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This document should give a rough list of topics from the class, and some reminders to
help you study.

The most important question is: given an ODE (or system of ODEs), what can you do
with it? This usually involves identifying what kind of ODE it is, and knowing which tech-
niques apply.
Approximate List of Topics:

• Recognizing ODEs:

– ODEs vs. PDEs vs. systems of ODEs vs. other random stuff

– Order? Autonomous/time-independent/constant coeffs? linear? homogenous?
separable?

– Turning a linear system into matrix-vector form.

• General properties of ODEs and systems:

– What is an initial value problem (IVP)? Given a general solution, how to solve an
IVP.

– The existence and uniqueness theorem.

– Where are solutions defined? Difference between the linear and non-linear case.

• What to do with 1ODEs:

– If separable, separation of variables.

– If linear, integrating factors.

– Approximation using the euler method. (Also works for first order systems.)

– Qualitative analysis using direction fields. Slope lines, isoclines, solution sketch-
ing, funnels and anti-funnels, separatrices, maxima and minima.

• General properties of linear ODEs and Linear operators:

– Superposition. Homogeneous and inhomogeneous solution spaces.

• What to do with nLODEwCC:

– Finding the characteristic polynomial, finding roots.

– Finding the general homogeneous solution from the roots. Repeated roots. Com-
plex roots, and basic manipulation of complex numbers.

– Undetermined coefficients to solve inhomogeneous nLODEwCC with nice forc-
ing functions.

– The Exponential response formula and sinusoidal response formula, to speed this
up.

• What to do with the spring equation (2LODEwCC and positive coeffs):

– Transforming sinusoidal functions between cos/sin form and amplitude/phase
form.
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– Overdamped vs. critically damped vs. underdamped vs. undamped. Behavior
of homogeneous solutions.

– Forced damped motion. Practical resonance.

• What to do with 1LSyswCC, 2 functions:

– Finding the characteristic polynomial, computing the trace and determinant. (Gen-
erally knowing how to multiply matrices and vectors.)

– Finding the eigenvalues and associated eigenvectors.

– Getting the general homogeneous solution. (Except the repeated roots case.) Com-
plex eigenvalues.

– Phase portraits. Nodes, saddles, spirals. Stability.

– Using trace and determinant to classify behavior.
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Recognizing ODEs

• An ODE with order n is something of the form

x(n)(t) = F (x(n−1), . . . , x′′, x′, x, t).

That is, the n-th derivative is a function of all the earlier derivatives. Don’t mix up the
order with other numbers which appear: x′ = xn has order 1.

• A PDE involves a single function of multiple variables, like x(t1, t2), and its partial
derivatives. Don’t mix it up.

• A system of ODEs involves multiple functions of a single variable, like x1(t) and x2(t).
A solution involves choosing the functions xi simultaneously.

• An ODE or system is time-independent if the formula for the derivative is independent
of t. This is called different things in different contexts: autonomous for 1ODEs, constant
coefficients for homogeneous nLODEs or linear systems.

• An ODE is linear if it has the form

x(n)(t) = pn−1(t)x
(n−1) + . . .+ p2(t)x

′′ + p1(t)x
′ + p0(t)x+ g(t)

and g(t) is called the forcing function. It is homogeneous if g(t) = 0. When pi(t) are con-
stant functions, it is important whether or not g(t) has a nice form, such as t2e5t cos(7t).

• A 1ODE is separable if it has the form x′ = p(x)q(t). This is only a notion for first order
ODEs.

General properties of ODEs

• An initial value problem for an nODE specifies x, x′, . . . , x(n−1) at a single time t0. An
initial value problem for a first order system with n functions specifies x1, x2, . . . , xn at
a single time t0.

• If you have the general form of a solution in terms of some parameters (like c1, c2, . . . , cn)
then solving an IVP involves computing these parameters.

• So long as the formula for the differential equation is continuous and differentiable in
all “variables” at the initial condition, the initial value problem has a unique solution
defined in some interval around t0.

• It is not clear how big the interval of definition is. However, if the differential equation
is linear, then the interval is “as big as possible,” i.e. it extends until a time where the
formula stops being continuous or differentiable.

• In non-linear cases, one can sometimes solve for the solution explicitly, and then figure
out the interval of definition from the solution.
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First order ODEs, or 1ODEs

• If separable, then integrate both sides of dx
p(x) = q(t)dt to find a general solution. This is

separation of variables.

• If linear, so x′ = p(t)x + g(t), then the general homogeneous solution is xh = ce
∫
p(t).

Choose any one homogeneous solution xh. Then the inhomogeneous solution is x =
xh

∫

g
xh

+ cxh. This is called the method of integrating factors. The book has a method

using 1
xh

which they call µ.

• Outside of these cases, we don’t know how to solve any 1ODEs. There are some other
special cases we can solve, but in general it is too hard.

