1. (a) Rewrite $-\sqrt{3}+i$ in the form $A e^{i \theta}$.

The answer is $2 e^{i \frac{5 \pi}{6}}$. This is because $A=\sqrt{(-\sqrt{3})^{2}+(1)^{2}}$, and $\frac{5 \pi}{6}$ is the argument (i.e. angle) of the corresponding point.

Note that if you wrote the angle as $\arctan \left(\frac{-1}{\sqrt{3}}\right)$, you would be wrong. This gives a point in the lower right quadrant, not the upper left quadrant. The difference between these two angles is π.
(b) Rewrite $5 e^{i \arctan \left(\frac{3}{4}\right)}$ in the form $a+b i$.

The answer is $4+3 i$.
One has $a=5 \cos \left(\arctan \left(\frac{3}{4}\right)\right)$ and $b=5 \sin \left(\arctan \left(\frac{3}{4}\right)\right)$. By drawing a right triangle with edge lengths $3,4,5$ you see that $\cos \left(\arctan \left(\frac{3}{4}\right)\right)$ is actually $\frac{4}{5}$, etcetera. I checked that I am correctly in the upper right quadrant.
(c) Rewrite $-\cos (3 t)-3 \sin (3 t)$ in the form $C \cos (\omega t-\varphi)$. What is the amplitude of this sinusoidal function?
The answer is $\sqrt{10} \cos (3 t-\pi-\arctan (3))$. The amplitude is $\sqrt{10}$.
Writing $(-1,-3)$ in polar coordinates, it has magnitude $\sqrt{10}$ and angle $\arctan (3)+$ π. (The $+\pi$ is because we're in the lower left quadrant.)
(d) Compute $\frac{2-3 i}{3-4 i}$ in either rectangular or polar form.

The answer is $\frac{18}{25}+\frac{-1}{25} i$.
We clear denominators by multiplying by $\frac{3+4 i}{3+4 i}$. It is way easier to do this in rectangular form; DON'T use polar form.
(e) Compute $\frac{\sqrt{5} e^{\frac{3}{4} \pi i}}{4 e^{-\frac{5}{8} \pi i}}$ in either rectangular or polar form.

The answer is $\frac{\sqrt{5}}{4} e^{\frac{11}{8} \pi i}$.
This is because the magnitudes divide and the arguments add/subtract (in this case, the argument is $\frac{3 \pi}{4}-\frac{-5 \pi}{8}$). It is way easier in polar form; DON'T use rectangular form.
2. Consider the differential equation $y^{\prime \prime}-4 y^{\prime}+29 y=5 e^{t}-3 e^{-2 t}$.
(a) What kind of differential equation is this?

It is a 2LODEwCC, inhomogeneous.
(b) Find the general solution.

First find the general homogeneous solution. Let $p(x)=x^{2}-4 x+29$. By the quadratic formula, the roots are $\frac{4 \pm \sqrt{16-4(29)}}{2}=2 \pm \sqrt{4-29}=2 \pm 5 i$. Thus the general homogeneous solution is $h=c_{1} e^{2 t} \cos (5 t)+c_{2} e^{2 t} \sin (5 t)$.
Now find y_{1} with $p(D) y_{1}=5 e^{t}$. Since 1 is not a root, we use the easy form of the ERF. So $y_{1}=\frac{5}{p(1)} e^{t}=\frac{5}{26} e^{t}$.
Now find y_{2} with $p(D) y_{2}=-3 e^{-2 t}$. Since -2 is not a root, we use the easy form of the ERF. So $y_{2}=\frac{-3}{p(-2)} e^{-2 t}=\frac{-3}{41} e^{-2 t}$.
Thus the general solution is

$$
y=y_{1}+y_{2}+h=\frac{5}{26} e^{t}-\frac{3}{41} e^{-2 t}+c_{1} e^{2 t} \cos (5 t)+c_{2} e^{2 t} \sin (5 t) .
$$

(c) Find a solution for which $y(0)=1$ and $y^{\prime}(0)=2$.

