1. What does the **ratio test** say about the following series?

(a)
$$\sum_{n=1}^{\infty} (-1)^n \frac{2^n}{n!}$$
$$|\frac{a_{n+1}}{a_n}| = \frac{2}{n+1} \text{ and the limit as } n \to \infty \text{ is } 0. \text{ The series absolutely converges}$$

(b)
$$\sum_{n=1}^{\infty} \frac{n^2 + 3}{n^3 + 2}$$
$$|\frac{a_{n+1}}{a_n}| = \frac{((n+1)^2 + 3)(n^3 + 2)}{((n+1)^3 + 2)(n^2 + 3)} = \frac{n^5 + \dots}{n^5 + \dots} \text{ and the limit as } n \to \infty \text{ is 1. The ratio test is inconclusive.}$$

2. Find the interval of convergence of the following power series.

(a)
$$\sum_{n=0}^{\infty} \frac{(x-2)^n}{n3^n}$$

Ratio test: $|\frac{a_{n+1}}{a_n}| = \frac{|x-2|}{3} \frac{n}{n+1}$ and the limit is $\frac{|x-2|}{3}$. This converges when $|x-2| < 3$, so the radius is 3, centered at 2.
Checking the boundary: When $x = 5$ we have $\sum \frac{1}{2}$ which diverges by *n*-test, $n = 1$.

Checking the boundary: When x = 5 we have $\sum \frac{1}{n}$ which diverges by p-test, p = 1. When x = -1 we have $\sum \frac{(-1)^n}{n}$ which converges by AST. So the interval of convergence is [-1, 5).

(b)
$$\sum_{n=0}^{\infty} \frac{4^n (x+9)^n}{n^3+1}$$

Ratio test: $|\frac{a_{n+1}}{a_n}| = 4|x+9|\frac{(n+1)^3+1}{n^3+1}$ and the limit is $4|x+9|$. This converges when $|x+9| < \frac{1}{4}$, so the radius is $\frac{1}{4}$, centered at -9 .
Checking the boundary: When $x = -8.75$ we have $\sum \frac{1}{n^3+1}$ which converges by (limit) comparison test to p-test, $p = 3$. When $x = -9.25$ we have $\sum \frac{(-1)^n}{n^3+1}$ which converges by AST (or because it absolutely converges). So the interval of convergence is $[-9.25, 8.75]$.

3. Find a power series centered at zero for the following functions. (Note: I could also ask for the radius of convergence.)

(a)
$$\frac{1}{4-3x}$$

 $\frac{1}{4-3x} = \frac{1}{4}\frac{1}{(1-\frac{3}{4}x)} = \frac{1}{4}\sum_{n=0}^{\infty}(\frac{3}{4})^n x^n$. The radius of convergence is $\frac{4}{3}$ (easy ratio test).

(b)
$$\int_0^x \frac{1}{1+t^3} dt$$
$$\frac{1}{1+t^3} = \sum_{n=0}^{\infty} (-1)^n t^{3n}.$$
 So the integral is $C + \sum_{n=0}^{\infty} (-1)^n \frac{x^{3n+1}}{3n+1}.$ Clearly $C = 0$ since the integral begins at 0. The radius of convergence is 1 (easy ratio test). (Remember: radius of convergence doesn't change when you integrate or derive! However, interval of convergence may change - stuff can happen at the boundary!)

(c) The derivative of
$$\sum_{n=0}^{\infty} \frac{2^n (n!) x^n}{(3n)!}$$
.
 $\sum_{n=0}^{\infty} \frac{2^n (n!) n x^{n-1}}{(3n)!}$. The radius of convergence is ∞ (harder ratio test).

4. Compute $\int_{0}^{1/10} \frac{1}{1+t^3} dt$ to within 10^{-9} .

We've already seen $\int_0^x \frac{1}{1+t^3} dt = \sum_{n=0}^{\infty} (-1)^n \frac{x^{3n+1}}{3n+1}$. Plugging in $x = 10^{-1}$, we get an alternating series, so we are interested in when the (k+1)-st term has absolute value less than 10^{-9} . Clearly the n = 3 term is less than 10^{-9} , so one can take $\sum_{n=0}^{2} (-1)^n \frac{10^{-(3n+1)}}{3n+1}$ as our estimate.

- 5. Find a power series centered at zero for the following functions. Write out the first three nonzero terms explicitly. (Note: I could also ask for the radius of convergence.)
 - (a) e^{x^3}

Just plug in x^3 to the formula for e^x .

$$1 + x^3 + \frac{1}{2}x^6 + \ldots = \sum_{n=0}^{\infty} \frac{x^{3n}}{n!}.$$

The radius of convergence is ∞ . After all, the radius of convergence of e^x is ∞ , and plugging in x^3 takes the cube root of that. Or you could do a ratio test.

(b) $\frac{1}{(1+2x)^{3.5}}$ Binomial expansion, plug in 2x, and k = -3.5. $\sum_{n=0}^{\infty} {\binom{-3.5}{n}} (2x)^n = 1 + \frac{-3.5}{1} (2x) + \frac{(-3.5)(-4.5)}{(2)(1)} 2^2 x^2 + \dots$

The radius of convergence is $\frac{1}{2}$. After all, the radius of convergence of $(1 + x)^k$ is 1, and plugging in 2x cuts that in half. Or you could do a ratio test.

