Higgs-Coulomb correspondence in abelian gauged linear sigma models

Chiu-Chu Melissa Liu (Columbia University) based on joint work in progress with Konstantin Aleshkin

Workshop on Topics in Enumerative Geometry University of Oregon
May 21, 2022

Outline

1. Gauged linear sigma models (GLSMs)
2. Higgs branch

- Landau-Ginzburg (LG) quasimaps
- stacky loop spaces and I-functions
- central charge $Z([\mathcal{B}])$

3. Coulomb branch

- hemisphere partition function $Z_{D^{2}}([\mathcal{B}])$
- (2d) Higgs-Coulomb correspondence: $Z_{D^{2}}([\mathcal{B}]) \longrightarrow Z([\mathcal{B}])$

4. Wall-crossing

1. Gauged linear sigma models (GLSMs)

The input data of a gauged linear sigma model (GLSM) is a 5-tuple ($V, G, \mathbb{C}_{R}^{*}, W, \omega$)
(1) (linear space) $V=\operatorname{Spec} \mathbb{C}\left[x_{1}, \ldots, x_{m}\right] \simeq \mathbb{C}^{m}$
(2) (gauge group) $G \subset G L(V) \simeq G L_{m}(\mathbb{C})$ linear reductive
(3) (R symmetries) $\mathbb{C}_{R}^{*} \subset G L(V), \mathbb{C}_{R}^{*} \cong \mathbb{C}^{*}$.
G, \mathbb{C}_{R}^{*} commute, $G \cap \mathbb{C}_{R}^{*}=\langle J\rangle=\mu_{r}$
\mathbb{C}_{R}^{*} acts on V by weights $c_{1}, \ldots, c_{m} \in \mathbb{Z}, \mathrm{R}$ charges $q_{j}=\frac{2 c_{j}}{r}$
(4) (superpotential) $W \in \mathbb{C}\left[x_{1}, \ldots, x_{m}\right]$

- G-invariant: $W(g \cdot x)=W(x) \forall g \in G \Leftrightarrow W \in \mathbb{C}\left[x_{1}, \ldots, x_{m}\right]^{G}$
- quasi-homogeneous: $W(t \cdot x)=t^{r} W(x) \forall t \in \mathbb{C}_{R}^{*}$
(5) (stability condition) $\omega \in \operatorname{Hom}\left(G, \mathbb{C}^{*}\right) \Leftrightarrow G$-linearization on V assumption: $V_{G}^{s s}(\omega)=V_{G}^{s}(\omega)$

$$
\begin{aligned}
& \mathcal{X}_{\omega}=\left[V_{G}^{s s}(\omega) / G\right] \text { smooth DM stack } \\
& \downarrow \\
& \mathbb{C}_{w}^{*} \curvearrowright X_{\omega}=V_{G}^{s s}(\omega) / G=V / \|_{\omega} G \text { GIT quotient } \\
&:=\mathbb{C}_{R}^{*} /\langle J\rangle \downarrow \operatorname{projective} \quad w(t \cdot[x])=\operatorname{tw}([x]), t \in \mathbb{C}_{w}^{*},[x] \in X_{\omega} \\
& X_{0}=\operatorname{Spec}\left(\mathbb{C}\left[x_{1}, \ldots, x_{m}\right]^{G}\right) \xrightarrow{w} \mathbb{C}
\end{aligned}
$$

A GLSM is abelian if the gauge group G is abelian In most of this talk, $G=\left(\mathbb{C}^{*}\right)^{\kappa}$.
We have a short exact sequence of abelian groups (let $n=m-\kappa$)

$$
\begin{aligned}
\left.1 \rightarrow G \xrightarrow{\left(D_{1}, \ldots, D_{n+\kappa}\right)} \begin{array}{rl}
\widetilde{T} \simeq\left(\mathbb{C}^{*}\right)^{n+\kappa} \longrightarrow T \simeq\left(\mathbb{C}^{*}\right)^{n} \rightarrow 1 \\
& \cap \text { maximal torus } \\
& G L_{n+\kappa}(\mathbb{C})
\end{array}\right) .
\end{aligned}
$$

where $D_{j} \in \operatorname{Hom}\left(G, \mathbb{C}^{*}\right)=\mathbb{L}^{\vee} \simeq \mathbb{Z}^{\kappa}$. Then

- \mathcal{X}_{ω} is a smooth toric DM stack (Borisov-Chen-Smith)
- $X_{\omega}=V / / \omega G$ is a semiprojective simplicial toric variety
- $\mathcal{X}_{\omega}=\left[\mu^{-1}(\omega) / G_{\mathbb{R}}\right]$ where $G_{\mathbb{R}}=U(1)^{\kappa} \subset G=\left(\mathbb{C}^{*}\right)^{\kappa}$, and $\mu: V=\mathbb{C}^{n+\kappa} \rightarrow \operatorname{Lie}\left(G_{\mathbb{R}}\right) \simeq \mathbb{L}_{\mathbb{R}}^{\vee}:=\mathbb{L}^{\vee} \otimes_{\mathbb{Z}} \mathbb{R} \simeq \mathbb{R}^{\kappa}$ is the moment map of Hamiltonian $G_{\mathbb{R}^{2}}$-action on $\mathbb{C}^{n+\kappa}$.
- $\omega \in \mathbb{L}_{\mathbb{R}}^{\vee} \simeq \mathbb{R}^{\kappa} \supset$ secondary fan

