1. For each of the following statements, indicate whether the statement is true or false. If it is false, briefly explain why or give a counter-example. (Note: If it is true, you need not explain why. But if you do explain why, you may get partial credit in case you were wrong and it is false.)
(a) Every surjective linear transformation has a right inverse which is also a linear transformation.
True. Surjective functions have right inverses and are left inverses. Injective functions have left inverses and are right inverses.
(b) For two matrices A and B, the determinant $\operatorname{det}(A+B)$ is equal to $\operatorname{det}(A)+\operatorname{det}(B)$. False. Almost any 2×2 matrices will give a counter-example.
(c) For two matrices A and $B, A B$ is invertible if and only if $B A$ is invertible.

True. Because $\operatorname{det}(A B)=\operatorname{det}(B A)$, so one is nonzero precisely when the other is.
(d) The set of polynomials $p(x) \in \mathbb{P}$ for which $p(1)=p(4)$ is a subspace.

True. If $p(1)=p(4)$ and $q(1)=q(4)$ then $(a p+b q)(1)=a p(1)+b q(1)=$ $a p(4)+b q(4)=(a p+b q)(4)$, so $a b+p q$ is in the set. Thus it is a subspace.
(e) If the determinant of A is non-zero, then the columns of A are linearly dependent. False. They are linearly independent, because A is invertible.
(f) The determinants of the following two matrices are equal.
$\left|\begin{array}{lll}a & b & c \\ d & e & f \\ g & h & i\end{array}\right|=\left|\begin{array}{ccc}a+3 c & b+c & c \\ d+3 f & e+f & f \\ g+3 i & h+i & i\end{array}\right|$
True. The column operation of adding (a multiple of) one column to another will not change the determinant.
(g) The functions $x^{2}, \sin x$, and $e^{16 x}$ are linearly independent.

True. No non-trivial linear combination is the zero function. (If you really wanted to prove it: suppose that $a x^{2}+b \sin x+c e^{16 x}=0$. By evaluating at $x=0$ you see that $c=0$. But x^{2} and $\sin x$ are not multiples of each other. Contradiction.)
2. Find the determinant of the following matrix.

$$
A=\left(\begin{array}{ccccc}
1 & 7 & 5 & 2 & 1 \\
0 & -10 & -3 & 3 & 2 \\
0 & 0 & 3 & 0 & 0 \\
0 & 2 & 1 & 0 & 0 \\
3 & 9 & -1 & -1 & 1
\end{array}\right)
$$

Let us use cofactor expansion. First along the third row, which has the most zeroes. We get

$$
\operatorname{det}(A)=3(-1)^{3+3} * \operatorname{det}\left(\begin{array}{cccc}
1 & 7 & 2 & 1 \\
0 & -10 & 3 & 2 \\
0 & 2 & 0 & 0 \\
3 & 9 & -1 & 1
\end{array}\right)
$$

Now expanding along the third row again:

$$
\operatorname{det}(A)=3(-1)^{3+3} * 2(-1)^{3+2} * \operatorname{det}\left(\begin{array}{ccc}
1 & 2 & 1 \\
0 & 3 & 2 \\
3 & -1 & 1
\end{array}\right)
$$

Now we have a 3×3 matrix and the fastest thing to do is use the "diagonals" rule:

$$
\operatorname{det}(A)=3(-1)^{3+3} * 2(-1)^{3+2} *(1 * 3 * 1+2 * 2 * 3+1 * 0 *(-1)-1 * 3 * 3-2 * 0 * 1-1 * 2 *(-1))=-6 *(8)=-48 .
$$

3. Find the determinant of the following matrices.
(a)

$$
\left(\begin{array}{ccc}
1 & 2 & 2 \\
5 & -1 & 2 \\
3 & 1 & 1
\end{array}\right)
$$

The 3×3 diagonal method is fastest here. $(1 *-1 * 1+2 * 2 * 3+2 * 5 * 1-2 *$ $(-1) * 3-2 * 5 * 1-1 * 2 * 1)=15$.
(b)

$$
\left(\begin{array}{ll}
5 & 6 \\
7 & 8
\end{array}\right)
$$

The 2×2 diagonal method is fastest here. $5 * 8-6 * 7=-2$.
4. These questions are about the matrix

$$
A=\left(\begin{array}{ccc}
1 & 2 & 2 \\
5 & -1 & 2 \\
3 & 1 & 1
\end{array}\right)
$$

(a) Compute the cofactor matrix C attached to A. (For those who don't come to class: your book called C^{t} the adjugate matrix of A.)
The answer is:

$$
C=\left(\begin{array}{ccc}
-3 & 1 & 8 \\
0 & -5 & 5 \\
6 & 8 & -11
\end{array}\right)
$$

(b) Using Cramer's rule, write down the inverse of A.

