Answer all questions in the space provided.

Approximate List of Topics (a long list, but most of these things are interrelated):

- Homogeneous and inhomogeneous solutions, and what they look like.
- Parametric vector form.
- Subspaces. The null space and column space of a matrix.
- Bases. Linear independence and spans. Dimension.
- The coordinates of a vector in a given basis.
- Finding a basis inside a spanning set.
- Finding a basis for a null space.
- The rank-nullity theorem.
- Linear transformations. The matrix of a linear transformation. The meaning of the columns of a matrix.
- Injective, surjective, bijective.
- Visualizing linear transformations of the plane.
- Composing linear transformation. Matrix multiplication.
- Solving matrix multiplication equations.
- Word problems involving inputs and outputs, "chaining factories."
- Difference equations.

1. For each of the following statements, indicate whether the statement is true or false. If it is false, briefly explain why or give a counter-example.
(a) The columns of a 3×4 matrix are never linearly independent.
(b) A 3×4 matrix represents a linear function from \mathbb{R}^{3} to \mathbb{R}^{4}.
(c) The solutions to an inhomogeneous linear system form a subspace.
(d) A function L from \mathbb{R}^{n} to \mathbb{R}^{m} is a linear transformation so long as $L(\lambda \mathbf{v})=\lambda L(\mathbf{v})$ for every vector $\mathbf{v} \in \mathbb{R}^{n}$ and every scalar $\lambda \in \mathbb{R}$.
(e) Rotation by 75 degrees is a bijective linear transformation from the plane to itself.
(f) If every row of an $n \times k$ matrix A is pivot, then the columns of A span \mathbb{R}^{n}.
2. A matrix A supposedly corresponds to a linear transformation which is injective.
(a) What does this imply about the possible solutions to an equation $A \mathbf{x}=\mathbf{t}$?
(b) What does this say about the row reduced echelon form of A ?
3. The next few questions are about the matrix

$$
A=\left(\begin{array}{ccccc}
1 & 4 & 3 & 0 & -1 \\
2 & 8 & 8 & 2 & 4 \\
-1 & -4 & 1 & 5 & 13
\end{array}\right)
$$

(a) The column space of A is a subspace of what vector space?
(b) Find a basis for the column space of A. What is the dimension of this column space?
(c) Find a basis for the null space of A. What is the dimension of this null space?
(d) Do the dimensions you found "make sense" for a matrix with this size? Why or why not?
(e) Parametrize all solutions to the equation

$$
A \mathbf{x}=\left(\begin{array}{l}
3 \\
8 \\
1
\end{array}\right)
$$

4. Consider the following matrices

$$
P=\left(\begin{array}{cc}
1 & -1 \\
3 & -3 \\
2 & 6
\end{array}\right), \quad Q=\left(\begin{array}{ccc}
1 & 1 & 1 \\
0 & 2 & 1 \\
-1 & 3 & -2
\end{array}\right)
$$

Each question below will ask you to find a matrix with a certain property. If it does not exist, or the question does not make sense, say so.
(a) Find a matrix T such that $P Q=T$.
(b) Find a matrix T such that $Q P=T$.
(c) Find a matrix B such that $P B=Q$.
(d) Find a matrix A such that $A P=\left(\begin{array}{ll}1 & 2 \\ 7 & 6\end{array}\right)$.
5. At an animal farm, animals eat vegetables. Vegetables are made by your vegetable farm.

Every day, each pig requires 3 pounds of corn, 2 pounds of lettuce, and 1 quart of whey. Each cow requires 2 pounds of corn, 4 pounds of lettuce, and 2 quarts of whey. Each horse requires 1 pound of corn, 3 pounds of lettuce, and 4 quarts of whey.
To produce a pound of corn requires three dollars of fertilizer and one dollar of labor. To produce a pound of lettuce requires one dollar of fertilizer and 4 dollars of labor. To product a quart of whey requires 2 dollars of labor.
(a) Write down a matrix representing the inputs and outputs of the animal farm. Write down a matrix representing the input and outputs of the vegetable farm. Label your variables.
(b) Compute a matrix which encodes the cost, in fertilizer and in labor, of feeding an animal for a day.

6. Bonus word problem!

Let us approximate the operating system market. Purchasers of computers have a choice between three operating systems: Windows, Mac, and Linux. Every year, 5 percent of Windows users switch to Mac, and 2 percent switch to Linux; 3 percent of Mac users switch to Windows, and 1 percent to switch to Linux; 0 percent of Linux users switch to Windows, and 3 percent switch to Mac.
(a) Suppose that a vector $\mathbf{v} \in \mathbb{R}^{3}$ encodes the current number of Windows, Mac, and Linux users (in that order). Write down a matrix U for which $U v$ encodes the number of users of each system in the following year.
(b) How would one write down a matrix P for which $P \mathbf{v}$ encodes the number of users of each system after ten years. (You don't need to find $P!$).
(c) What do expect the behavior of this system will be, as time goes by?