Example 1: quintic

$V=\mathbb{C}^{6}=\operatorname{Spec} \mathbb{C}\left[x_{1}, \ldots, x_{5}, p\right], \quad G=\mathbb{C}^{*}, \quad \omega \in \mathbb{R}-\{0\}$
$\left.\begin{array}{cc}\text { gauge charges } & G \text { acts by weights }(1, \ldots, 1,-5) \\ \mathrm{R} \text { charges } & \mathbb{C}_{R}^{*} \text { acts by weights }(0, \ldots, 0,1)\end{array}\right\} G \cap \mathbb{C}_{R}^{*}=\{1\}$
superpotential $\quad W=p\left(x_{1}^{5}+\cdots+x_{5}^{5}\right)=p W_{5}(x)$

- $\omega>0$: Calabi-Yau (CY)/geometric phase

$$
\begin{aligned}
& \mathcal{X}_{\omega}=\left(\left(\mathbb{C}^{5}-\{0\}\right) \times \mathbb{C}\right) / G=K_{\mathbb{P}^{4}} \\
& \operatorname{Crit}(w)=\left\{W_{5}(x)=p=0\right\}=X_{5} \text { Fermat quintic } \\
& \subset\{p=0\}=\mathbb{P}^{4}
\end{aligned}
$$

GLSM invariants $=$ Gromov-Witten (GW) invariants of X_{5}

- $\omega<0$: Landau-Ginzburg (LG) phase

$$
\begin{aligned}
\mathcal{X}_{\omega} & =\left[\left(\mathbb{C}^{5} \times(\mathbb{C}-\{0\})\right) / \mathbb{C}^{*}\right]=\left[\mathbb{C}^{5} / \mu_{5}\right] \\
\operatorname{Crit}(w)_{\mathrm{red}} & =\left[0 / \mu_{5}\right] \simeq B \mu_{5}
\end{aligned}
$$

GLSM invariants $=$ Fan-Jarvis-Ruan-Witten (FJRW) invariants of $\left(W_{5}, \mu_{5}\right)$

Chiodo-Ruan (2008) LG/CY correspondence for quintic 3-folds: GW invariants of $X_{5} \longleftrightarrow$ FJRW invariants of $\left(W_{5}, \mu_{5}\right)$
(1) (ϵ-wall-crossing) Givental style mirror theorems

- CY phase (Givental, Lian-Liu-Yau 1996-7):
$J_{+}=\frac{l_{+}}{l_{+}^{0}} \quad$ under the mirror map
- LG phase (Chiodo-Ruan 2008): $J_{-}=\frac{I_{-}}{I_{-}^{0}}$ under the mirror map $I_{ \pm}, J_{ \pm}$are functions of 1 variable take values in a 4-dimensional complex symplectic space $H(z)_{ \pm}=z H_{ \pm}^{0} \oplus H_{ \pm}^{2} \oplus \frac{1}{z} H_{ \pm}^{4} \oplus \frac{1}{z^{2}} H_{ \pm}^{6}$
(2) (ω-wall-crossing) I_{+}and I_{-}are related by analytic continuation and a \mathbb{C}-linear symplectic isomorphism
$\phi: H(z)_{+} \rightarrow H(z)_{-} \in S p_{4}(\mathbb{C})$

Example 2: mirror quintic

$$
\begin{gathered}
V=\mathbb{C}^{106}=\operatorname{Spec} \mathbb{C}\left[x_{1}, \ldots, x_{5}, p_{1}, \ldots, p_{101}\right], G=\left(\mathbb{C}^{*}\right)^{101}, \omega \in \mathbb{R}^{101} \\
1 \rightarrow G_{0} \rightarrow G \rightarrow G / G_{0}=\operatorname{Spec} \mathbb{C}\left[p_{1}^{ \pm}, \ldots, p_{101}^{ \pm}\right] \rightarrow 1 \\
G_{0}=\left\{\left(x_{1}, \ldots, x_{5}\right) \in\left(\mu_{5}\right)^{5}: x_{1} \cdots x_{5}=1\right\} \simeq\left(\mu_{5}\right)^{4}
\end{gathered}
$$

G / G_{0} acts by weights $(\frac{1}{5} s_{a, 1}, \ldots, \frac{1}{5} s_{a, 5}, 0, \ldots, 0, \underbrace{-1}_{p_{a}}, 0, \ldots, 0)$
$1 \leq a \leq 101, s_{a, i} \in\{0,1,2,3\}, s_{a, 1}+\cdots+s_{a, 5}=5, s_{101}=(1,1,1,1,1)$

$$
\bar{G}_{a}=G_{0} /\left\langle e^{2 \pi \sqrt{-1} s_{a, 1} / 5}, \ldots, e^{2 \pi \sqrt{-1} s_{a, 5} / 5}\right\rangle \simeq\left(\mu_{5}\right)^{3} .
$$

R charges $\quad \mathbb{C}_{R}^{*}$ acts by weights $(0, \ldots, 0,1)$
superpotential $W=\sum_{i=1}^{5} \prod_{a=1}^{101} p_{a}^{s_{a, i}} x_{i}^{5}$

