1. Evaluate the following series exactly if they converge, or explain why they diverge.
(a) $\sum_{n=0}^{\infty} \frac{5^{n}}{3 \cdot 2^{3 n+2}}$

Geometric series. $r=\frac{5}{2^{3}}=\frac{5}{8}<1$ so it converges. $a=\frac{5^{0}}{3 \cdot 2^{2}}=\frac{1}{12}$. So the limit is

$$
\frac{a}{1-r}=\frac{\frac{1}{12}}{1-\frac{5}{8}}=\frac{2}{9} .
$$

(b) $\sum_{n=0}^{\infty} \frac{5 \cdot 2^{n}}{7}$

Geometric series. $r=2$ so diverges. (WARNING: Don't forget to make sure that $r<1$ before blindly using the formula $\frac{a}{1-r}$.)
(c) $\sum_{n=4}^{\infty} \frac{1}{\ln \left(n^{2}\right)}-\frac{1}{\ln \left((n+1)^{2}\right)}$

Telescoping sum.

$$
\lim _{n \rightarrow \infty} \frac{1}{\ln \left(n^{2}\right)}=0
$$

and therefore the sum converges to

$$
\frac{1}{\ln \left(4^{2}\right)}-0=\frac{1}{\ln (16)} .
$$

(d) $\sum_{n=4}^{\infty} \ln \left(n^{2}\right)-\ln \left((n+1)^{2}\right)$

Telescoping sum.

$$
\lim _{n \rightarrow \infty} \ln \left(n^{2}\right)=\infty
$$

and therefore the sum diverges.
(e) $4+12+\frac{36}{2}+\frac{108}{6}+\frac{4 \cdot 81}{24}+\ldots$

This is

$$
4\left(1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\frac{x^{4}}{4!}+\ldots\right)
$$

with $x=3$ plugged in. Thus it is $4 e^{3}$.
(f) $7-\frac{7^{2}}{2}+\frac{7^{3}}{3}-\frac{7^{4}}{4}+\ldots$

This is

$$
x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{4}+\ldots
$$

with $x=7$ plugged in. You might be fooled and say it is $\ln (1+7)=\ln (8)$. Unfortunately, 7 is not in the interval of convergence of this power series... it diverges, by the ratio test.
(g) $\sum_{n=0}^{\infty}(-1)^{n} \frac{(13)^{2 n}}{(2 n)!}+(-1)^{n} \frac{9^{2 n+1}}{(2 n+1)!}$

The first sum is $\cos (13)$ and the second sum is $\sin (9)$, thus the combo is $\cos (13)+\sin (9)$.
2. Let $y=\sum_{n=0}^{\infty} a_{n} t^{n}$ be a power series centered at 0 .
(a) Write down power series centered at 0 for $y^{\prime}, y^{\prime \prime}$, and $y^{\prime \prime \prime}$.

$$
y^{\prime}=\sum_{n=1}^{\infty} n a_{n} t^{n-1}=\sum_{n=0}^{\infty}(n+1) a_{n+1} t^{n} .
$$

(Note: either one is ok, both answer the question. But the latter will be more useful later on.)

$$
y^{\prime \prime}=\sum_{n=2}^{\infty} n(n-1) a_{n} t^{n-2}=\sum_{n=0}^{\infty}(n+2)(n+1) a_{n+2} t^{n} .
$$

$$
y^{\prime \prime \prime}=\sum_{n=3}^{\infty} n(n-1)(n-2) a_{n} t^{n-3}=\sum_{n=0}^{\infty}(n+3)(n+2)(n+1) a_{n+3} t^{n}
$$

(b) Suppose that $y(0)=2, y^{\prime}(0)=1$, and $y^{\prime \prime}(0)=6$. What does that say about the coefficients a_{n} ?

$$
a_{0}=y(0)=2, a_{1}=y^{\prime}(0)=1 \text { and } a_{2}=\frac{y^{\prime \prime}(0)}{2!}=3
$$

