
1

1. For each of the following statements, indicate whether the statement is true or false. If
it is false, briefly explain why or give a counter-example. (Note: If it is true, you need

not explain why. But if you do explain why, you may get partial credit in case you

were wrong and it is false.)

(a) Every surjective linear transformation has a right inverse which is also a linear
transformation.
True. Surjective functions have right inverses and are left inverses. Injective func-
tions have left inverses and are right inverses.

(b) For two matrices A and B, the determinant det(A+B) is equal to det(A)+det(B).
False. Almost any 2× 2 matrices will give a counter-example.

(c) For two matrices A and B, AB is invertible if and only if BA is invertible.
True. Because det(AB) = det(BA), so one is nonzero precisely when the other is.

(d) The set of polynomials p(x) ∈ P for which p(1) = p(4) is a subspace.
True. If p(1) = p(4) and q(1) = q(4) then (ap + bq)(1) = ap(1) + bq(1) =
ap(4) + bq(4) = (ap+ bq)(4), so ab+ pq is in the set. Thus it is a subspace.

(e) If the determinant of A is non-zero, then the columns of A are linearly dependent.
False. They are linearly independent, because A is invertible.

(f) The determinants of the following two matrices are equal.
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True. The column operation of adding (a multiple of) one column to another will
not change the determinant.

(g) The functions x2, sinx, and e16x are linearly independent.
True. No non-trivial linear combination is the zero function. (If you really wanted
to prove it: suppose that ax2 + b sinx+ ce16x = 0. By evaluating at x = 0 you see
that c = 0. But x2 and sinx are not multiples of each other. Contradiction.)
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2. Find the determinant of the following matrix.

A =













1 7 5 2 1
0 −10 −3 3 2
0 0 3 0 0
0 2 1 0 0
3 9 −1 −1 1













Let us use cofactor expansion. First along the third row, which has the most zeroes. We
get

det(A) = 3(−1)3+3 ∗ det









1 7 2 1
0 −10 3 2
0 2 0 0
3 9 −1 1









.

Now expanding along the third row again:

det(A) = 3(−1)3+3 ∗ 2(−1)3+2 ∗ det





1 2 1
0 3 2
3 −1 1



 .

Now we have a 3× 3 matrix and the fastest thing to do is use the “diagonals” rule:

det(A) = 3(−1)3+3∗2(−1)3+2∗(1∗3∗1+2∗2∗3+1∗0∗(−1)−1∗3∗3−2∗0∗1−1∗2∗(−1)) = −6∗(8) = −48.

3. Find the determinant of the following matrices.

(a)




1 2 2
5 −1 2
3 1 1





The 3 × 3 diagonal method is fastest here. (1 ∗ −1 ∗ 1 + 2 ∗ 2 ∗ 3 + 2 ∗ 5 ∗ 1 − 2 ∗
(−1) ∗ 3− 2 ∗ 5 ∗ 1− 1 ∗ 2 ∗ 1) = 15.

(b)
(

5 6
7 8

)

The 2× 2 diagonal method is fastest here. 5 ∗ 8− 6 ∗ 7 = −2.
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4. These questions are about the matrix

A =





1 2 2
5 −1 2
3 1 1



 .

(a) Compute the cofactor matrix C attached to A. (For those who don’t come to class:
your book called Ct the adjugate matrix of A.)
The answer is:

C =





−3 1 8
0 −5 5
6 8 −11



 .

(b) Using Cramer’s rule, write down the inverse of A.
We already computed the determinant of A in the last problem to be 15. Thus

A−1 =
1

15





−3 0 6
1 −5 8
8 5 −11



 .

(c) Now compute the inverse of A using row reduction.
(I better get the same answer as before!)





1 2 2 | 1 0 0
5 −1 2 | 0 1 0
3 1 1 | 0 0 1



 −→





1 2 2 | 1 0 0
0 −11 −8 | −5 1 0
0 −5 −5 | −3 0 1



 −→





1 2 2 | 1 0 0
0 1 −2 | −1 −1 2
0 5 5 | 3 0 −1



 −→





1 0 6 | 3 2 −4
0 1 −2 | −1 −1 2
0 0 15 | 8 5 −11



 −→







1 0 0 | 3∗15−6∗8
15

2∗15−6∗5
15

−4∗15−6∗(−11)
15

0 1 0 | −1∗15+2∗8
15

−1∗15+2∗5
15

2∗15+2∗(−11)
15

0 0 1 | 8
15

5
15

−11
15







So A−1 is the right hand side, which is

1

15





−3 0 6
1 −5 8
8 5 −11



 .
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5. What is the area of the parallelogram with vertices at (0, 0), (1, 2), (−2, 5), and (−1, 7)?

The matrix A =

(

1 −2
2 5

)

will transform the unit square into the given parallelo-

gram. The unit square has area 1, and the determinant multiplies the area, so the area
of the parallelogram is

det(A) = 5 + 4 = 9.