- $\omega \in C_{0}=\left(\mathbb{R}_{<0}\right)^{101} \mathrm{LG}$ phase

$$
\begin{aligned}
\mathcal{X}_{\omega} & =\left[\left(\mathbb{C}^{5} \times(\mathbb{C}-\{0\})^{101}\right) / G\right]=\left[\mathbb{C}^{5} / G_{0}\right] \\
\operatorname{Crit}(w)_{\mathrm{red}} & =\left[0 / G_{0}\right]=B G_{0}, \quad G_{0} \cong\left(\mu_{5}\right)^{4}
\end{aligned}
$$

GLSM invariants $=$ FJRW invariants of $\left(W_{5}, G_{0}\right)$

- $\omega \in C_{101}$ geometric orbifold phase

$$
\begin{aligned}
\mathcal{X}_{\omega} & =\left[\left(\mathbb{C}^{5} \times(\mathbb{C}-\{0\})^{100} \times \mathbb{C}\right) / G\right]=\left[K_{\mathbb{P}^{4}} / \bar{G}_{101}\right] \\
\operatorname{Crit}(w) & =\left[X_{5} / \bar{G}_{101}\right] \subset\left[\mathbb{P}^{4} / \bar{G}_{101}\right] \subset\left[K_{\mathbb{P}^{4}} \bar{G}_{101}\right] \\
& \text { mirror quintic } \quad \bar{G}_{101} \cong\left(\mu_{5}\right)^{3}
\end{aligned}
$$

GLSM invariants = orbifold GW invariants of [X_{5} / \bar{G}_{101}]

- $\omega \in C_{a}, 1 \leq a \leq 100$ (nonstandard) hybrid phases

$$
\mathcal{X}_{\omega} \simeq \begin{cases}{\left[\left(\mathbb{C}^{3} \times K_{\mathbb{P}[2,3]}\right) / \bar{G}_{1}\right],} & 1 \leq a \leq 20 ; \\ {\left[\left(\mathbb{C}^{2} \times K_{\mathbb{P}[1,1,3]}\right) / \bar{G}_{21}\right],} & 21 \leq a \leq 50 ; \\ {\left[\left(\mathbb{C}^{2} \times K_{\mathbb{P}[1,2,2]}\right) / \bar{G}_{51}\right],} & 51 \leq a \leq 80 ; \\ {\left[\left(\mathbb{C} \times K_{\mathbb{P}[1,1,1,2]}\right) / \bar{G}_{81}\right],} & 81 \leq 1 \leq 100\end{cases}
$$

- many other phases

Priddis-Shoemaker (2013) LG/CY correspondence for the mirror quintic: orbifold GW invariants of $\left[X_{5} / \bar{G}_{101}\right] \longleftrightarrow$ FJRW invariants of $\left(W_{5}, G_{0}\right)$
(1) (ϵ-wall-crossing) Givental style mirror theorems: under the mirror map

- CY phase (Lee-Shoemaker 2012): $J_{+}=\frac{I_{+}}{I_{+}^{0}}$
- LG phase (Priddis-Shoemaker): $J_{-}=\frac{I_{-}}{I_{-}^{0}}$ $I_{ \pm}, J_{ \pm}$are functions of 101 variables take values in a 204-dimensional complex symplectic space $H(z)_{ \pm}=z H_{ \pm}^{0} \oplus H_{ \pm}^{2} \oplus \frac{1}{z} H_{ \pm}^{4} \oplus \frac{1}{z^{2}} H_{ \pm}^{6}$ where $H_{ \pm}^{2}=H_{ \pm}^{4}=\mathbb{C}^{101}$
(2) (ω-wall-crossing) I_{+}and I_{-}are related by analytic continuation and a \mathbb{C}-linear symplectic isomorphism
$\phi: H(z)_{+} \rightarrow H(z)_{-} \in S p_{204}(\mathbb{C})$
Lee-Shoemaker $\left.I_{+}\right|_{\mathbb{C H} \subset H_{+}^{2}} \mathbb{C}^{204}$-valued function in 1 variable
Questions: LG/CY correspondence in 101 variables wall-crossing to other phases
Iritani-Milanov-Ruan-Shen: LG/CY correspondence for Fermat CY hypersurface in $\mathbb{P}\left[w_{1}, \ldots, w_{n+2}\right] / G_{W}$ at all genera

2. Higgs branch

- Fan-Jarvis-Ruan, "A mathematical theory of the gauged linear sigma model" 2015, 2018, 2020
- Favero-Kim, "General GLSM invariants and their cohomological field theories," 2020
- Polischuk-Vaintrob: affine LG models
- Ciocan-Fontanine-Favero-Guéré-Kim-Shoemaker: convex hybrid models
symplectic approach: Tian-Xu

Let $\left(V, G, \mathbb{C}_{R}^{*}, W, \omega\right)$ be the input data of a general GLSM, and let $\Gamma \subset G L(V)$ be the subgroup generated by G and \mathbb{C}_{R}^{*}
$\Rightarrow \Gamma / G=\mathbb{C}_{R}^{*} /\langle J\rangle=\mathbb{C}_{w}^{*}$.
GLSM invariants are virtual counts of LG quasimaps, which are birational maps from genus- g ℓ-pointed orbicurves $\left(\mathcal{C}, z_{1}, \ldots, z_{\ell}\right)$ to $\left[V_{G}^{s s}(\omega) / \Gamma\right]$ which extends to a morphism $f: \mathcal{C} \rightarrow[V / \Gamma]+$ stability conditions; enumerative geometry of $\operatorname{Crit}(w) \subset \mathcal{X}_{\omega}$