(c) Suppose that y solves the differential equation $y^{\prime \prime \prime}-2 y^{\prime \prime}+y^{\prime}-2 y=0$ with the initial conditions given above. Find a_{n} for $n \leq 4$.
(We add together the power series in the latter form above, so that they easily give us the coefficient of t^{n}.)

$$
y^{\prime \prime \prime}-2 y^{\prime \prime}+y^{\prime}-2 y=\sum_{n=0}^{\infty}\left((n+3)(n+2)(n+1) a_{n+3}-2(n+2)(n+1) a_{n+2}+(n+1) a_{n+1}-2 a_{n}\right) t^{n}=0
$$

So each coefficient is zero. Solving for a_{n+3} we get

$$
a_{n+3}=\frac{2(n+2)(n+1) a_{n+2}-(n+1) a_{n+1}+2 a_{n}}{(n+3)(n+2)(n+1)}
$$

Plugging in $n=0$ we get

$$
a_{3}=\frac{2(2)(1) a_{2}-(1) a_{1}+2 a_{0}}{(3)(2)(1)}=\frac{12-1+4}{6}=\frac{15}{6}
$$

Plugging in $n=1$ we get

$$
a_{4}=\frac{\left(2(3)(2) a_{3}-(2) a_{2}+2 a_{1}\right.}{(4)(3)(2)}=\frac{12 \cdot \frac{15}{6}-6+2}{24}=\frac{26}{24}
$$

3. Let $y=\sum_{n=0}^{\infty} a_{n}(t-6)^{n}$ be a power series centered at 6 .
(a) Write down power series centered at 6 for y^{\prime} and $(t+2) y$.

$$
\begin{gathered}
y^{\prime}=\sum_{n=1}^{\infty} n a_{n}(t-6)^{n-1}=\sum_{n=0}^{\infty}(n+1) a_{n+1}(t-6)^{n} \\
(t+2) y=((t-6)+8) y=(t-6) y+8 y=\sum_{n=0}^{\infty} a_{n}(t-6)^{n+1}+\sum_{n=0}^{\infty} 8 a_{n}(t-6)^{n} \\
=\sum_{n=1}^{\infty} a_{n-1}(t-6)^{n}+\sum_{n=0}^{\infty} 8 a_{n}(t-6)^{n}=8 a_{0}+\sum_{n=1}^{\infty}\left(8 a_{n}+a_{n-1}\right)(t-6)^{n}
\end{gathered}
$$

(Remember, the steps here are: recenter the polynomial $(t+2)$ at 6 , i.e. in the form $(t-6)+8$. Then find each term individually. Then, to add them together, reindex so the coefficient of $(t-6)^{n}$ is obvious. Then, when you add, keep track of small values of n separately; here, $n=0$ is special, because it is not in the first sum.)
(b) Suppose that y solves the differential equation $y^{\prime}-(t+2) y=15$. Write down a recursive formula for the coefficients a_{n}.

$$
y^{\prime}-(t+2) y=\left(a_{1}-8 a_{0}-15\right)(t-6)^{0}+\sum_{n=1}^{\infty}\left((n+1) a_{n+1}-8 a_{n}-a_{n-1}\right)(t-6)^{n}=0
$$

Each coefficient is zero. So our recursive formula is special at the start:

$$
a_{1}=8 a_{0}+15,
$$

and then for $n \geq 1$ is:

$$
a_{n+1}=\frac{8 a_{n}+a_{n-1}}{n+1} .
$$

(Note: You will make fewer mistakes if you keep track of for which n the formula is valid. This formula right here is valid only for $n \geq 1$, not for $n=0$, where you have to use the formula $a_{1}=8 a_{0}+15$ instead.)
(c) Find the first three non-zero terms of the general solution centered at 6 .