We already computed the determinant of A in the last problem to be 15 . Thus

$$
A^{-1}=\frac{1}{15}\left(\begin{array}{ccc}
-3 & 0 & 6 \\
1 & -5 & 8 \\
8 & 5 & -11
\end{array}\right)
$$

(c) Now compute the inverse of A using row reduction.
(I better get the same answer as before!)

$$
\begin{gathered}
\left(\begin{array}{ccc|ccc}
1 & 2 & 2 & 1 & 0 & 0 \\
5 & -1 & 2 & \mid & 0 & 1 \\
3 & 1 & 1 & 0 \\
3 & 0 & 1
\end{array}\right) \longrightarrow\left(\begin{array}{cccc|ccc}
1 & 2 & 2 & 1 & 0 & 0 \\
0 & -11 & -8 & -5 & 1 & 0 \\
0 & -5 & -5 & -3 & 0 & 1
\end{array}\right) \longrightarrow \\
\left(\begin{array}{ccc|ccc}
1 & 2 & 2 & 1 & 0 & 0 \\
0 & 1 & -2 & -1 & -1 & 2 \\
0 & 5 & 5 & 3 & 0 & -1
\end{array}\right) \longrightarrow\left(\begin{array}{ccc|ccc}
1 & 0 & 6 & 3 & 2 & -4 \\
0 & 1 & -2 & -1 & -1 & 2 \\
0 & 0 & 15 & 8 & 5 & -11
\end{array}\right) \longrightarrow \\
\\
\end{gathered}
$$

So A^{-1} is the right hand side, which is

$$
\frac{1}{15}\left(\begin{array}{ccc}
-3 & 0 & 6 \\
1 & -5 & 8 \\
8 & 5 & -11
\end{array}\right)
$$

5. What is the area of the parallelogram with vertices at $(0,0),(1,2),(-2,5)$, and $(-1,7)$? The matrix $A=\left(\begin{array}{cc}1 & -2 \\ 2 & 5\end{array}\right)$ will transform the unit square into the given parallelogram. The unit square has area 1, and the determinant multiplies the area, so the area of the parallelogram is

$$
\operatorname{det}(A)=5+4=9
$$

6. The following graphs depict 6 vectors in \mathbb{R}^{2}. Let L be a linear transformation satisfying $L(\mathbf{a})=\mathbf{x}$ and $L(\mathbf{b})=\mathbf{y}$. On the second graph, draw in vectors representing $L(\mathbf{c})$ and $L(\mathbf{d})$.

As can be seen from drawing the grid, one has (approximately unless you used a ruler like I did): $\mathbf{c}=\mathbf{a}-\mathbf{b}$ and $\mathbf{d}=\mathbf{a}+2 \mathbf{b}$. Thus $L(\mathbf{c})=\mathbf{x}-\mathbf{y}$ and $L(\mathbf{d})=\mathbf{x}+2 \mathbf{y}$.
7. What follows is a sequence of matrices in a row reduction algorithm.

$$
\begin{aligned}
& A=\left(\begin{array}{ccc}
0 & 5 & 10 \\
6 & 4 & 8 \\
3 & 3 & -1
\end{array}\right) \longrightarrow\left(\begin{array}{ccc}
0 & 1 & 2 \\
3 & 2 & 4 \\
3 & 3 & -1
\end{array}\right) \longrightarrow\left(\begin{array}{ccc}
0 & 1 & 2 \\
3 & 2 & 4 \\
0 & 1 & -5
\end{array}\right) \longrightarrow \\
& \longrightarrow\left(\begin{array}{ccc}
0 & 1 & 2 \\
3 & 2 & 4 \\
0 & 0 & -7
\end{array}\right) \longrightarrow\left(\begin{array}{ccc}
3 & 2 & 4 \\
0 & 1 & 2 \\
0 & 0 & -7
\end{array}\right)=B
\end{aligned}
$$

(a) Label the arrows with the operations performed.

This is hard for me to do electronically, so I will list them. In order: divide first row by 5 and second row by 2 ; add -1 times third row to second row; add -1 times first row to third row; swap first and second row.
(b) What is the determinant of B ?

It is diagonal, so $3 * 1 *-7=-21$.
(c) Label each matrix with its determinant.

