Math 256 (Differential Equations), Winter 2015

Ben’s problems for HW 6

February 27, 2015

1. Consider the differential equation

(a)

(b)

y" — 2y" + 3y’ — 4y = 3 cos(3t) — 4e* sin(3t).

Rewrite the forcing function in the form Ae® cos(bt — ).

The complex number 3 — 4i has polar coordinates 5¢’? where ¢ = arctan(%‘l). So
the forcing function equals 5¢ cos(3t — ).

Find a particular solution to the inhomogeneous equation. What is the amplitude?
What is the gain? What is the additional phase lag?

Letting p(z) = 23 — 222 + 3z — 4, and r = 2 + 3i, we have p(r) = 34 — 6i (I did
this on wolfram alpha). Since p(r) # 0, the forcing function is not a homogeneous
solution, and we can use the sinusoidal response formula. Thus our particular

solution is

——————e”" cos(3t — ¢ — arctan(—)).
e os(3t — e)
1

The arnp;itude is \/ﬁ, the gain is WereRvel: and the additional phase lag is

arctan (37 ).

2. Consider the differential equation y” 4 2y’ 4+ 3y = 10 cos(wt) for some positive numbers
A and w.

(a)

(b)

Is this overdamped, underdamped, or critically damped? Is it forced or unforced?

By the quadratic formula, the roots are —2£¥4=12 A=12 = —1 £ V/2i. Since these are
complex with negative real part, it is underdamped. It is forced, since it is not
homogeneous.

Find the general solution.

Since cos(wt) is never a homogeneous solution, the sinusoidal response formula
gives a particular solution. p(wi) = 3 — w? + 2wi, so the SRF yields

10
V(B —w?)? + (2w)?

cos(wt — )




where ¢ is the argument of p(wi). Meanwhile the general homogeneous solution
is c1e ™! cos(v/2t) + cae ! sin(v/2t). Thus the general solution is

10

T St ) e cos(V2) - epesin(v20)

(c) Find a formula for the amplitude of the steady state solution.

The steady state solution is the (periodic) particular solution, which is given by

: 10
the SREF. It has amplitude e e

(d) Find w > 0 which maximizes the amplitude of the steady state solution.
To maximize the amplitude we could take the derivate with respect to w of the
above formula, and find the zeroes. However, it is easier to just minimize the part
under the square root, which is w* — 2w? + 9. Taking the derivative of that we get
4w3 — 4w, which has a zero at w = —1,0, 1. Taking the double derivative, it is a
minimum only at w = —1,+1. Only w > 0 makes sense for frequencies. So the
answer is w = 1.

3. (a) Find a particular solution to y" + 3y’ + 2y = 5e ™" cos(t).
p(z) = 22+ 3z +2and p(—1+ i) = —1 4+ 4. This is nonzero, so we can use the SRF.
The answer is
O 4 3T
Ee cos(t — Z)
(b) Find a particular solution to y” + 2y’ + 2y = 5e " cos(t).
p(z) = 22 + 2z + 2 and p(—1 + i) = 0, so we can not use the SRF. There is a
fancier version of the SRF that would work, but we'll just do it by hand. We guess
something of the form

y = Ate " cos(t) + Bte 'sin(t).

Computing derivatives, the left hand side is 2Be™" cos(t) — 2A4e " sin(¢). For this
to equal 5e ! cos(t) we set A = 0 and B = 2.5.

4. Consider the differential equation y” + by’ + 4y = 0.

(a) For which values of b > 0 is it overdamped? Underdamped? Critically damped?
Undamped?
The question is whether b? — 16 is positive, zero, or negative. For b > 4 it is
overdamped. For b = 4 it is critically damped. For 0 < b < 4 it is underdamped.
For b = 0 it is undamped.

(b) Suppose that it is underdamped. Write down a formula for the quasi-period of a
solution, in terms of b. As b gets smaller, what happens to the quasi-period?



(d)

(e)

When 0 < b < 4 the roots are —tEvb°—16 V2b2_16 = _b 4 Y280 16_62 7, and a homogeneous
: -t V1602
solution has the form Ce™ 2" cos(¥5="-t — o). Thus the quasi-period is m

As b approaches zero, the denominator gets larger until it approaches 4, so the
quasi-period gets smaller until it approaches 7.

Suppose that it is critically damped. Find the general solution. How many times
will a solution satisfy y(t) = 0?

So b = 4, and the repeated root is —2. The general solution is (c; + cot)e™ 2. This
satisfies y(¢) = 0 exactly once at time ¢(, when ¢; + tpc2 = 0.

Continue to assume that it is critically damped. Suppose that y(0) = 5 and 3/(0) =
3. At what time(s) will the solution satisfy y(¢) = 0?

y(0) = ¢y =5 and y/'(0) = —2¢1 + ¢2 = 3 50 ¢o = 13. Therefore, t) = _—‘; = I—?‘j’
Suppose that b = 5. Suppose that y(0) = 5. For while values of 3/(0) will the
solution NEVER satisfy y(t) = 0?

The roots are —1 and —4, so the solution is c¢;e~* + coe . If the solution satisfies
y(to) = 0 for a particular time to then ¢;e % = —cye ™40, meaning that o= —e 3t
is a negative number. Any negative number can be obtained this way for some ¢y,
so the solution will never satisfy y(¢) = 0 if and only if £ is positive.

Now #/(0) = —c¢; — 4cp and y(0) = ¢; + co = 5. Thus —3cs = 5 + ¢/(0) an

3c1 = 20 + ¢/(0). In particular, ¢; and ¢z have the same sign when 20 + 3/(0) an

5 + y'(0) have opposite signs. This will happen precisely for —20 < y/(0) < —5