If $G=\left(\mathbb{C}^{*}\right)^{\kappa}$ then

$$
\begin{gathered}
1 \longrightarrow G=\left(\mathbb{C}^{*}\right)^{\kappa} \longrightarrow \Gamma=\left(\mathbb{C}^{*}\right)^{\kappa+1} \longrightarrow \mathbb{C}_{w}^{*} \longrightarrow 1 \\
H_{2}([V / \Gamma] ; \mathbb{Q})=H_{2}(B \Gamma ; \mathbb{Q})=\mathbb{L}_{\mathbb{Q}} \oplus \mathbb{Q} \ni \operatorname{deg} f=(\beta, 2 g-2+\ell) \\
\quad P \times_{\Gamma} V=\bigoplus_{i=1}^{n+\kappa} \mathcal{L}_{i}, \quad \operatorname{deg} \mathcal{L}_{i}=\left\langle D_{i}, \beta\right\rangle+\frac{q_{i}}{2}(2 g-2+\ell) .
\end{gathered}
$$

(Note that $\frac{q_{i}}{2}=\frac{c_{i}}{r}$ is the weight of the \mathbb{C}_{w}^{*}-action on x_{i}.)

$$
\mathcal{X}_{\omega}=\bigcup_{l \in \mathcal{A}_{\omega}^{\min }} \mathcal{X}_{l} \text {, where } \mathcal{A}_{\omega}^{\min } \text { is the set of minimal anticones, }
$$

$$
I \subset\{1, \ldots, n+\kappa\},|I|=\kappa, \bar{l}:=\{1, \ldots, n+\kappa\} \backslash I
$$

$$
\mathcal{X}_{I}=\left[\left(\mathbb{C}^{\bar{l}} \times\left(\mathbb{C}^{*}\right)^{\prime}\right) / G\right] \simeq\left[\mathbb{C}^{n} / G_{l}\right] \supset p_{I}=\left[\{0\} / G_{l}\right]=B G_{l}
$$

effective classes for $(g, \ell)=(0,1): \mathbb{K}^{\omega}=\bigcup_{l \in \mathcal{A}_{\omega}^{\text {min }}} \mathbb{K}^{l}$, where

$$
\mathbb{K}^{\prime}=\left\{\beta \in \mathbb{L}_{\mathbb{Q}}: \operatorname{deg} \mathcal{L}_{i}=\left\langle D_{i}, \beta\right\rangle-q_{i} / 2 \in \mathbb{Z}_{\geq 0} \forall i \in I\right\}
$$

D. Cheong, I. Ciocan-Fontanine, and B. Kim, "Orbifold Quasimap Theory": ϵ-stable quasimaps to $\mathcal{X}_{\omega}=\left[V_{G}^{\text {ss }}(\omega) / G\right], \epsilon \in \mathbb{Q}_{>0}$.

quasimap wall-crossing (ϵ-wall-crossing)
\Rightarrow Givental style mirror theorems
\Rightarrow mirror theorem for smooth toric DM stacks
(Coates-Corti-Iritani-Tseng)
Y. Zhou: quasimap wall-crossing in orbifold quasimap theory in all genera in full generality
It is expected that Y . Zhou's proof is generalizable to GLSM
\Rightarrow Givental style mirror theorems for all GLSM in all phases
Clader-Janda-Ruan, "Higher-genus wall-crossing in the gauged linear sigma model", with an appendix by Y. Zhou:
GLSM for complete intersections in weighted projective spaces

In orbifold quasimap theory, I-function is obtained by torus localization on stacky loop space (orbifold version of Givental's toric map spaces). We will consider the GLSM version.
The domain is $(\mathbb{P}[a, 1], \infty=[1,0])$ where $a \in \mathbb{Z}_{>0},(g, \ell)=(0,1)$.
M. Shoemaker "Towards a mirror theorem for GLSMs" $(g, \ell)=(0,2)$.

For $p=0,1, a \in \mathbb{Z}>0, m \in \mathbb{Z}$,

$$
H^{p}\left(\mathbb{P}^{1}, \mathcal{O}(m / a)\right):=H^{p}\left(\mathbb{P}[a, 1], \mathcal{O}_{\mathbb{P}[a, 1]}(m)\right)
$$

Given an effective class $\beta \in \mathbb{K}^{\omega}$,
$V_{\beta}=\bigoplus_{i=1}^{n+\kappa} H^{0}\left(\mathbb{P}^{1}, \mathcal{O}\left(\left\langle D_{i}, \beta\right\rangle-q_{i} / 2\right)\right), \quad W_{\beta}=\bigoplus_{i=1}^{n+\kappa} H^{1}\left(\mathbb{P}^{1}, \mathcal{O}\left(\left\langle D_{i}, \beta\right\rangle-q_{i} / 2\right)\right)$
degree β stacky loop space $\mathcal{X}_{\beta, \omega}=\left[V_{\beta}^{\text {ss }}(\omega) / G\right]$
degree β obstruction bundle $O b_{\beta}=\left[\left(V_{\beta}^{s s}(\omega) \times W_{\beta}\right) / G\right]$
\mathbb{C}_{q}^{*} rotates $\mathbb{P}^{1}, \widetilde{T}$ and \mathbb{C}_{q}^{*} act linearly on V_{β}, W_{β}.
$\widetilde{T} \times \mathbb{C}_{q}^{*}$ acts on the smooth toric DM stack $\mathcal{X}_{\beta, \omega}$.
$O b_{\beta}$ is a $\widetilde{T} \times \mathbb{C}_{q}^{*}$-equivariant vector bundle over $\mathcal{X}_{\beta, \omega}$.
Caution: the superpotential W is not invariant under the \widetilde{T}-action