Working backwards is easiest. Swapping rows multiplies the determinant by -1 , so the penultimate matrix has determinant 21. Adding a multiple of one row to another will not change the determinant, so the antepenultimate and preantepenultimate matrices also have determinant 21 . Finally, rescaling a row rescales the determinant in the same way, so the determinant of A is $21 * 5 * 2=210$.
8. Let $\mathcal{B}=\left\{x^{2}, \sin 2 x, 1, \cos 2 x, x\right\}$ be a set of functions on \mathbb{R}, and let V denote the span of these functions. You may assume that these functions are linearly independent (they are!).
(a) Write the linear operator $D: V \rightarrow V$, which sends a function f to its derivative f^{\prime}, as a matrix with respect to the basis \mathcal{B}.
The derivative of x^{2} is $2 x$, which in coordinates is $\left(\begin{array}{l}0 \\ 0 \\ 0 \\ 0 \\ 2\end{array}\right)$. This then is the first column of the matrix of D. Continuing in similar fashion we get the matrix

$$
\left(\begin{array}{ccccc}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & -2 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 2 & 0 & 0 & 0 \\
2 & 0 & 0 & 0 & 0
\end{array}\right) .
$$

(b) Write the linear operator $L: V \rightarrow V$, which sends a function f to $f^{\prime}-2 f$, as a matrix with respect to the basis \mathcal{B}.
Applying L to x^{2} one gets $L\left(x^{2}\right)=2 x-2 x^{2}$, which in coordinates is $\left(\begin{array}{c}-2 \\ 0 \\ 0 \\ 0 \\ 2\end{array}\right)$.
This then is the first column of the matrix of L, which is

$$
\left(\begin{array}{ccccc}
-2 & 0 & 0 & 0 & 0 \\
0 & -2 & 0 & -2 & 0 \\
0 & 0 & -2 & 0 & 1 \\
0 & 2 & 0 & -2 & 0 \\
2 & 0 & 0 & 0 & -2
\end{array}\right) .
$$

In fact, it is easy to see that $L=D-2 I$ as linear operators, so one can get this matrix by taking the matrix of D and subtracting twice the identity matrix.
9. Consider the vector space \mathbb{P}_{2} of polynomials having degree ≤ 2. Let

$$
\mathcal{C}=\left\{x^{2},(x+1)^{2},(x+2)^{2},(x+3)^{2}\right\}
$$

inside \mathbb{P}_{2}.
(a) Is \mathcal{C} linearly independent? If not, find a non-trivial linear combination giving the zero polynomial.
The vector space \mathbb{P}_{2} is only 3-dimensional, so any four vectors must be linearly dependent. Let us find a nonzero linear combination for zero.
The easiest way to address this is to put all these polynomials in coordinates with respect to the basis $\mathcal{B}=\left\{x^{2}, x, 1\right\}$. Then the four vectors are the four columns of the matrix

$$
\left(\begin{array}{llll}
1 & 1 & 1 & 1 \\
0 & 2 & 4 & 6 \\
0 & 1 & 4 & 9
\end{array}\right)
$$

A nonzero vector in the nulspace of this matrix will give us the desired linear combination. Row reduction yields the matrix
$\left.\begin{array}{l}\text { A nonzero vector in the nulspace is }\left(\begin{array}{cccc}1 & 0 & 0 & 1 \\ 0 & 1 & 0 & -3 \\ 0 & 0 & 1 & 3\end{array}\right) . \\ 3 \\ -3 \\ 1\end{array}\right)$. Thus

$$
(-1) x^{2}+3(x+1)^{2}-3(x+2)^{2}+(x+3)^{2}=0
$$

(b) Find a subset of \mathcal{C} which is a basis for \mathbb{P}_{2}.

As seen in the row reduction above, the first three vectors are pivots. Thus

$$
\left\{x^{2},(x+1)^{2},(x+2)^{2}\right\}
$$

will form a basis for \mathbb{P}_{2}. (In fact, any three of the four will form a basis, so it is hard to get this one wrong unless you get the dimension wrong.)
(c) Translation by +1 , written T_{1}, is the linear operator on \mathbb{P}_{2} which sends a polynomial $p(x)$ to the polynomial $p(x+1)$. For example, $T_{1}\left(x^{2}+2 x\right)=(x+1)^{2}+2(x+1)$. Write down the matrix for T_{1} with respect to the basis you chose.
$T_{1}\left(x^{2}\right)=(x+1)^{2}$, which in coordinates is $(0,1,0)$.
$T_{1}\left((x+1)^{2}\right)=(x+2)^{2}$, which in coordinates is $(0,0,1)$.
Meanwhile,

$$
T_{1}\left((x+2)^{2}\right)=(x+3)^{2}=x^{2}-3(x+1)^{2}+3(x+2)^{2}
$$

using the computation from the first part, so in coordinates this is $(1,-3,3)$.
Hence the matrix for T_{1} is

$$
\left(\begin{array}{ccc}
0 & 0 & 1 \\
1 & 0 & -3 \\
0 & 1 & 3
\end{array}\right) .
$$

