1. What does the ratio test say about the following series?
(a) $\sum_{n=1}^{\infty}(-1)^{n} \frac{2^{n}}{n!}$
$\left|\frac{a_{n+1}}{a_{n}}\right|=\frac{2}{n+1}$ and the limit as $n \rightarrow \infty$ is 0 . The series absolutely converges.
(b) $\sum_{n=1}^{\infty} \frac{n^{2}+3}{n^{3}+2}$
$\left|\frac{a_{n+1}}{a_{n}}\right|=\frac{\left((n+1)^{2}+3\right)\left(n^{3}+2\right)}{\left((n+1)^{3}+2\right)\left(n^{2}+3\right)}=\frac{n^{5}+\ldots}{n^{5}+\ldots}$ and the limit as $n \rightarrow \infty$ is 1 . The ratio test is inconclusive.
2. Find the interval of convergence of the following power series.
(a) $\sum_{n=0}^{\infty} \frac{(x-2)^{n}}{n 3^{n}}$

Ratio test: $\left|\frac{a_{n+1}}{a_{n}}\right|=\frac{|x-2|}{3} \frac{n}{n+1}$ and the limit is $\frac{|x-2|}{3}$. This converges when $|x-2|<$ 3 , so the radius is 3 , centered at 2 .
Checking the boundary: When $x=5$ we have $\sum \frac{1}{n}$ which diverges by p-test, $p=1$. When $x=-1$ we have $\sum \frac{(-1)^{n}}{n}$ which converges by AST. So the interval of convergence is $[-1,5)$.
(b) $\sum_{n=0}^{\infty} \frac{4^{n}(x+9)^{n}}{n^{3}+1}$

Ratio test: $\left|\frac{a_{n+1}}{a_{n}}\right|=4|x+9| \frac{(n+1)^{3}+1}{n^{3}+1}$ and the limit is $4|x+9|$. This converges when $|x+9|<\frac{1}{4}$, so the radius is $\frac{1}{4}$, centered at -9 .
Checking the boundary: When $x=-8.75$ we have $\sum \frac{1}{n^{3}+1}$ which converges by (limit) comparison test to p-test, $p=3$. When $x=-9.25$ we have $\sum \frac{(-1)^{n}}{n^{3}+1}$ which converges by AST (or because it absolutely converges). So the interval of convergence is $[-9.25,8.75]$.
3. Find a power series centered at zero for the following functions. (Note: I could also ask for the radius of convergence.)
(a) $\frac{1}{4-3 x}$
$\frac{1}{4-3 x}=\frac{1}{4} \frac{1}{\left(1-\frac{3}{4} x\right)}=\frac{1}{4} \sum_{n=0}^{\infty}\left(\frac{3}{4}\right)^{n} x^{n}$. The radius of convergence is $\frac{4}{3}$ (easy ratio test).
(b) $\int_{0}^{x} \frac{1}{1+t^{3}} d t$
$\frac{1}{1+t^{3}}=\sum_{n=0}^{\infty}(-1)^{n} t^{3 n}$. So the integral is $C+\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{3 n+1}}{3 n+1}$. Clearly $C=0$ since the integral begins at 0 . The radius of convergence is 1 (easy ratio test). (Remember: radius of convergence doesn't change when you integrate or derive! However, interval of convergence may change - stuff can happen at the boundary!)
(c) The derivative of $\sum_{n=0}^{\infty} \frac{2^{n}(n!) x^{n}}{(3 n)!}$. $\sum_{n=0}^{\infty} \frac{2^{n}(n!) n x^{n-1}}{(3 n)!}$. The radius of convergence is ∞ (harder ratio test).
4. Compute $\int_{0}^{1 / 10} \frac{1}{1+t^{3}} d t$ to within 10^{-9}.

