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1. What does the ratio test say about the following series?

(a)
∞
∑

n=1

(−1)n
2n

n!

|an+1

an
| = 2

n+ 1
and the limit as n → ∞ is 0. The series absolutely converges.

(b)
∞
∑

n=1

n2 + 3

n3 + 2

|an+1

an
| = ((n+ 1)2 + 3)(n3 + 2)

((n+ 1)3 + 2)(n2 + 3)
=

n5 + . . .

n5 + . . .
and the limit as n → ∞ is 1. The ratio

test is inconclusive.

2. Find the interval of convergence of the following power series.

(a)
∞
∑

n=0

(x− 2)n

n3n

Ratio test: |an+1

an
| = |x− 2|

3

n

n+ 1
and the limit is |x−2|

3 . This converges when |x−2| <
3, so the radius is 3, centered at 2.

Checking the boundary: When x = 5 we have
∑ 1

n which diverges by p-test, p = 1.

When x = −1 we have
∑ (−1)n

n which converges by AST. So the interval of convergence
is [−1, 5).

(b)
∞
∑

n=0

4n(x+ 9)n

n3 + 1

Ratio test: |an+1

an
| = 4|x+9|(n + 1)3 + 1

n3 + 1
and the limit is 4|x+9|. This converges when

|x+ 9| < 1
4 , so the radius is 1

4 , centered at −9.

Checking the boundary: When x = −8.75 we have
∑ 1

n3+1
which converges by (limit)

comparison test to p-test, p = 3. When x = −9.25 we have
∑ (−1)n

n3+1 which converges by
AST (or because it absolutely converges). So the interval of convergence is [−9.25, 8.75].
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3. Find a power series centered at zero for the following functions. (Note: I could also
ask for the radius of convergence.)

(a)
1

4− 3x

1

4− 3x
=

1

4

1

(1− 3
4x)

=
1

4

∞
∑

n=0

(
3

4
)nxn. The radius of convergence is 4

3 (easy ratio test).

(b)

∫ x

0

1

1 + t3
dt

1

1 + t3
=

∞
∑

n=0

(−1)nt3n. So the integral is C +
∑∞

n=0(−1)n x3n+1

3n+1 . Clearly C = 0 since

the integral begins at 0. The radius of convergence is 1 (easy ratio test). (Remember:
radius of convergence doesn’t change when you integrate or derive! However, interval of
convergence may change - stuff can happen at the boundary!)

(c) The derivative of
∞
∑

n=0

2n(n!)xn

(3n)!
.

∞
∑

n=0

2n(n!)nxn−1

(3n)!
. The radius of convergence is ∞ (harder ratio test).

4. Compute
∫ 1/10
0

1
1+t3

dt to within 10−9.

We’ve already seen

∫ x

0

1

1 + t3
dt =

∞
∑

n=0

(−1)n
x3n+1

3n+ 1
. Plugging in x = 10−1, we get an al-

ternating series, so we are interested in when the (k + 1)-st term has absolute value less than

10−9. Clearly the n = 3 term is less than 10−9, so one can take
∑2

n=0(−1)n 10−(3n+1)

3n+1 as our
estimate.



3

5. Find a power series centered at zero for the following functions. Write out the first
three nonzero terms explicitly. (Note: I could also ask for the radius of convergence.)

(a) ex
3

Just plug in x3 to the formula for ex.

1 + x3 +
1

2
x6 + . . . =

∞
∑

n=0

x3n

n!
.

The radius of convergence is ∞. After all, the radius of convergence of ex is ∞, and plug-
ging in x3 takes the cube root of that. Or you could do a ratio test.

(b)
1

(1 + 2x)3.5

Binomial expansion, plug in 2x, and k = −3.5.
∞
∑

n=0

(−3.5

n

)

(2x)n = 1 +
−3.5

1
(2x) +

(−3.5)(−4.5)

(2)(1)
22x2 + . . .

The radius of convergence is 1
2 . After all, the radius of convergence of (1 + x)k is 1, and

plugging in 2x cuts that in half. Or you could do a ratio test.

(c) ln(1− x3)
∞
∑

n=1

(−1)n−1(−1)n
x3n

n
= −x3 − x6

2
− x9

3
− . . .

