sí 1

Exercises for week 6?

Proof of Serre's theorem

1. (Warmup) Let V be a vector space and F(V) the free lie algebra. Prove that F(V) is spanned by brackets of the form

$$[x_1, [x_2, [\dots [x_{n-1}, x_n] \dots]]].$$

- 2. (Optional) Recall (from the proof done in class) that P^+ is spanned by brackets of raising operators x_{β} , P^- is spanned by brackets of lowering operators y_{β} , and H is spanned by h_{β} , for $\beta \in \Delta$. Finish the proof that $P = P^+ + H + P^-$. Recall that this involved showing, e.g., that for $y = y_{\beta}$, and x a bracket in P^+ , that [y, x] is either another bracket in P^+ , or is in H.
- 3. (Mandatory) Prove the following: If $\lambda \in \mathfrak{h}^*$ and $\lambda \notin \mathbb{R} \cdot \alpha$ for $\alpha \in \Phi$, then there exists $w \in W$ such that $w\lambda \not\prec 0$ and $0 \not\prec w\lambda$. That is, $w\lambda$ has both positive and negative coefficients when written in terms of the base Δ .

Verma Modules and irreducibles

- 1. (Mandatory)
 - (a) Prove that every submodule of a Verma module is a weight module.
 - (b) Is the following statement true: let V be a representation of \mathfrak{g} (complex semisimple lie algebra) which is weight, with finite dimensional weight spaces, where the set of weights of V is locally bounded above with respect to \prec . (That is, for each weight of V, the number of other weights of V which are higher is finite.) Then every submodule of V has the same property.
- 2. (Optional) Suppose that λ is a dominant weight. Finish the proof that each lowering operator y_{α} , $\alpha \in \Delta$ acts locally nilpotently on the quotient $\Delta_{\lambda}/N_{\lambda}$, where N_{λ} is generated by $y_{\beta}^{\langle \lambda, \beta \rangle + 1} v_{+}$ for each $\beta \in \Delta$.
- 3. (Mandatory) Use the method from class to find the dimensions of weight spaces for irreducible representations L_{λ} of \mathfrak{sl}_3 , for the following dominant weights $\lambda=(m,n)=m\omega_1+n\omega_2$.
 - (a) Do the weights (0,4), (1,3), (2,2), (3,1), and (4,0).
 - (b) Do the weights (n, 0), (0, n) and (n, n) for arbitrary n.
- 4. (Mandatory)
 - (a) Draw the root lattice and the weight lattice in type B_2 .
 - (b) In class I gave the first three "rows" of the Verma module in type B_2 , giving the dimensions of weight spaces. Continue to the first 5 rows. Find and prove some general patterns which give the dimensions of "most" weight spaces in a Verma module.

 \mathfrak{sl}

(c) Find the dimensions of weight spaces for irreducible representations L_{λ} in type B_2 , for the following weights $\lambda = (m, n) = m\omega_1 + n\omega_2$. (By convention, β_1 is a short root and β_2 is a long root.) Do the weights (1, 0), (0, 1), (1, 1), (2, 0), (0, 2).

- (d) (Optional) Do a bunch more!
- 5. (a) (Mandatory) What is the weight lattice in type G_2 .
 - (b) (Mandatory) What is the highest weight of the adjoint representation, in the form (m, n)?
 - (c) (Optional) Find the first 3 rows of the Verma module, and compute the sizes of the irreducible representations (1,0), (0,1), (1,1), (2,0), (0,2).
- 6. (Mandatory) Compute the Kostant partition function for the following weights of \mathfrak{sl}_4 : $\beta_1 + 2\beta_2 + 3\beta_3$ and $2\beta_1 + \beta_2 + 3\beta_3$.
- 7. (Mandatory) In type A_3 , use the Weyl dimension formula to give the dimension of L_{λ} for $\lambda = (a, b, c) = a\omega_1 + b\omega_2 + c\omega_3$. (Optional) Do the general weight in type A_4 .
- 8. (Optional) Prove that, in type A_n , the dimension of any dominant weight μ inside any irreducible representation L_{λ} can be computed by taking the dimension of μ in Δ_{λ} and subtracting the dimension of μ inside each $\Delta_{s_{\alpha}\lambda-\alpha}$ for $\alpha\in\Delta$.