We've already seen $\int_{0}^{x} \frac{1}{1+t^{3}} d t=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{3 n+1}}{3 n+1}$. Plugging in $x=10^{-1}$, we get an alternating series, so we are interested in when the $(k+1)$-st term has absolute value less than 10^{-9}. Clearly the $n=3$ term is less than 10^{-9}, so one can take $\sum_{n=0}^{2}(-1)^{n} \frac{10^{-(3 n+1)}}{3 n+1}$ as our estimate.
5. Find a power series centered at zero for the following functions. Write out the first three nonzero terms explicitly. (Note: I could also ask for the radius of convergence.)
(a) $e^{x^{3}}$

Just plug in x^{3} to the formula for e^{x}.
$1+x^{3}+\frac{1}{2} x^{6}+\ldots=\sum_{n=0}^{\infty} \frac{x^{3 n}}{n!}$.
The radius of convergence is ∞. After all, the radius of convergence of e^{x} is ∞, and plugging in x^{3} takes the cube root of that. Or you could do a ratio test.
(b) $\frac{1}{(1+2 x)^{3.5}}$

Binomial expansion, plug in $2 x$, and $k=-3.5$.
$\sum_{n=0}^{\infty}\binom{-3.5}{n}(2 x)^{n}=1+\frac{-3.5}{1}(2 x)+\frac{(-3.5)(-4.5)}{(2)(1)} 2^{2} x^{2}+\ldots$
The radius of convergence is $\frac{1}{2}$. After all, the radius of convergence of $(1+x)^{k}$ is 1 , and plugging in $2 x$ cuts that in half. Or you could do a ratio test.
(c) $\ln \left(1-x^{3}\right)$
$\sum_{n=1}^{\infty}(-1)^{n-1}(-1)^{n} \frac{x^{3 n}}{n}=-x^{3}-\frac{x^{6}}{2}-\frac{x^{9}}{3}-\ldots$
The radius of convergence is 1 . After all, the radius of convergence of $\ln (1+x)$ is 1 , and plugging in x^{3} takes the cube root of that. Or you could do a ratio test.
6. Find $\cos (.5)$ to within $\frac{1}{500}$. Use the Taylor Inequality Estimate to justify your answer.

We use the usual Taylor series of $f(x)=\cos x$ centered at 0 . Note that $\left|f^{(k)}(x)\right|$ is bounded above by $M=1$ for any k. Thus the TIE says that
$\left|R_{k}(.5)\right| \leq \frac{(.5)^{k+1}}{(k+1)!}=\frac{1}{2^{k+1}(k+1)!}$
When $k=4$, we have $\left|R_{k}(.5)\right| \leq \frac{1}{500}$. So our estimate is $T_{4}(.5)$, which is $1-\frac{(.5)^{2}}{2!}+\frac{(.5)^{4}}{4!}$.
7. Using any method, find the first few terms of the Taylor series, up to the cubic term (i.e. the x^{3} term).
(a) $e^{x} \cos x$ centered at 0 .

Method 1:
$e^{x}=1+x+\frac{x^{2}}{2}+\frac{x^{3}}{6}+\ldots$ and $\cos x=1-\frac{x^{2}}{2}+\ldots$ so when we multiply we get
$1+x+x^{2}\left(\frac{1}{2}-\frac{1}{2}\right)+x^{3}\left(\frac{1}{6}-\frac{1}{2}\right)+\ldots=1+x-\frac{1}{3} x^{3}+\ldots$
Method 2:
$f(x)=e^{x} \cos x$ so $f(0)=1$. $f^{\prime}(x)=e^{x}(\cos x-\sin x)$ so $f^{\prime}(0)=1$. $f^{\prime \prime}(x)=$ $-2 e^{x} \sin x$ so $f^{\prime \prime}(0)=0$. $f^{\prime \prime \prime}(x)=-2 e^{x}(\cos x+\sin x)$ so $f^{\prime \prime \prime}(0)=-2$. Thus $f(x)=1+1 x+\frac{0}{2!} x^{2}+\frac{-2}{3!} x^{3}+\ldots=1+x-\frac{1}{3} x^{3} \ldots$
(b) $\sqrt{x-3}$ centered at 2 .

