Besse 2018, Lecture III

Main Exercise 1. Compute the double recursion for \mathfrak{gl}_3 clasps, and verify that the conjecture solves the recursion in this case. Where does the dominance order on weights seem to play a role in the recursive formulas?

Main Exercise 2. Compute the cellular form for $\underline{i} = (1, 1, 1, 1, 1)$ at the weights $5\omega_1, 3\omega_1 + \omega_2$, and $\omega_1 + 2\omega_2$. (Hint: Your form should be \pm -definite, which is a shadow of Hodge theory!)

Besse 2018, Lecture III supplementary exercises

Exercise 1. Compute the double recursion for \mathfrak{gl}_4 clasps, and verify that the conjecture solves the recursion in this case.

Exercise 2. Fix a field k. Let B be an absolutely indecomposable object in a k-linear Krull-Schmidt category C; this means that its endomorphism ring is local, with maximal ideal \mathfrak{m} , and $\operatorname{End}(B)/\mathfrak{m}$ is spanned by the identity map. Let X be any other object in C. Then one has a pairing

$$\operatorname{Hom}(X, B) \times \operatorname{Hom}(B, X) \to \operatorname{End}(B)/\mathfrak{m} = \Bbbk$$

which we call the *local intersection pairing* of X at B. Prove that the multiplicity of B as a direct summand of X is equal to the rank of the local intersection pairing. Why does the local intersection pairing match up with the cellular pairing for an OACC?