1. Section 34

34.2 Calculate
(a) \(\lim_{x \to 0} \frac{1}{x} \int_0^x e^{t^2} \, dt \)
(b) \(\lim_{h \to 0} \frac{1}{h} \int_3^{3+h} e^{t^2} \, dt \).

34.3 Let \(f \) be defined as follows: \(f(t) = 0 \) for \(t < 0 \); \(f(t) = t \) for \(0 \leq t \leq 1 \); \(f(t) = 4 \) for \(t > 1 \).
(a) Determine the function \(F(x) = \int_0^x f(t) \, dt \).
(b) Sketch \(F \). Where is \(F \) continuous?
(c) Where is \(F \) differentiable? Calculate \(F' \) at the points of differentiability.

34.6 Let \(f \) be a continuous function on \(\mathbb{R} \) and define
\[
G(x) = \int_0^{\sin x} f(t) \, dt \quad \text{for} \quad x \in \mathbb{R}.
\]
Show \(G \) is differentiable on \(\mathbb{R} \) and compute \(G' \).

34.11 Suppose \(f \) is a continuous function on \([a, b]\). Show that if \(\int_a^b f(x)^2 \, dx = 0 \), then \(f(x) = 0 \) for all \(x \) in \([a, b]\). \textit{Hint:} See Theorem 33.4.

34.12 Show that if \(f \) is a continuous real-valued function on \([a, b]\) satisfying \(\int_a^b f(x)g(x) \, dx = 0 \) for every continuous function \(g \) on \([a, b]\), then \(f(x) = 0 \) for all \(x \) in \([a, b]\).