
Math 256 (Differential Equations), Winter 2015

Ben’s problems for HW 6

February 27, 2015

1. Consider the differential equation

y′′′ − 2y′′ + 3y′ − 4y = 3e2t cos(3t)− 4e2t sin(3t).

(a) Rewrite the forcing function in the form Aeat cos(bt− ϕ).

The complex number 3− 4i has polar coordinates 5eiϕ where ϕ = arctan(−4
3 ). So

the forcing function equals 5e2t cos(3t− ϕ).

(b) Find a particular solution to the inhomogeneous equation. What is the amplitude?
What is the gain? What is the additional phase lag?

Letting p(x) = x3 − 2x2 + 3x − 4, and r = 2 + 3i, we have p(r) = 34 − 6i (I did
this on wolfram alpha). Since p(r) 6= 0, the forcing function is not a homogeneous
solution, and we can use the sinusoidal response formula. Thus our particular
solution is

5√
342 + 62

e2t cos(3t− ϕ− arctan(
−6

34
)).

The amplitude is 5√
342+62

, the gain is 1√
342+62

, and the additional phase lag is

arctan(−6
34 ).

2. Consider the differential equation y′′+2y′+3y = 10 cos(wt) for some positive numbers
A and w.

(a) Is this overdamped, underdamped, or critically damped? Is it forced or unforced?

By the quadratic formula, the roots are −2±
√
4−12

2 = −1 ±
√
2i. Since these are

complex with negative real part, it is underdamped. It is forced, since it is not
homogeneous.

(b) Find the general solution.

Since cos(wt) is never a homogeneous solution, the sinusoidal response formula
gives a particular solution. p(wi) = 3− w2 + 2wi, so the SRF yields

10
√

(3− w2)2 + (2w)2
cos(wt− ϕ)
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where ϕ is the argument of p(wi). Meanwhile the general homogeneous solution
is c1e

−t cos(
√
2t) + c2e

−t sin(
√
2t). Thus the general solution is

10
√

(3− w2)2 + (2w)2
cos(wt− ϕ) + c1e

−t cos(
√
2t) + c2e

−t sin(
√
2t).

(c) Find a formula for the amplitude of the steady state solution.

The steady state solution is the (periodic) particular solution, which is given by
the SRF. It has amplitude 10√

(3−w2)2+(2w)2
.

(d) Find w > 0 which maximizes the amplitude of the steady state solution.

To maximize the amplitude we could take the derivate with respect to w of the
above formula, and find the zeroes. However, it is easier to just minimize the part
under the square root, which is w4 − 2w2 +9. Taking the derivative of that we get
4w3 − 4w, which has a zero at w = −1, 0, 1. Taking the double derivative, it is a
minimum only at w = −1,+1. Only w > 0 makes sense for frequencies. So the
answer is w = 1.

3. (a) Find a particular solution to y′′ + 3y′ + 2y = 5e−t cos(t).

p(x) = x2+3x+2 and p(−1+ i) = −1+ i. This is nonzero, so we can use the SRF.
The answer is

5√
2
e−t cos(t− 3π

4
).

(b) Find a particular solution to y′′ + 2y′ + 2y = 5e−t cos(t).

p(x) = x2 + 2x + 2 and p(−1 + i) = 0, so we can not use the SRF. There is a
fancier version of the SRF that would work, but we’ll just do it by hand. We guess
something of the form

y = Ate−t cos(t) +Bte−t sin(t).

Computing derivatives, the left hand side is 2Be−t cos(t) − 2Ae−t sin(t). For this
to equal 5e−t cos(t) we set A = 0 and B = 2.5.

4. Consider the differential equation y′′ + by′ + 4y = 0.

(a) For which values of b ≥ 0 is it overdamped? Underdamped? Critically damped?
Undamped?

The question is whether b2 − 16 is positive, zero, or negative. For b > 4 it is
overdamped. For b = 4 it is critically damped. For 0 < b < 4 it is underdamped.
For b = 0 it is undamped.

(b) Suppose that it is underdamped. Write down a formula for the quasi-period of a
solution, in terms of b. As b gets smaller, what happens to the quasi-period?



3

When 0 < b < 4 the roots are −b±
√
b2−16
2 = −b

2 ±
√
16−b2

2 i, and a homogeneous

solution has the form Ce−
b

2
t cos(

√
16−b2

2 t − ϕ). Thus the quasi-period is 4π√
16−b2

.

As b approaches zero, the denominator gets larger until it approaches 4, so the
quasi-period gets smaller until it approaches π.

(c) Suppose that it is critically damped. Find the general solution. How many times
will a solution satisfy y(t) = 0?

So b = 4, and the repeated root is −2. The general solution is (c1 + c2t)e
−2t. This

satisfies y(t) = 0 exactly once at time t0, when c1 + t0c2 = 0.

(d) Continue to assume that it is critically damped. Suppose that y(0) = 5 and y′(0) =
3. At what time(s) will the solution satisfy y(t) = 0?

y(0) = c1 = 5 and y′(0) = −2c1 + c2 = 3 so c2 = 13. Therefore, t0 =
−c1
c2

= −5
13 .

(e) Suppose that b = 5. Suppose that y(0) = 5. For while values of y′(0) will the
solution NEVER satisfy y(t) = 0?

The roots are −1 and −4, so the solution is c1e
−t + c2e

−4t. If the solution satisfies
y(t0) = 0 for a particular time t0 then c1e

−t0 = −c2e
−4t0 , meaning that c1

c2
= −e−3t0

is a negative number. Any negative number can be obtained this way for some t0,
so the solution will never satisfy y(t) = 0 if and only if c1

c2
is positive.

Now y′(0) = −c1 − 4c2 and y(0) = c1 + c2 = 5. Thus −3c2 = 5 + y′(0) and
3c1 = 20 + y′(0). In particular, c1 and c2 have the same sign when 20 + y′(0) and
5 + y′(0) have opposite signs. This will happen precisely for −20 < y′(0) < −5.


