Approximate List of Topics:

- Series The ratio test.
- **Power Series** Finding the radius of convergence (using the ratio test). Finding the interval of convergence (using other tests on the boundary).
- Manipulation of power series: addition, multiplication, derivatives, integrals. Using the geometric series.
- Using power series and series bounding methods to estimate values and integrals.
- **Taylor Series** Understanding what it means to approximate a function around a point *c* to degree *k*.
- The Taylor series at 0 for common functions: $\frac{1}{1-x}$, $\ln(x+1)$, $\sin x$, $\cos x$, e^x , $\arctan(x)$, $(1+x)^k$.
- Computing derivatives to compute the Taylor series around any point, or to compute the *k*-th order approximation.
- Taylor's inequality estimate!!!!!!!!!!!
- Proving that a Taylor series converges to a function.

This is definitely too long for an actual midterm!! I decided that more problems is more useful. If you want to time yourself, imagine that I will assign only 6 problems.

1. What does the **ratio test** say about the following series?

(a)
$$\sum_{n=1}^{\infty} (-1)^n \frac{2^n}{n!}$$

(b)
$$\sum_{n=1}^{\infty} \frac{n^2 + 3}{n^3 + 2}$$

2. Find the interval of convergence of the following power series.

(a)
$$\sum_{n=0}^{\infty} \frac{(x-2)^n}{n3^n}$$

(b)
$$\sum_{n=0}^{\infty} \frac{4^n (x+9)^n}{n^3+1}$$

3. Find a power series centered at zero for the following functions. (Note: I could also ask for the radius of convergence.)

(a)
$$\frac{1}{4-3x}$$

(b)
$$\int_0^x \frac{1}{1+t^3} dt$$

(c) The derivative of
$$\sum_{n=0}^{\infty} \frac{2^n (n!) x^n}{(3n)!}.$$

4. Compute
$$\int_0^{1/10} \frac{1}{1+t^3} dt$$
 to within 10^{-9} .

5. Find a power series centered at zero for the following functions. Write out the first three nonzero terms explicitly. (Note: I could also ask for the radius of convergence.)

(a) e^{x^3}

(b)
$$\frac{1}{(1+2x)^{3.5}}$$

(c)
$$\ln(1-x^3)$$

6. Find $\cos(.5)$ to within $\frac{1}{500}$. Use the Taylor Inequality Estimate to justify your answer.

- 7. Using any method, find the first few terms of the Taylor series, up to the cubic term (i.e. the x^3 term).
 - (a) $e^x \cos x$ centered at 0.

(b) $\sqrt{x-3}$ centered at 2.

(c) e^{3x} centered at -5.

8. Find the third-order approximation to $\frac{1}{1-x}$ at 5. Bound the error on the interval (4, 6).

9. Find the fifth-order approximation to $3 \sin x$ at 0. Use the Taylor Inequality Estimate to find the radius *d* such that the error is less than .2 for *x* in the interval (-d, d).

10. Prove that the Taylor series of e^x centered at 2 will converge to the function e^x everywhere.