• For any 1ODE, we can use Euler’s method to approximate the value of a solution to an
IVP. This involves repeatedly computing tangent lines. The same method can be used
for systems, updating each function simultaneously.

• For any 1ODE x′ = F (x, t), we can draw a direction field to try to sketch the solution
and figure out some qualitative aspects of the solution. This involves marking every
point in the (x, t)-plane with a notch of slope F (x, t) indicating what slope a solution
through that point would have. Any solution must be tangent to every notch. No two
solutions can cross.

• Drawing solutions for separable 1ODEs involves computing the equilibrium solutions,
and where the derivative is positive and negative.

• An isocline for slope m is the set of all points in the (x, t) plane where a solution has
slope m. Any local maximum or minimum must occur on the nulcline, which is the
isocline for slope 0. To sketch the isocline, one must implicitly solve F (x, t) = m. This
need not result in the graph of a function, and isoclines should not be confused with
solutions.

• On a region where the isocline for slope m is the graph of some function I(t), one can
compare I ′(t) with m. This will determine whether a solution crosses the isocline from
below or from above, or is tangent to it. Sometimes, one can find a pair of isoclines
for which this phenomenon implies that any solution which gets between them cannot
leave (as time continues). This is called a funnel. An antifunnel is a pair of isoclines for
which solutions which are not between them can not get between them.

• A separatrix is a solution which separates other solutions which have drastically differ-
ent behavior as time continues. Not every differential equation has a separatrix.

Linear operators

• An operator L is something which takes a function and returns another function. An
operator is linear if for any functions f, g and any number c, one has L[cf ] = cL[f ] and
L[f + g] = L[f ] + L[g].

• The derivative is a linear operator. Multiplication by a given function is a linear op-
erator. Compositions of linear operators are linear. Any linear nODE has the form
L[x] = g(t) for some linear operator L.
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• Solutions to a homogeneous nLODE form a vector space. I.e. if f1 and f2 are solutions,
then so is c1f1 + c2f2 for any numbers c1, c2. This is part of superposition.

• More generally, if y1 solves L[y] = g1 and y2 solves L[y] = g2 then y = c1y1+c2y2 solves
L[y] = c1g1 + c2g2. This is called superposition.

• Superposition implies that, if you find any one particular solution yp to L[y] = g, then
every solution is of the form yp + yh for some homogenous solution yh.

nLODEwCC

• Basically, the only nODEs we know how to solve are nLODEwCC, with nice forcing
functions.

• Any nLODEwCC has the form L[y] = p(D)y = g(t) for some polynomial p, where D is
the derivative operator. p is called the characteristic polynomial.

• Because p(D)ert = p(r)ert, it is clear that whenever p(r) = 0, ert is a solution to the
homogeneous equation.

• For repeated roots, one gets more solutions by multiplying by t.

• For complex roots of the form r = a + bi, the solution ert is complex-valued. Taking
the real and imaginary parts gives two real-valued solutions, which are eat cos(bt) and
eat sin(bt). The complex number a − bi is also a root, and gives two more real-valued
solutions, but these are redundant.

• By superposition, one obtains many homogeneous solutions from the set of all roots.
This actually gives you all homogeneous solutions.

• For inhomogeneous equations: when g(t) is nice, you can (correctly!) guess the rough
form of a particular solution, and then compute the coefficients. Then all other solu-
tions are obtained by superposition.

• The form of the solution is roughly the form of the forcing function. See p181-2 of the
book for a flowchart. Make sure you know how to treat all the possibilities! Common
errors:

– forgetting to multiply by t when part of your guess is already a homogeneous
solution;

– forgetting that every cos term must be paired with a sin term;

– forgetting that the guess for tnert is actually (Ant
n + . . . +A1t+ A0)e

rt when r is
not a root, i.e. forgetting the lower terms in a polynomial.

• In certain cases, you can compute the coefficients quickly. One such case is the expo-
nential response formula. To solve p(D)y = Aert when p(r) 6= 0, the answer is y = A

p(r)e
rt.

There are fancier versions, involving derivatives of p, when p(r) = 0 is a root.

• Another such case is the sinusoidal response formula. Really, it is just the exponential
response formula applied to the real parts of a complex-valued ODE. To solve p(D)y =
Aeat cos(bt − θ), when p(a + bi) 6= 0, the answer is y = A

M
cos(bt − θ − ϕ). Here,

p(a+ bi) = Meϕi, so that M is the magnitude of p(a+ bi), and ϕ is the argument.
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Spring equation

• The spring equation is my′′ + γy′ + ky = g(t). Here, the mass m and the spring constant k
must be positive numbers. The damping constant γ can be zero (undamped), or a positive
number.