This function is not defined at 2. Looks like a trick question to me.
Just in case you want some practice, I'll do a non-trick question: $\sqrt{x-2}$ centered at 3 . Method 1:
$f(3)=1, f^{\prime}(x)=(.5)(x-2)^{-.5}$ so $f^{\prime}(3)=.5, f^{\prime \prime}(x)=(.5)(-.5)(x-2)^{-1.5}$ so $f^{\prime \prime}(3)=(.5)(-.5), f^{\prime \prime \prime}(x)=(.5)(-.5)(-1.5)(x-2)^{-2.5}$ so $f^{\prime \prime \prime}(3)=(.5)(-.5)(-1.5)$.
$f(x)=1+.5(x-3)+\frac{(.5)(-.5)}{2}(x-3)^{2}+\frac{(.5)(-.5)(-1.5)}{3!}(x-3)^{3}+\ldots$
Method 2: if you're clever, you can use a binomial expansion. This is $\sqrt{1+(x-3)}$.
(c) $e^{3 x}$ centered at -5 .
$f^{(k)}(x)=3^{k} e^{3 x}$. So we have
$f(x)=e^{-15}+3 e^{-15}(x+5)+\frac{3^{2} e^{-15}}{2}(x+5)^{2}+\frac{3^{3} e^{-15}}{3!}(x+5)^{3}+\ldots$
8. Find the third-order approximation to $\frac{1}{1-x}$ at 5 . Bound the error on the interval $(4,6)$. One has $f^{(k)}(x)=\frac{k!}{(1-x)^{k+1}}$. Thus $T_{3}(x)=\frac{1}{-4}+\frac{1}{(-4)^{2}}(x-5)+\frac{1}{(-4)^{3}}(x-5)^{2}+\frac{1}{(-4)^{4}}(x-5)^{3}$. On the interval $(4,6)$, the 4th derivative is decreasing in absolute value, so the maximum is obtained at 4. Thus $M=\frac{4!}{(3)^{5}}$ is a bound for the absolute value of $f^{(4)}$ on this interval. The radius for the interval is $d=1$. Hence $\left|R_{3}(x)\right| \leq \frac{4!}{4!\cdot 3^{5}}=\frac{1}{3^{5}}$.
9. Find the fifth-order approximation to $3 \sin x$ at 0 . Use the Taylor Inequality Estimate to find the radius d such that the error is less than .2 for x in the interval $(-d, d)$.
Using the standard Taylor series at 0 , we have $T_{5}(x)=3 x-3 \frac{x^{3}}{3!}+3 \frac{x^{5}}{5!}$.
Every derivative of $3 \sin x$ is bounded in absolute value by $M=3$. So on a radius of interval d we have $\left|R_{5}(x)\right| \leq \frac{3 d^{6}}{6!}$. Now we solve $\frac{3 d^{6}}{6!}=.2$ and get $d^{6}=(.2)(6!) / 3=\kappa$ so $d=\kappa^{\frac{1}{6}}$.
10. Prove that the Taylor series of e^{x} centered at 2 will converge to the function e^{x} everywhere.
For $f(x)=e^{x}$ one has $f^{(k)}=e^{x}$ is increasing and positive. So for any d, the maximum absolute value of $f^{(k+1)}(x)$ on the interval $(2-d, 2+d)$ is e^{2+d}. Hence one has $\left|R_{k}(x)\right| \leq \frac{e^{2+d} d^{k+1}}{(k+1)!}$. For any given d, this goes to 0 as $k \rightarrow \infty$. So $T(x)$ converges to $f(x)$ on the interval $(2-d, 2+d)$. But this is true for all d, so $T(x)$ converges to $f(x)$ everywhere.