Following Okounkov, $\mathcal{X}_{\beta, \omega}^{\circ}=\left[V_{\beta}^{\circ} / G\right] \subset \mathcal{X}_{\beta, \omega}=\left[V_{\beta}^{s s}(\omega) / G\right]$ is the open substack such that the evaluation at ∞ is defined:

$$
\mathrm{ev}_{\infty}: \mathcal{X}_{\beta, \omega}^{\circ} \longrightarrow \mathcal{X}_{\omega, v(\beta)}
$$

where $\mathcal{X}_{\omega, v(\beta)}$ is a connected component of the inertia stack

$$
\begin{gathered}
I \mathcal{X}_{\omega}=\bigsqcup_{v \in \operatorname{Box}} \mathcal{X}_{\omega, v}, \quad \mathcal{X}_{\omega, v}=\left[V_{G}^{s s}(V)^{g(v)} / G\right] . \\
\iota_{\beta \rightarrow v(\beta)}: \mathcal{F}_{\beta, \omega}:=\left(\mathcal{X}_{\beta, \omega}^{\circ}\right)^{\mathbb{C}_{q}^{*}} \rightarrow \mathcal{X}_{\omega, v(\beta)}
\end{gathered}
$$

Using the 4-tuple ($V, G, \mathbb{C}_{R}^{*}, \omega$) and action of the diagonal torus $\widetilde{T} \subset G L(V)$, we define

$$
\widetilde{T} \text {-equivariant } I \text {-function } \quad I_{\widetilde{T}}(y, z):=\sum_{v \in \operatorname{Box}} I_{\widetilde{T}, v}(y, z) \mathbf{1}_{v}
$$

where $I_{\widetilde{T}, v}(y, z)$ takes values in $H_{\widetilde{T}}^{*}\left(\mathcal{X}_{\omega, v}\right)$.

$$
I_{\widetilde{T}, v}(y, z)=e^{\left(\sum_{a=1}^{\kappa} \log y_{a} i_{v}^{*} p_{\mathrm{a}}\right) / z} \sum_{\substack{\beta \in \mathbb{K} \omega \\ v(\beta)=v}} y^{\beta}\left(\iota_{\beta \rightarrow v(\beta)}\right) *\left(\frac{1}{e_{\widetilde{T}_{\times \mathbb{C}_{q}^{*}}}\left(N_{\beta}^{\mathrm{vir}}\right)}\right)
$$

where $i_{v}: \mathcal{X}_{\omega, v} \rightarrow \mathcal{X}_{\omega}, p_{a} \in H_{\widetilde{T}}^{*}\left(\mathcal{X}_{\omega}\right), N_{\beta}^{\mathrm{vir}}=N_{\mathcal{F}_{\beta}, \mathcal{X}_{\beta, \bar{\omega}}^{\circ}}^{\mathrm{vir}}$.

Given $\mathcal{B} \in \operatorname{Coh}_{\widetilde{T}}\left(\mathcal{X}_{\omega}\right),[\mathcal{B}] \in K_{\widetilde{T}}\left(\mathcal{X}_{\omega}\right)$, define
\widetilde{T}-equivariant central charge

$$
Z_{\widetilde{T}}([\mathcal{B}])=\left\langle I_{\widetilde{T}}, \hat{\Gamma}_{\widetilde{T}} \operatorname{ch}_{\widetilde{T}}([\mathcal{B}])\right\rangle=\sum_{I \in \mathcal{A}_{\omega}^{\min }} Z_{\widetilde{T}}^{\prime}([\mathcal{B}])
$$

where $\hat{\Gamma}_{\widetilde{T}} \operatorname{ch} \widetilde{T}([\mathcal{B}]) \in \bigoplus_{v \in \text { Box }} H_{\widetilde{T}}^{*}\left(\mathcal{X}_{\omega, v}\right) \otimes_{R_{\widetilde{T}}} R_{\widetilde{T}}\left(\left(z^{-1}\right)\right)$,
$R_{\widetilde{T}}=H_{\widetilde{T}}^{*}(\bullet)=\mathbb{C}\left[\lambda_{1}, \ldots, \lambda_{n+\kappa}\right]$.
Explicit formula for $Z_{\widetilde{T}}^{I}([\mathcal{B}])=$ contribution from $p_{I}=B G_{I}$.
Using the 5-tuple ($V, G, \mathbb{C}_{R}^{*}, W, \omega$), define

$$
\text { GLSM I-function } \quad I_{w}(y, z)=\sum_{v \in \operatorname{Box}} I_{w, v}(y, z) \mathbf{1}_{v}
$$

