti = 1) · 0 dx .

(A5.5)
To compare this to that in a five-letter regime, we assume that the cutoff for an A (or B or C or

D) in the five-letter scale is the same as the cutoff for an Am (or Bm or Cm or Dm) in the comparable
13-letter regime—this facilitates an all-else-equal comparison of average treatment effect estimates
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with and without plus/minus grades. Exploiting this notational convenience, we express (A5.3) as∫ Dm−β

0

f(xi)1(Ti = 1) · 0 dx+

∫ Dm

Dm−β

f(xi)1(Ti = 1)(D − F )dx−
∫ Dm+β

Dm

f(xi)1(Ti = 0)(F −D)dx +∫ Cm−β

Dm+β

f(xi)1(Ti = 1) · 0 dx+

∫ Cm

Cm−β

f(xi)1(Ti = 1)(C −D)dx−
∫ Cm+β

Cm

f(xi)1(Ti = 0)(D − C)dx +∫ Bm−β

Cm+β

f(xi)1(Ti = 1) · 0 dx+

∫ Bm

Bm−β

f(xi)1(Ti = 1)(B − C)dx−
∫ Bm+β

Bm

f(xi)1(Ti = 0)(C −B)dx +∫ Am−β

Bm+β

f(xi)1(Ti = 1) · 0 dx+

∫ Am

Am−β

f(xi)1(Ti = 1)(A−B)dx−
∫ Am+β

Am

f(xi)1(Ti = 0)(B −A)dx +∫ 100

Am+β

f(xi)1(Ti = 1) · 0 dx .

(A5.6)
Thus, the difference (A5.5) – (A5.6), which expresses the difference in the estimated average treatment
effect in switching to a plus/minus regime, is therefore∫ Dm

Dm−β

f(xi)1(Ti = 1)(Dm− F −D + F )dx−
∫ Dm+β

Dm

f(xi)1(Ti = 0)(F −Dm− F +D)dx +∫ D

D−β

f(xi)1(Ti = 1)(D −Dm)dx−
∫ D+β

D

f(xi)1(Ti = 0)(Dm−D)dx +∫ Dp

Dp−β

f(xi)1(Ti = 1)(Dp−D)dx−
∫ Dp+β

Dp

f(xi)1(Ti = 0)(D −Dp)dx +∫ Cm

Cm−β

f(xi)1(Ti = 1)(Cm−Dp− C +D)dx−
∫ Cm+β

Cm

f(xi)1(Ti = 0)(Dp− Cm−D + C)dx +∫ C

C−β

f(xi)1(Ti = 1)(C − Cm)dx−
∫ C+β

C

f(xi)1(Ti = 0)(Cm− C)dx +∫ Cp

Cp−β

f(xi)1(Ti = 1)(Cp− C)dx−
∫ Cp+β

Cp

f(xi)1(Ti = 0)(C − Cp)dx +∫ Bm

Bm−β

f(xi)1(Ti = 1)(Bm− Cp−B + C)dx−
∫ Bm+β

Bm

f(xi)1(Ti = 0)(Cp−Bm− C +B)dx +∫ B

B−β

f(xi)1(Ti = 1)(B −Bm)dx−
∫ B+β

B

f(xi)1(Ti = 0)(Bm−B)dx +∫ Bp

Bp−β

f(xi)1(Ti = 1)(Bp−B)dx−
∫ Bp+β

Bp

f(xi)1(Ti = 0)(B −Bp)dx +∫ Am

Am−β

f(xi)1(Ti = 1)(Am−Bp−A+B)dx−
∫ Am+β

Am

f(xi)1(Ti = 0)(Bp−Am−B +A)dx +∫ A

A−β

f(xi)1(Ti = 1)(A−Am)dx−
∫ A+β

A

f(xi)1(Ti = 0)(Am−A)dx +∫ Ap

Ap−β

f(xi)1(Ti = 1)(Ap−A)dx−
∫ Ap+β

Ap

f(xi)1(Ti = 0)(A−Ap)dx ,

(A5.7)

To evaluate (A5.7), however, one must assume an underlying distribution of raw performance, as
the value of (A5.7) is sensitive to where the mass of students is. In particular, note that this is especially
sensitive to the mass around failing grades. (Given the non-existence of F+ grades, dropping from a
D- (i.e., 0.7 grade points) to an F (i.e., zero grade points instead of 0.3) breaks the symmetric pattern
that exists elsewhere in the distribution. Thus, the students around the D-/F letter-grade cutoff
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Figure B3: What is the change in estimated treatment effect when switching to a plus/minus regime?

Notes: For each assumed distribution of underlying raw performance, we show the distribution of increases in the
estimated treatment effect (i.e., the evaluation of Equation A5.7) from 1,000 simulated samples.

become particularly important and the value of (A5.7) will depend on where students are located in
the distribution.)

In Figure B3 we show the results of simulating samples to apply to Equation (A5.7). The grading
scheme used in each simulation is a zero-sum, with plus/minus grades such that the top-30 percent
of the class splits the As evenly, the next-highest 30 percent splits the Bs evenly, the next-highest
20 percent splits the Cs evenly, the next-highest five percent splits the Ds evenly, and the rest of
the class receives an F. We assume that treatment increases the performance of treated students by
ten percent of the mean performance. We assign grade points to letter grades using the traditional
grade-point scale (i.e., A+=4.3, A=4.0, A-=3.7), and simulate (A5.7) 1,000 times for each of twelve
different distributions. For Normal distributions, the estimated treatment effect increases when moving
to a plus/minus regime in all simulations—on average, (A5.7) evaluates to an increase of between
0.032 to 0.098. Equation (A5.7) is also everywhere positive where raw grades are assumed to be
uniform—on average, the estimated average treatment effect is between 0.006 and 0.009 higher in
a plus/minus regime. In 12,000 of the 12,000 simulated samples across these various distributions,
(A5.7) is positive—we therefore anticipate that the estimated average treatment effect is higher in
plus/minus regimes than in grading regimes that use only five letter grades.
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