• The behavior of the unforced (i.e. homogeneous) solutions are determined by γ2−4mk,
by the quadratic formula. When this is positive, there are two negative real roots, and
it is overdamped. When it is negative, there are two imaginary roots with negative real
part, and it is underdamped. When it is zero, there is a double negative real root, and it
is critically damped.

• For overdamped ODEs, the solution will be zero at most once, depending on the initial
conditions. For critically damped, the solution will be zero exactly once. For under-
damped, the solution will be zero infinitely many times.

• All three cases decay to zero as time passes. Thus they are called transient solutions. Let
us assume the equation is forced, with g(t) sinusoidal. The periodic particular solution
is called the steady-state solution, and all solutions tend to it as time passes.

• Sinusoidal functions can be written in the form a cos(wt) + b sin(wt), or in amplitude-
phase form A cos(wt− ϕ). One has a+ bi = Aeiϕ.

• By the sinusoidal response formula, if g(t) = C cos(wt − θ), then the solution is y =
C
M

cos(wt−θ−ϕ). Then 1
M

is the gain, which tells you how much the input is amplified
by the spring equation. M is the magnitude of p(wi), which is some formula involving
w. Maximizing the gain is then a calculus problem.

• When there is enough damping, the gain is always maximized when w = 0, which is to
say that no input force is amplified by the spring. However, when γ2−2mk is negative
so that the system is very underdamped, then there is a non-zero frequency w which
maximizes the gain. This is called practical resonance.

First order linear systems with constant coefficients, or 1LSyswCC

• Given a homogeneous 1LSyswCC, you can rewrite it in matrix-vector form as Dx =
Ax for some matrix A of real numbers.

• An eigenvector v for a matrix A is a vector satisfying Av = λv for some real number λ,
which is called its eigenvalue. If v is an eigenvector with eigenvalue λ, then so is cv for
any real number c.

• The trace of a matrix is the sum of the diagonal entries. The determinant of a matrix is
a number which can be computed inductively, involving n! terms for an n× n matrix.
For n = 2 and n = 3 there are quick rules to compute it.

• The characteristic polynomial of a matrix A is pA(λ) = det(A− λI). For a 2× 2 matrix, it
is equal to λ2 − (TrA)λ+ detA. Every eigenvector of A is a root of pA, and vice versa.

• Given an eigenvalue λ, to compute the eigenvector, one should compute A − λI and
find a vector v for which (A− λI)v = 0. For 2× 2 matrices, there is a quick trick to do
this.
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• If v is an eigenvector for A with eigenvalue λ, then x = eλtv is a solution to Dx =
Ax. This is easy to verify! By superposition, one can obtain other solutions as sums
of solutions of this form. If there are no repeated roots of pA, then all solutions are
obtained in this way.

• If there are repeated roots, the solutions can be harder, and involve generalized eigenvec-
tors, something we didn’t really cover in this course.

• If an eigenvalue λ = a+ bi is complex, then eλtv is a complex-valued solution. Taking
the real and imaginary parts gives two real-valued solutions, and superposition of
these yields all the real-valued solutions corresponding to the eigenvalues a± bi. (The
eigenvalue a− bi also gives two more real-valued solutions, but these are redundant.)

• The phase portrait of a 1LSyswCC for two functions is the graph, for a solution x =
(

x1
x2

)

, of x1 versus x2 at each time. This is drawn as a trajectory in the x1x2-plane,

with an arrow indicating the motion of time. Many examples are found in Chapter 7
of the book.

• One can also draw a phase arrow at each point v in the x1x2 plane, indicating the trajec-
tory of whichever solution x passes through that point at some time. The phase arrow
at point v is given by Av, because x

′ = Av for a solution.

• Any trajectory that is a line coming out/in from the origin corresponds to an eigenvec-
tor, and a solution of the form eλtv.

• One can classify the behavior of a system with two functions based on the trace and
determinant of A. This is because, if r1 and r2 are the two eigenvalues, then r1 +
r2 = TrA and r1r2 = detA. This is encoded on the figure on p507 of your book. You
should understand this chart, though you need not remember what happens on the
boundaries (i.e. proper or improper nodes, or what happens when det = 0). The origin
is always an equilibrium solution, and you can tell whether it is stable or unstable
based on the real part of the eigenvalues.

• When drawing the phase portrait of a node or saddle, you need to compute the eigen-
values so you can draw the straight line solutions. For a node, you need to know which
eigenvalue is bigger. When drawing the phase portrait of a spiral, one can be pretty
rough, but one should know whether it is clockwise or counterclockwise. This can
be done by evaluating the phase arrow at some point. In general, when drawing any
phase portrait, if a point is interesting, you should draw the phase arrow there, and
make sure your trajectory is tangent!

• The phase portrait helps for qualitative analysis - telling you what happens to a solu-
tion with a given initial value, as time goes forward or backward. Section 9.1 has a
good review of this material. In-depth examples are done in Sections 7.5 and 7.6.