where $I_{w, v}(y, z)$ takes values in $H_{w, v}=H^{*}\left(\mathcal{X}_{\omega, v}, \operatorname{Re}\left(i_{v}^{*} w_{v}\right) \gg 0\right)$.
Given $\mathcal{B} \in \operatorname{MF}\left(\mathcal{X}_{\omega}, w\right),[\mathcal{B}] \in K\left(M F\left(\mathcal{X}_{\omega}, w\right)\right)$, define
GLSM central charge $\quad Z_{w}([\mathcal{B}])=\left\langle I_{w}, \hat{\Gamma}_{w} \operatorname{ch}_{w}([\mathcal{B}])\right\rangle$
where $\hat{\Gamma}_{w} \operatorname{ch}_{w} \in \bigoplus_{v \in \text { Box }} H_{w, v} \otimes_{\mathbb{C}} \mathbb{C}\left(\left(z^{-1}\right)\right)$.
$K\left(M F\left(\mathcal{X}_{\omega}, w\right)\right)$ is a module over the ring $K\left(\mathcal{X}_{\omega}\right)$, and there is a morphism of $K\left(\mathcal{X}_{\omega}\right)$-modules

$$
\psi: K\left(M F\left(\mathcal{X}_{\omega}, w\right)\right) \rightarrow K\left(\mathcal{X}_{\omega}\right)
$$

whose image is an ideal.
Any G character $t \in \mathbb{L}^{\vee}=\operatorname{Hom}\left(G, \mathbb{C}^{*}\right)$ defines a line bundle \mathcal{L}_{t} on $[V / G]$. Let $\mathcal{L}_{t}^{\widetilde{T}}$ be the \widetilde{T}-equivariant line bundle over $[V / G]$ with the total space $[(V \times \mathbb{C}) / G]$, where G acts on \mathbb{C} by the character t and \widetilde{T} acts trivially on \mathbb{C}.

$$
\phi: K\left(\mathcal{X}_{\omega}\right) \rightarrow K_{\widetilde{T}}\left(\mathcal{X}_{\omega}\right), \quad \mathcal{L}_{t} \mapsto \mathcal{L}_{t}^{\widetilde{T}}
$$

If $G \subset S L(V)$ (Calabi-Yau) and there is a LG phase (e.g. Fermat Calabi-Yau hypersurfaces in finite quotients of weighted projective spaces) then

$$
Z_{w}([\mathcal{B}])=\left.Z_{\widetilde{T}}(\phi \circ \psi([\mathcal{B}]))\right|_{\lambda_{j}=0}
$$

3. Coulomb branch

(motivated by arXiv:1308.2438 by K. Hori and M. Romo)
Consider an abelian gauged linear sigma model $\left(V, G, \mathbb{C}_{R}^{*}, W, \omega\right)$ where $G \simeq\left(\mathbb{C}^{*}\right)^{\kappa} \subset S L(V)$ (Calabi-Yau)
$\theta=\omega+2 \pi \sqrt{-1} B \in \mathbb{L}_{\mathbb{C}}^{\vee}$ complexified/stringy Kähler class
$\omega=$ (extended) Kähler class, $B=\mathrm{B}$-field
$\left.\alpha=\left(\alpha_{1}, \ldots, \alpha_{n+\kappa}\right) \in \mathbb{R}^{n+\kappa}, \delta \in \mathbb{L}_{\mathbb{R}},\left\langle D_{i}, \delta\right\rangle+\alpha_{i}\right\rangle 0$ for $1 \leq i \leq n+\kappa$
Given $\mathcal{B} \in \operatorname{MF}([V / G], w)$, define the
(α-perturbed) hemisphere/disk partition function

$$
Z_{D^{2}}([\mathcal{B}])=\frac{1}{(2 \pi \sqrt{-1})^{\kappa}} \int_{\delta+\sqrt{-1} \mathbb{L}_{\mathbb{R}}} d \sigma \Gamma(\sigma) \operatorname{ch}[\mathcal{B}](\sigma) e^{\langle\theta, \sigma\rangle}
$$

where $\Gamma(\sigma)=\prod_{i=1}^{n+\kappa} \Gamma\left(\left\langle D_{i}, \sigma\right\rangle+\alpha_{i}\right)$, and

$$
\operatorname{ch}[\mathcal{B}](\sigma)=\sum_{t \in \mathbb{L}^{\vee}} c_{t} e^{2 \pi \sqrt{-1}\langle t, \sigma\rangle} \quad \text { if } \psi([\mathcal{B}])=\sum_{t \in \mathbb{L}^{\vee}} c_{t} \mathcal{L}_{t} \in K([V / G]) .
$$

- $Z_{D^{2}}([\mathcal{B}])$ is a multidimensional inverse Mellin transform of $\Gamma(\sigma) \operatorname{ch}[\mathcal{B}](\sigma)$.
- (R-wall-crossing) $\begin{cases}\alpha_{i} \rightarrow 0: & \text { without superpotential } \\ \alpha_{i} \rightarrow q_{i} / 2: & \text { with superpotential }\end{cases}$

Proposition

There is an open subset $U \subset \mathbb{L}_{\mathbb{R}}^{\vee}$ such that

$$
Z_{D^{2}}\left(\mathcal{L}_{t}\right)=\frac{1}{(2 \pi \sqrt{-1})^{\kappa}} \int_{\delta+\sqrt{-1} \mathbb{L}_{\mathbb{R}}} d \sigma \Gamma(\sigma) e^{\langle\theta+2 \pi \sqrt{-1} t, \sigma\rangle}
$$

is an analytic function in θ on

$$
\left\{\theta=\omega+2 \pi \sqrt{-1} B \mid \omega \in \mathbb{L}_{\mathbb{R}}^{\vee}, B+t \in U\right\} .
$$