6. The following graphs depict 6 vectors inR2. Let L be a linear transformation satisfying
L(a) = x and L(b) = y. On the second graph, draw in vectors representing L(c) and
L(d).

a

b
c

d

x

y

L(c)

L(d)

As can be seen from drawing the grid, one has (approximately unless you used a ruler
like I did): c = a− b and d = a+ 2b. Thus L(c) = x− y and L(d) = x+ 2y.
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7. What follows is a sequence of matrices in a row reduction algorithm.

A =





0 5 10
6 4 8
3 3 −1



 −→





0 1 2
3 2 4
3 3 −1



 −→





0 1 2
3 2 4
0 1 −5



 −→

−→





0 1 2
3 2 4
0 0 −7



 −→





3 2 4
0 1 2
0 0 −7



 = B

(a) Label the arrows with the operations performed.
This is hard for me to do electronically, so I will list them. In order: divide first
row by 5 and second row by 2; add −1 times third row to second row; add −1
times first row to third row; swap first and second row.

(b) What is the determinant of B?
It is diagonal, so 3 ∗ 1 ∗ −7 = −21.

(c) Label each matrix with its determinant.
Working backwards is easiest. Swapping rows multiplies the determinant by −1,
so the penultimate matrix has determinant 21. Adding a multiple of one row
to another will not change the determinant, so the antepenultimate and preante-
penultimate matrices also have determinant 21. Finally, rescaling a row rescales
the determinant in the same way, so the determinant of A is 21 ∗ 5 ∗ 2 = 210.
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8. Let B = {x2, sin 2x, 1, cos 2x, x} be a set of functions onR, and let V denote the span of
these functions. You may assume that these functions are linearly independent (they
are!).

(a) Write the linear operator D : V → V , which sends a function f to its derivative f ′,
as a matrix with respect to the basis B.

The derivative of x2 is 2x, which in coordinates is













0
0
0
0
2













. This then is the first

column of the matrix of D. Continuing in similar fashion we get the matrix













0 0 0 0 0
0 0 0 −2 0
0 0 0 0 1
0 2 0 0 0
2 0 0 0 0













.

(b) Write the linear operator L : V → V , which sends a function f to f ′ − 2f , as a
matrix with respect to the basis B.

Applying L to x2 one gets L(x2) = 2x − 2x2, which in coordinates is













−2
0
0
0
2













.

This then is the first column of the matrix of L, which is













−2 0 0 0 0
0 −2 0 −2 0
0 0 −2 0 1
0 2 0 −2 0
2 0 0 0 −2













.

In fact, it is easy to see that L = D − 2I as linear operators, so one can get this
matrix by taking the matrix of D and subtracting twice the identity matrix.
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9. Consider the vector space P2 of polynomials having degree ≤ 2. Let

C = {x2, (x+ 1)2, (x+ 2)2, (x+ 3)2}

inside P2.

(a) Is C linearly independent? If not, find a non-trivial linear combination giving the
zero polynomial.
The vector space P2 is only 3-dimensional, so any four vectors must be linearly
dependent. Let us find a nonzero linear combination for zero.
The easiest way to address this is to put all these polynomials in coordinates with
respect to the basis B = {x2, x, 1}. Then the four vectors are the four columns of
the matrix





1 1 1 1
0 2 4 6
0 1 4 9



 .

A nonzero vector in the nulspace of this matrix will give us the desired linear
combination. Row reduction yields the matrix





1 0 0 1
0 1 0 −3
0 0 1 3



 .

A nonzero vector in the nulspace is









−1
3
−3
1









. Thus

(−1)x2 + 3(x+ 1)2 − 3(x+ 2)2 + (x+ 3)2 = 0.

(b) Find a subset of C which is a basis for P2.
As seen in the row reduction above, the first three vectors are pivots. Thus

{x2, (x+ 1)2, (x+ 2)2}

will form a basis for P2. (In fact, any three of the four will form a basis, so it is
hard to get this one wrong unless you get the dimension wrong.)

(c) Translation by +1, written T1, is the linear operator on P2 which sends a polyno-
mial p(x) to the polynomial p(x+1). For example, T1(x

2+2x) = (x+1)2+2(x+1).
Write down the matrix for T1 with respect to the basis you chose.
T1(x

2) = (x+ 1)2, which in coordinates is (0, 1, 0).
T1((x+ 1)2) = (x+ 2)2, which in coordinates is (0, 0, 1).
Meanwhile,

T1((x+ 2)2) = (x+ 3)2 = x2 − 3(x+ 1)2 + 3(x+ 2)2

using the computation from the first part, so in coordinates this is (1,−3, 3).
Hence the matrix for T1 is





0 0 1
1 0 −3
0 1 3



 .


