Math 431/531 (Topology), Fall 2015 HW 1

Starred problems are for 531 students, and are extra credit for 431 students. 531 students must LaTeX their solutions.

- 1. (Warmup) Exercise 1.2 from Kosniowski. That is, show that Kosniowski's definition of a metric agrees with the definition from class.
- 2. Exercises 1.3 (all parts, but e*), 1.5, 1.6b*, 1.8c 1.10 from Kosniowski.
- 3. (*) This question is about the *n*-adic metric on the integers.

Definition 0.1. Fix an integer n > 1. The *n*-adic valuation of another integer $m \in \mathbb{Z}$ is

$$v_n(m) = \frac{1}{n^k},$$

where n^k is the largest power of n which divides m. For example, $v_2(24) = \frac{1}{8}$ and $v_2(25) = 1$, $v_3(24) = \frac{1}{3}$. By convention, $v_n(0) = 0$. The *n*-adic metric on \mathbb{Z} is

$$d_n(x,y) = v_n(x-y).$$

- (a) Prove that d_n is a metric. Is it bounded?
- (b) Prove that $d(x, y) = \frac{1}{v_n(x-y)}$ is not a metric.
- (c) Let n = 5. Describe the following open balls in the 5-adic metric: $B_2(3)$, $B_1(3)$, $B_{0,1}(3)$.
- (d) Let n = 2. Consider the sequence of integers $a_k = 2^k 1 = \sum_{i=0}^{k-1} 2^i$. Show that this is a Cauchy sequence. If it has a limit in \mathbb{Z} , find the limit and prove it. If it does not have a limit in \mathbb{Z} , prove it.
- (e) Let n = 2. Same question as above but for the sequence $b_k = \sum_{i=1}^k 2^{2i-1}$.
- 4. Let (X, d) be an arbitrary metric space, and let Y and Z be arbitrary nonempty subsets. Let $d(Y, Z) = \inf\{d(y, z) \mid y \in Y, z \in Z\}$. Note that this infimum may not be obtained (it need not be a minimum!). For a point x and a non-empty set Z, define d(x, Z) similarly.
 - (a) Let x be a point, Z a nonempty closed set, and suppose that d(x, Z) = 0. Show that $x \in Z$.
 - (b) Suppose that *Y* is nonempty, Y^c is nonempty, and $d(Y, Y^c) > 0$. Show that *Y* is both open and closed.
 - (c) Show that the converse is false. That is, find a counterexample: a metric space (X, d) and a proper non-empty subset $Y \subset X$ which is both open and closed, but for which $d(Y, Y^c) = 0$. (Hint: You can find a counterexample where X is a subspace of \mathbb{R}^2 , but you can not find a counter-example when $X = \mathbb{R}^2$.)

- (d) Can you find a counterexample as above when the metric on *X* is bounded?
- (e) Explain (with an example, and at most two sentences of text) what is wrong with the following statement.

Claim 0.2. (False!) A subset *U* of a metric space (X, d) is open if and only if there exists an $\varepsilon > 0$ such that $B_{\varepsilon}(x) \subset U$ for all $x \in U$.

- 5. This problem explores the basics of what we will eventually know of as *separation axioms*. Let (*X*, *d*) be an arbitrary metric space.
 - (a) For each point $x \in X$, show that $\{x\}$ is closed. When is $\{x\}$ open?
 - (b) Show that for each pair of points $x \neq y \in X$, one can always find an open set U such that $x \in U$ and $y \notin U$.
 - (c) Show that for each pair of points $x \neq y \in X$, one can always find open sets U and V with $x \in U$ and $y \in V$, such that U and V are disjoint.
 - (d) Show that for each point $x \in X$ and each closed set $Z \subset X$ with $x \notin Z$, one can always find open sets U and V with $x \in U$ and $Z \subset V$, such that U and V are disjoint. (Hint: Consider two balls around x with different radii.)
 - (e) (Extra credit... this is trickier than the rest.) Let *Y* and *Z* be disjoint closed subsets of *X*. Is it always possible to find open sets *U* and *V* with $Y \subset U$ and $Z \subset V$, such that *U* and *V* are disjoint?
- 6. Let $Y = \{0, 1\}$ be a set with two points, equipped with the discrete metric.
 - (a) Construct a continuous surjective function from \mathbb{Q} to *Y*. (Hint: choose an irrational number.)
 - (b) Prove that there is no continuous surjective function from \mathbb{R} to *Y*. (Hint: what property separates \mathbb{R} from \mathbb{Q} ?)