Theorem 1 (Aleshkin-L)
Let C be a phase of the GLSM (i.e. C is the interior of a κ-dim'l cone in the secondary fan in $\mathbb{L}_{\mathbb{R}}^{\vee} \simeq \mathbb{R}^{\kappa}$), and let $\omega_{0} \in C$.
$\Rightarrow C=\bigcap_{I \in \mathcal{A}_{\omega_{0}}^{\text {min }}} \angle I \subset \mathbb{L}_{\mathbb{R}}^{V}$ where $\angle I I=\left\{\sum_{i \in I} a_{i} D_{i} \mid a_{i} \in(0,+\infty)\right\}$.
Then there is an open subset $U_{C}=\bigcap_{I \in \mathcal{A}_{\omega_{0}}} U_{I} \subset \mathbb{L}_{\mathbb{R}}^{\vee}$ where

$$
U_{I}=\left\{\sum_{i \in I} a_{i} D_{i} \mid a_{i} \in\left(N_{i},+\infty\right)\right\} \quad\left(N_{i} \gg 0\right)=\text { shifted } \angle_{1}
$$

such that if $\omega \in U_{C}$ then $Z_{D^{2}}\left(\mathcal{L}_{t}\right)=\sum_{I \in \mathcal{A}_{\omega_{0}}^{\text {min }}} Z^{\prime}\left(\mathcal{L}_{t}\right)$, where
$Z^{\prime}\left(\mathcal{L}_{t}\right)=\frac{1}{\left|G_{l}\right|} \sum_{m \in\left(\mathbb{Z}_{\geq 0}\right)^{\prime}} \prod_{\bar{i} \in \bar{I}} \Gamma\left(\left\langle D_{i}, \sigma_{m}\right\rangle+\alpha_{i}\right) \prod_{i \in I} \frac{(-1)^{m_{i}}}{m_{i}!} e^{\left\langle\theta+2 \pi \sqrt{-1} t, \sigma_{m}\right\rangle}$
$\sigma_{m}=-\sum_{i \in I}\left(m_{i}+\alpha_{i}\right) D_{i}^{* I}$ where $\left\{D_{i}^{* I}: i \in I\right\}$ is a basis of $\mathbb{L}_{\mathbb{Q}}$ dual to the basis $\left\{D_{i}: i \in I\right\}$ of $\mathbb{L}_{\mathbb{Q}}^{\vee}$.
The infinite series $Z^{\prime}\left(\mathcal{L}_{t}\right)$ converges absolutely and uniformally on $\left\{\theta=\omega+2 \pi \sqrt{-1} B: \omega \in U_{I}, B \in \mathbb{L}_{\mathbb{R}}^{\vee}\right\}$.

Moreover, we have the following Higgs-Coulomb correspondence

$$
\left.Z_{D^{2}}([\mathcal{B}])\right|_{\theta=-\sum_{a=1}^{\kappa}\left(\log y_{a}\right) \xi_{a}, \alpha_{i}=\frac{\lambda_{i}}{z}+\frac{q_{i}}{2}}=Z_{\widetilde{T}}([\mathcal{B}])
$$

where $\left\{\xi_{1}, \ldots, \xi_{\kappa}\right\}$ is an integral basis of \mathbb{L}^{\vee} and $1 \leq i \leq n+\kappa$.
Knapp-Romo-Scheidegger, "D-brane central charges and
Landau-Ginzburg orbifolds," 2020.
Proof by careful manipulation of κ-dimensional cycles and convergence checks of integrals \int and series \sum.

$$
\begin{aligned}
& Z_{D^{2}}\left(\mathcal{L}_{t}\right)=\int_{\mathbb{R}^{\kappa}}(\cdots)=\sum_{\mathcal{A}_{1}} \sum_{m \in \mathbb{Z}_{\geq 0}} \int_{S^{1} \times \mathbb{R}^{\kappa-1}}(\cdots)=\cdots \\
& =\sum_{\mathcal{A}_{\ell}} \sum_{m \in\left(\mathbb{Z}_{\geq 0}\right)^{\ell}} \int_{\left(S^{1}\right)^{\ell} \times \mathbb{R}^{\kappa-\ell}}(\cdots)=\cdots=\sum_{\mathcal{A}_{\kappa}} \sum_{m \in\left(\mathbb{Z}_{\geq 0}\right)^{\kappa}} \underbrace{}_{\kappa \text {-dimensional residue }} \int_{\left(S^{1}\right)^{\kappa}}(\cdots)
\end{aligned}
$$

- $\mathcal{A}_{1}, \ldots, \mathcal{A}_{\kappa}=\mathcal{A}_{\omega_{0}}^{\min }$ are finite sets.
- Up to translation, $\mathbb{R}^{\kappa-\ell} \subset \sqrt{-1} \mathbb{L}_{\mathbb{R}}$.
- Use the Calabi-Yau condition.