For the general solution, we just let a_{0} be an independent variable, and solve everything in terms of it.

$$
\begin{gathered}
a_{1}=8 a_{0}+15 \\
a_{2}=\frac{8 a_{1}+a_{0}}{2}=\frac{64 a_{0}+a_{0}+120}{2}=\frac{65}{2} a_{0}+60
\end{gathered}
$$

(Warning: It is not good enough to leave it at $a_{2}=\frac{8 a_{1}+a_{0}}{2}$. You have to solve in terms of a_{0}. The point is that a_{0} determines the initial conditions, from which everything else should be determined.)
So the first three terms are $a_{0}+\left(8 a_{0}+15\right)(t-6)+\left(\frac{65}{2} a_{0}+60\right)(t-6)^{2}$.
4. Suppose that y solves the differential equation $y^{\prime \prime}+t y^{\prime}+y=0$ with initial conditions $y(0)=1$ and $y^{\prime}(0)=0$.
(a) Suppose that $y=\sum a_{n} t^{n}$. Find a recursive formula for the coefficients a_{n}.

$$
\begin{gathered}
y^{\prime \prime}=\sum_{n=0}^{\infty}(n+2)(n+1) a_{n+2} t^{n} \\
t y^{\prime}=\sum_{n=0}^{\infty}(n+1) a_{n+1} t^{n+1}=\sum_{n=1}^{\infty} n a_{n} t^{n} \\
y^{\prime \prime}+t y^{\prime}+y=\left((2)(1) a_{2}+a_{0}\right) t^{0}+\sum_{n=1}^{\infty}\left((n+2)(n+1) a_{n+2}+n a_{n}+a_{n}\right) t^{n}
\end{gathered}
$$

SO

$$
a_{2}=\frac{-a_{0}}{2}
$$

and

$$
a_{n+2}=\frac{-(n+1) a_{n}}{(n+2)(n+1)}=\frac{-a_{n}}{n+2}
$$

for $n \geq 1$.
(Secretly, though, this formula also holds for $n=0$. After all, looking at $t y^{\prime}$, it is the case that $\sum_{n=1}^{\infty} n a_{n} t^{n}=\sum_{n=0}^{\infty} n a_{n} t^{n}$. But there are cases where trying to simplify like this will just screw you up or confuse you unless you're a careful person...)
(b) Find the values of a_{n} for $n \leq 8$.
$a_{0}=y(0)=1$ and $a_{1}=y^{\prime}(0)=0$.
$a_{2}=\frac{-1}{2}$ and $a_{3}=0$
$a_{4}=\frac{-a_{2}}{4}=\frac{1}{2 \cdot 4}$ and $a_{5}=0$.
$a_{6}=\frac{-a_{4}}{6}=\frac{-1}{2 \cdot 4 \cdot 6}$ and $a_{7}=0$.
$a_{8}=\frac{1}{2 \cdot 4 \cdot 6 \cdot 8}$.
(The pattern is clear if you needed to find a_{n} for all n.)
(c) Approximate the value of $y(0.1)$ to within 10^{-6}. Justify your answer.

By the above, we have that $y(t)$ is approximately equal to

$$
1-\frac{1}{2} t^{2}+\frac{1}{2 \cdot 4} t^{4}-\frac{1}{2 \cdot 4 \cdot 6} t^{6}+\frac{1}{2 \cdot 4 \cdot 6 \cdot 8} t^{8}-\ldots
$$

Plugging in $t=0.1=10^{-1}$, we get an alternating series. Since $\frac{1}{2 \cdot 4 \cdot 6} 10^{-6}<10^{-6}$ while $\frac{1}{2 \cdot 4} 10^{-4}>10^{-6}$, we see that the fourth term is the first one which is smaller than 10^{-6}. So we should stop after the third term, which gives the approximation

$$
y(0.1) \approx 1-\frac{1}{2} 10^{-2}+\frac{1}{2 \cdot 4} 10^{-4}
$$

