Homework 6

1. Section 24

24.9 Consider \(f_n(x) = nx^n(1-x) \) for \(x \in [0,1] \).

(a) Find \(f(x) = \lim f_n(x) \). (b) Does \(f_n \to f \) uniformly on \([0,1]\)? Justify.

24.10 (a) Prove that if \(f_n \to f \) uniformly, on a set \(S \), and if \(g_n \to g \) uniformly on \(S \), then \(f_n + g_n \to f + g \)

(b) Do you believe the analogue of (a) holds for products? If so, see the next exercise.

24.13 Prove that if \((f_n) \) is a sequence of uniformly continuous functions on an interval \((a,b) \), and if \(f_n \to f \) uniformly on \((a,b) \), then \(f \) is also uniformly continuous on \((a,b) \). \(\text{Hint:} \) Try an \(\epsilon/3 \) argument as in the proof of Theorem 24.3.

24.14 Let \(f_n(x) = \frac{nx^n}{1+n^2x^2} \) and \(f(x) = 0 \) for \(x \in \mathbb{R} \).

(a) Show \(f_n \to f \) pointwise on \(\mathbb{R} \).

(b) Does \(f_n \to f \) uniformly on \([0,1]\)? Justify.

(c) Does \(f_n \to f \) uniformly on \([1,\infty)\)? Justify.

2. Section 25

25.2 Let \(f_n(x) = \frac{x^n}{n} \). Show \((f_n) \) is uniformly convergent on \([-1,1]\) and specify the limit function.

25.4 Let \((f_n) \) be a sequence of functions on a set \(S \subset \mathbb{R} \), and suppose \(f_n \to f \) uniformly on \(S \). Prove \((f_n) \) is uniformly Cauchy on \(S \). \(\text{Hint:} \) Use the proof of Lemma 10.9 on page 63 as a model, but be careful.

25.5 Let \((f_n) \) be a sequence of bounded functions on a set \(S \), and suppose \(f_n \to f \) uniformly on \(S \). Prove \(f \) is a bounded function on \(S \).

25.6 (a) Show that if \(\sum |a_k| < \infty \), then \(\sum a_kx^k \) converges uniformly on \([-1,1]\) to a continuous function.

(b) Does \(\sum_{n=1}^{\infty} \frac{x^n}{n} \) represent a continuous function on \([-1,1]\)?

25.10 (a) Show \(\sum \frac{x^n}{1+x^n} \) converges for \(x \in [0,1) \).

(b) Show that the series converges uniformly on \([0,a] \) for each \(a, 0 < a < 1 \).

(c) Does the series converge uniformly on \([0,1)\)? Explain.