The radius of convergence is 1. After all, the radius of convergence of ln(1 + x) is 1, and
plugging in x3 takes the cube root of that. Or you could do a ratio test.

6. Find cos(.5) to within 1
500 . Use the Taylor Inequality Estimate to justify your answer.

We use the usual Taylor series of f(x) = cos x centered at 0. Note that |f (k)(x)| is bounded
above by M = 1 for any k. Thus the TIE says that

|Rk(.5)| ≤
(.5)k+1

(k + 1)!
=

1

2k+1(k + 1)!

When k = 4, we have |Rk(.5)| ≤ 1
500 . So our estimate is T4(.5), which is 1− (.5)2

2! + (.5)4

4! .
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7. Using any method, find the first few terms of the Taylor series, up to the cubic term
(i.e. the x3 term).

(a) ex cosx centered at 0.

Method 1:

ex = 1 + x+ x2

2 + x3

6 + . . . and cos x = 1− x2

2 + . . . so when we multiply we get

1 + x+ x2(12 − 1
2) + x3(16 − 1

2) + . . . = 1 + x− 1
3x

3 + . . .

Method 2:

f(x) = ex cos x so f(0) = 1. f ′(x) = ex(cos x − sinx) so f ′(0) = 1. f ′′(x) =
−2ex sinx so f ′′(0) = 0. f ′′′(x) = −2ex(cos x+ sinx) so f ′′′(0) = −2. Thus

f(x) = 1 + 1x+ 0
2!x

2 + −2
3! x

3 + . . . = 1 + x− 1
3x

3 . . .

(b)
√
x− 3 centered at 2.

This function is not defined at 2. Looks like a trick question to me.

Just in case you want some practice, I’ll do a non-trick question:
√
x− 2 centered at 3.

Method 1:

f(3) = 1, f ′(x) = (.5)(x − 2)−.5 so f ′(3) = .5, f ′′(x) = (.5)(−.5)(x − 2)−1.5 so
f ′′(3) = (.5)(−.5), f ′′′(x) = (.5)(−.5)(−1.5)(x − 2)−2.5 so f ′′′(3) = (.5)(−.5)(−1.5).

f(x) = 1 + .5(x− 3) + (.5)(−.5)
2 (x− 3)2 + (.5)(−.5)(−1.5)

3! (x− 3)3 + . . .

Method 2: if you’re clever, you can use a binomial expansion. This is
√

1 + (x− 3).

(c) e3x centered at −5.

f (k)(x) = 3ke3x. So we have

f(x) = e−15 + 3e−15(x+ 5) + 32e−15

2 (x+ 5)2 + 33e−15

3! (x+ 5)3 + . . .

8. Find the third-order approximation to 1
1−x at 5. Bound the error on the interval (4, 6).

One has f (k)(x) = k!
(1−x)k+1 . Thus T3(x) =

1
−4+

1
(−4)2

(x−5)+ 1
(−4)3

(x−5)2+ 1
(−4)4

(x−5)3.

On the interval (4, 6), the 4th derivative is decreasing in absolute value, so the maximum is
obtained at 4. Thus M = 4!

(3)5
is a bound for the absolute value of f (4) on this interval. The

radius for the interval is d = 1. Hence |R3(x)| ≤ 4!
4!·35 = 1

35 .
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9. Find the fifth-order approximation to 3 sin x at 0. Use the Taylor Inequality Estimate to
find the radius d such that the error is less than .2 for x in the interval (−d, d).

Using the standard Taylor series at 0, we have T5(x) = 3x− 3x3

3! + 3x5

5! .

Every derivative of 3 sin x is bounded in absolute value by M = 3. So on a radius of interval d

we have |R5(x)| ≤ 3d6

6! . Now we solve 3d6

6! = .2 and get d6 = (.2)(6!)/3 = κ so d = κ
1
6 .

10. Prove that the Taylor series of ex centered at 2 will converge to the function ex every-
where.

For f(x) = ex one has f (k) = ex is increasing and positive. So for any d, the maximum abso-

lute value of f (k+1)(x) on the interval (2−d, 2+d) is e2+d. Hence one has |Rk(x)| ≤ e2+ddk+1

(k+1)! .

For any given d, this goes to 0 as k → ∞. So T (x) converges to f(x) on the interval
(2− d, 2 + d). But this is true for all d, so T (x) converges to f(x) everywhere.


