Besse 2018, Lecture III

Main Exercise 1. Compute the double recursion for $\mathfrak{g l}_{3}$ clasps, and verify that the conjecture solves the recursion in this case. Where does the dominance order on weights seem to play a role in the recursive formulas?

Main Exercise 2. Compute the cellular form for $\underline{i}=(1,1,1,1,1)$ at the weights $5 \omega_{1}, 3 \omega_{1}+\omega_{2}$, and $\omega_{1}+2 \omega_{2}$. (Hint: Your form should be \pm-definite, which is a shadow of Hodge theory!)

Besse 2018, Lecture III supplementary exercises

Exercise 1. Compute the double recursion for $\mathfrak{g l}_{4}$ clasps, and verify that the conjecture solves the recursion in this case.

Exercise 2. Fix a field \mathbb{k}. Let B be an absolutely indecomposable object in a \mathbb{k}-linear KrullSchmidt category \mathcal{C}; this means that its endomorphism ring is local, with maximal ideal \mathfrak{m}, and $\operatorname{End}(B) / \mathfrak{m}$ is spanned by the identity map. Let X be any other object in \mathcal{C}. Then one has a pairing

$$
\operatorname{Hom}(X, B) \times \operatorname{Hom}(B, X) \rightarrow \operatorname{End}(B) / \mathfrak{m}=\mathbb{k}
$$

which we call the local intersection pairing of X at B. Prove that the multiplicity of B as a direct summand of X is equal to the rank of the local intersection pairing. Why does the local intersection pairing match up with the cellular pairing for an OACC?