Plugging in we get

$$
y(0)=\frac{5}{26}-\frac{3}{41}+c_{1}=1
$$

and

$$
y^{\prime}(0)=\frac{5}{26}+\frac{6}{41}+2 c_{1}+5 c_{2}=2 .
$$

Therefore,

$$
c_{1}=1-\frac{5}{26}+\frac{3}{41}
$$

and

$$
c_{2}=\frac{1}{5}\left(2-2 c_{1}-\frac{5}{26}-\frac{6}{41}\right)=\frac{1}{5}\left(\frac{5}{26}-\frac{12}{41}\right) .
$$

3. Let \mathcal{L} denote the operator (on functions in a variable t) defined by

$$
\mathcal{L}[y]=y^{\prime \prime}+(1000-\sin (3 t)) y^{\prime}-2 y .
$$

(a) Is \mathcal{L} a linear operator?

Yes. (Taking the derivative and multiplying by a function of t are linear operators, and so is their composition and sum.)
(b) What kind of differential equation is $\mathcal{L}[y]=0$?

A homogeneous 2LODE. (Not with constant coefficients.)
(c) Let $f=\mathcal{L}\left[e^{2 t}\right]$. Find f.

Plugging in, we get

$$
f=4 e^{2 t}+(1000-\sin (3 t)) 2 e^{2 t}-2 e^{2 t}=2002 e^{2 t}-2 e^{2 t} \sin (3 t) .
$$

(d) Find a solution to $\mathcal{L}[y]=f$.

We know that $\mathcal{L}\left[e^{2 t}\right]=f$, so $e^{2 t}$ is a solution (duh!). You should get this right even if you get the previous problem wrong!
(e) Find the general solution to $\mathcal{L}[y]=f$.

We don't know how to do this. Trick question!
(f) Suppose that z is a solution to $\mathcal{L}[y]=f$ satisfying $z(5)=6$ and $z^{\prime}(5)=-3$. Does z exist? Where is z defined? Why?
It exists and is defined everywhere. This is by the existence and uniqueness theorem for LINEAR ODEs, and the fact that the coefficient functions and f are all defined and continuous and differentiable everywhere.
(g) Find a linear operator \mathcal{L}_{2} for which the solutions to $\mathcal{L}_{2}[y]=f$ approximate the solutions to $\mathcal{L}[y]=f$, and for which you know how to solve $\mathcal{L}_{2}[y]=f$. You don't need to find the solutions.
$\mathcal{L}_{2}[y]=y^{\prime \prime}+1000 y^{\prime}-2 y$ is a 2LODEwCC, and we know how to solve it. It is a good approximation because $1000+\sin (3 t)$ is always close to 1000 , proportionally speaking.
4. Let $\mathcal{L}=p(D)$ for the polynomial $p(x)=x^{2}(x-1)(x+2)^{3}\left(x^{2}-2 x+2\right)^{2}\left(x^{2}+5 x+1\right)$. Here, D represents the derivative operator.
(a) What kind of differential equation is $\mathcal{L}[y]=e^{5 t}$?

An inhomogeneous 12LODEwCC.
(b) Find the general homogeneous solution.

The roots are: 0 twice, 1 once, -2 thrice, $-1 \pm i$ twice each, and $\frac{-5 \pm \sqrt{21}}{2}$ each once. This leads to twelve basic solutions.

$$
\begin{aligned}
& c_{1}+c_{2} t+c_{3} e^{t}+c_{4} e^{-2 t}+c_{5} t e^{-2 t}+c_{6} t^{2} e^{-2 t}+ \\
& c_{7} e^{-t} \cos (t)+c_{8} e^{-t} \sin (t)+c_{9} t e^{-t} \cos (t)+c_{10} t e^{-t} \sin (t)+ \\
& c_{11} e^{\frac{-5+\sqrt{21}}{2}} t+c_{12} e^{\frac{-5-\sqrt{21}}{t}}
\end{aligned}
$$

(c) Write down a guess for a particular solution to $\mathcal{L}[y]=(3 t-5) e^{5 t}$. You need not determine any coefficients.
$\operatorname{Try} y=(A t+b) e^{5 t}$.
(d) Write down a guess for a particular solution to $\mathcal{L}[y]=16 e^{-2 t}$. You need not determine any coefficients.
$\operatorname{Try} y=A t^{3} e^{-2 t}$.
(e) Write down a guess for a particular solution to $\mathcal{L}[y]=\cos (t)$. You need not determine any coefficients.
$\operatorname{Try} y=A \cos (t)+B \sin (t)$.

