Math 431/531 (Topology), Fall 2015
 HW 5

Starred problems are for 531 students, and are extra credit for 431 students. 531 students must LaTeX their solutions.

1. Exercise 12.10abc(df*) j from K
2. Exercise 8 bcd from Munkres p158. Find counterexamples or give a proof.
3. $\left({ }^{*}\right)$ Exercise 9 from Munkres p158.
4. (For undergrads) Show that $\mathbb{R}^{2} \backslash \mathbb{Q}^{2}$ is path-connected.
5. Let X be the set $[0,1] \subset \mathbb{R}$ equipped with the standard metric topology. Let Y be the set $[0,1] \subset \mathbb{R}$ equipped with the cofinite topology.
(a) Is the identity map of $[0,1]$ a continuous map from X to Y ? Is it a continuous map from Y to X ?
(b) Is Y path-connected?
6. (a) Find a subset of \mathbb{R}^{2} (containing more than one point) which is path-connected but is only locally connected at a single point. (Hint: Try some lines through the origin.)
(b) $\left.{ }^{*}\right)$ Find a subset of \mathbb{R}^{2} (containing more than one point) which is path-connected but is not locally connected at any point.
7. (**Extra credit**) Exercise 10 from Munkres p163. (EVERYONE should be aware that the connectedness equivalence relation \sim is (surprisingly!) not the same as the quasiconnected equivalence relation defined in this exercise!! More false intuition...)
