Math 431/531 (Topology), Fall 2015 HW 7

Starred problems are for 531 students, and are extra credit for 431 students. 531 students must LaTeX their solutions.

- 1. Show that, in a Hausdorff space *X*, points are closed.
- 2. (a) Show that if *X* is Hausdorff, then the diagonal $\{(x, x)\} \subset X \times X$ is closed.
 - (b) Find a counterexample when *X* is not Hausdorff.
 - (c) (*) Show that if the diagonal is closed, then *X* is Hausdorff.
- 3. (a) Show that if f and g are continuous functions $X \to Y$, and Y is Hausdorff, then the set $\{x \in X \mid f(x) = g(x)\}$ is closed. (Hint: Use 2a.)
 - (b) Show that if $f: X \to Y$ is continuous and Y is Hausdorff, then the graph $\Gamma_f = \{(x, f(x)) \mid x \in X\} \subset X \times Y$ is closed. (Hint: Use 3a.)
 - (c) (*) Find an example of a non-continuous map $X \to Y$, with Y Hausdorff, for which Γ_f is closed.
 - (d) Find an example of a continuous map $X \to Y$, with Y not Hausdorff, for which Γ_f is not closed.
- 4. Let *X* be a set with two topologies $\mathcal{T}_1 \subset \mathcal{T}_2$. If *X* is Hausdorff for \mathcal{T}_1 , what can you say about \mathcal{T}_2 ? If *X* is Hausdorff for \mathcal{T}_2 , what can you say about \mathcal{T}_1 ?
- 5. Let X_j be a collection of non-empty spaces, indexed by $j \in J$.
 - (a) Show that if $\prod_{i \in J} X_i$ is Hausdorff, then each X_i is Hausdorff.
 - (b) If each X_j is Hausdorff, is $\prod_{i \in J} X_j$ Hausdorff?
 - (c) (*) Is $\mathbb{R}^{\mathbb{N}}$ Hausdorff in the product topology? In the box topology?
- 6. (More stuff on products and metrics) (*) Exercise 3 from Munkres p133.
- 7. (More stuff on products) Let $f: \mathbb{R}^2 \to \mathbb{R}$ be defined by f(0,0) = 0, and $f(x,y) = \frac{xy}{x^2 + y^2}$ elsewhere. Show that f is not continuous, but that for all $a, b \in \mathbb{R}$, the maps $x \mapsto f(x, a)$ and $y \mapsto f(b, y)$ are continuous maps $\mathbb{R} \to \mathbb{R}$.
- 8. Draw pictures of subspaces of \mathbb{R}^3 which are homeomorphic to the following product spaces: $S^1 \times S^1$, $S^2 \times \mathbb{R}$, $S^1 \times \mathbb{R}$, $S^1 \times \mathbb{R}^2$, $S^1 \times \mathbb{R}^2$.