4. Wall-Crossing

abelian GLSMs without superpotentials:

- Borisov-Horja "Mellin-Barnes integrals as Fourier-Mukai transforms"
- Coates-Iritani-Jiang "The Crepant Transformation Conjecture for Toric Complete Intersections."

Let C_{+}, C_{-}be two adjacent chambers in $\mathbb{L}_{\mathbb{R}}=$ space of stability conditions. Then $\bar{C}_{ \pm}$are κ-dimensional cones in the secondary fan, and the $(\kappa-1)$-dimensional cone $\bar{C}_{+} \cap \bar{C}_{-}$is contained in the hyperplane $\left(h^{\perp}\right)_{\mathbb{R}}:=\left\{\omega \in \mathbb{L}_{\mathbb{R}} \mid\langle\omega, h\rangle=0\right\}$ for some primitive $h \in \mathbb{L}$. Let $\omega_{ \pm} \in C_{ \pm}, \mathcal{X}_{ \pm}:=\mathcal{X}_{\omega_{ \pm}}$. Then

$$
C_{ \pm}=\bigcap_{l \in \mathcal{A}_{\omega_{ \pm}}^{\text {min }}} \angle l, \quad \mathcal{A}_{\omega_{ \pm}}^{\text {min }}=\mathcal{A}_{ \pm}^{\text {ess }} \cup \underbrace{\mathcal{A}^{\text {noness }}}_{\mathcal{A}_{\omega_{+}}^{\text {min }} \cap \mathcal{A}_{\omega_{-} \text {min }}^{\text {mins }}}
$$

$$
\{1, \ldots, n+\kappa\}=I_{+} \cup I_{-} \cup I_{0}, \text { where } \begin{aligned}
I_{+} \\
I_{-} \\
I_{0}
\end{aligned}=\left\{i \mid\left\langle D_{i}, h\right\rangle<0\right\}
$$

$$
\mathcal{A}_{ \pm}^{\text {ess }}=\left\{\{i\} \cup J \mid i \in I_{ \pm}, J \in \mathcal{A}_{0}\right\}, \quad J \in \mathcal{A}_{0} \Rightarrow J \subset I_{0},|J|=\kappa-1 .
$$

Theorem 2 (Aleshkin-L)
In the setting above, if $t \in \mathbb{L}^{\vee}$ satisfies the Grade Restriction Rule

$$
|\langle B+t, h\rangle|<\frac{1}{4} \sum_{i=1}^{n+\kappa}\left|\left\langle D_{i}, h\right\rangle\right|=\frac{1}{2} \eta
$$

where $\eta=\sum_{i \in I_{+}}\left\langle D_{i}, h\right\rangle=\sum_{i \in I_{-}}\left\langle D_{i},-h\right\rangle$. Then there exists an open subset $U \subset U_{C_{ \pm}}$such that for $\omega \in U$

$$
Z_{D^{2}}\left(\mathcal{L}_{t}\right)_{ \pm}=\sum_{J \in \mathcal{A}_{0}} Z_{J}^{\text {ess }}\left(\mathcal{L}_{t}\right)+\sum_{l \in \mathcal{A}^{\text {noness }}} Z_{l}\left(\mathcal{L}_{t}\right)
$$

- $Z_{J}^{\text {ess }}\left(\mathcal{L}_{t}\right)$ is an explicit series of integrals over $\left(S^{1}\right)^{\kappa-1} \times \mathbb{R}$.
- $Z_{l}\left(\mathcal{L}_{t}\right)$ converges uniformly and absolutely on for $\omega \in U_{I} \supset U_{C_{ \pm}}$.

The Grade Restriction Rule (GRR)

$$
\langle B+t, h\rangle \in\left(-\frac{\eta}{2}, \frac{\eta}{2}\right)
$$ defines equivalences

$$
\begin{array}{cccc}
& D^{b}\left(\mathcal{X}_{+}\right) & \longrightarrow & D^{b}\left(\mathcal{X}_{-}\right) \\
\mathrm{GR}: & D_{T}^{b}\left(\mathcal{X}_{+}\right) & \longrightarrow & D_{T}^{b}\left(\mathcal{X}_{-}\right) \\
D_{\widetilde{T}}^{b}\left(\mathcal{X}_{+}\right) & \longrightarrow & D_{\widetilde{T}}^{b}\left(\mathcal{X}_{-}\right) \\
D\left(M F\left(\mathcal{X}_{+}, w\right)\right) & \longrightarrow & D\left(M F\left(\mathcal{X}_{-}, w\right)\right)
\end{array}
$$

- Kawamata FM: $D^{b}\left(\mathcal{X}_{+}\right) \xrightarrow{\simeq} D^{b}\left(\mathcal{X}_{-}\right)$(Fourier-Mukai)
- Coates-Iritani-Jiang-Segal GR $=\mathrm{FM}: D_{T}^{b}\left(\mathcal{X}_{+}\right) \xrightarrow{\simeq} D_{T}^{b}\left(\mathcal{X}_{-}\right)$
(Grade Restriction Rule $=$ Fourier-Mukai)
Halpern-Leistner, Ballard-Favero-Katzarkov
- Baranovsky-Pecharich, ...

Theorem $2 \Rightarrow Z_{D^{2}}([\mathcal{B}])_{+}$and $Z_{D^{2}}(G R[\mathcal{B}])_{-}$are related by analytic continuation. GR \rightarrow symplectic transform