(c)
$$\ln(1-x^3)$$

 $\sum_{n=1}^{\infty} (-1)^{n-1} (-1)^n \frac{x^{3n}}{n} = -x^3 - \frac{x^6}{2} - \frac{x^9}{3} - \dots$

The radius of convergence is 1. After all, the radius of convergence of $\ln(1 + x)$ is 1, and plugging in x^3 takes the cube root of that. Or you could do a ratio test.

6. Find $\cos(.5)$ to within $\frac{1}{500}$. Use the Taylor Inequality Estimate to justify your answer.

We use the usual Taylor series of $f(x) = \cos x$ centered at 0. Note that $|f^{(k)}(x)|$ is bounded above by M = 1 for any k. Thus the TIE says that

$$|R_k(.5)| \le \frac{(.5)^{k+1}}{(k+1)!} = \frac{1}{2^{k+1}(k+1)}$$

When k = 4, we have $|R_k(.5)| \le \frac{1}{500}$. So our estimate is $T_4(.5)$, which is $1 - \frac{(.5)^2}{2!} + \frac{(.5)^4}{4!}$.

- 7. Using any method, find the first few terms of the Taylor series, up to the cubic term (i.e. the x^3 term).
 - (a) $e^x \cos x$ centered at 0.
 - Method 1: $e^x = 1 + x + \frac{x^2}{2} + \frac{x^3}{6} + \dots$ and $\cos x = 1 - \frac{x^2}{2} + \dots$ so when we multiply we get $1 + x + x^2(\frac{1}{2} - \frac{1}{2}) + x^3(\frac{1}{6} - \frac{1}{2}) + \dots = 1 + x - \frac{1}{3}x^3 + \dots$ Method 2: $f(x) = e^x \cos x$ so f(0) = 1. $f'(x) = e^x(\cos x - \sin x)$ so f'(0) = 1. $f''(x) = -2e^x \sin x$ so f''(0) = 0. $f'''(x) = -2e^x(\cos x + \sin x)$ so f'''(0) = -2. Thus $f(x) = 1 + 1x + \frac{0}{2!}x^2 + \frac{-2}{3!}x^3 + \dots = 1 + x - \frac{1}{3}x^3 \dots$
 - (b) $\sqrt{x-3}$ centered at 2.

This function is not defined at 2. Looks like a trick question to me. Just in case you want some practice, I'll do a non-trick question: $\sqrt{x-2}$ centered at 3. Method 1: $f(3) = 1, f'(x) = (.5)(x-2)^{-.5}$ so $f'(3) = .5, f''(x) = (.5)(-.5)(x-2)^{-1.5}$ so $f''(3) = (.5)(-.5), f'''(x) = (.5)(-.5)(-1.5)(x-2)^{-2.5}$ so f'''(3) = (.5)(-.5)(-1.5).

 $f''(3) = (.5)(-.5), f'''(x) = (.5)(-.5)(-1.5)(x-2)^{-2.5} \text{ so } f'''(3) = (.5)(-.5)(-1$

Method 2: if you're clever, you can use a binomial expansion. This is $\sqrt{1 + (x - 3)}$ *.*

- (c) e^{3x} centered at -5. $f^{(k)}(x) = 3^k e^{3x}$. So we have $f(x) = e^{-15} + 3e^{-15}(x+5) + \frac{3^2 e^{-15}}{2}(x+5)^2 + \frac{3^3 e^{-15}}{3!}(x+5)^3 + \dots$
- 8. Find the third-order approximation to $\frac{1}{1-x}$ at 5. Bound the error on the interval (4, 6). One has $f^{(k)}(x) = \frac{k!}{(1-x)^{k+1}}$. Thus $T_3(x) = \frac{1}{-4} + \frac{1}{(-4)^2}(x-5) + \frac{1}{(-4)^3}(x-5)^2 + \frac{1}{(-4)^4}(x-5)^3$. On the interval (4,6), the 4th derivative is decreasing in absolute value, so the maximum is obtained at 4. Thus $M = \frac{4!}{(3)^5}$ is a bound for the absolute value of $f^{(4)}$ on this interval. The radius for the interval is d = 1. Hence $|R_3(x)| \le \frac{4!}{4!3^5} = \frac{1}{3^5}$.

9. Find the fifth-order approximation to $3 \sin x$ at 0. Use the Taylor Inequality Estimate to find the radius *d* such that the error is less than .2 for *x* in the interval (-d, d).

Using the standard Taylor series at 0, we have $T_5(x) = 3x - 3\frac{x^3}{3!} + 3\frac{x^5}{5!}$. Every derivative of $3 \sin x$ is bounded in absolute value by M = 3. So on a radius of interval d we have $|R_5(x)| \le \frac{3d^6}{6!}$. Now we solve $\frac{3d^6}{6!} = .2$ and get $d^6 = (.2)(6!)/3 = \kappa$ so $d = \kappa^{\frac{1}{6}}$.

10. Prove that the Taylor series of e^x centered at 2 will converge to the function e^x everywhere.

For $f(x) = e^x$ one has $f^{(k)} = e^x$ is increasing and positive. So for any d, the maximum absolute value of $f^{(k+1)}(x)$ on the interval (2-d, 2+d) is e^{2+d} . Hence one has $|R_k(x)| \le \frac{e^{2+d}d^{k+1}}{(k+1)!}$. For any given d, this goes to 0 as $k \to \infty$. So T(x) converges to f(x) on the interval (2-d, 2+d). But this is true for all d, so T(x) converges to f(x) everywhere.