sí 1

Exercises for representations of S_n

In these exercises, let A_n denote the group algebra $\mathbb{C}[S_n]$, and Z(A, B) the centralizer of A in B, for a subalgebra $A \subset B$.

Young seminormal form

- 1. This exercise does part of the confirmation that the formulas for Young Seminormal Form do give a well-defined action of S_n .
 - (a) Confirm that $s_i s_j e_T = s_j s_i e_T$ for any tableau T, when $|i j| \ge 2$.
 - (b) Confirm that $s_i s_{i+1} s_i e_T = s_{i+1} s_i s_{i+1} e_T$ for any tableau T where the boxes labeled i, i+1, and i+2 appear in distinct rows and columns.
- 2. Confirm that the Young Seminormal Form representation for the partition (3,1) is isomorphic to the standard/Specht representation of S_4 , by finding the "change of basis" matrix between the basis $\{e_T\}$ and the basis $\{x_1 x_2, x_2 x_3, x_3 x_4\}$.
- 3. Confirm that the Young Seminormal Form representation for the partition (2,2) is isomorphic to the Specht representation. Recall that the Specht representation is the subspace of $\mathbb{C}[x_1,x_2,x_3,x_4]$ spanned by the S_4 orbit of $(x_1-x_2)(x_3-x_4)$. First, find the elements in this orbit and determine which linear dependencies there are, and find a basis. Then find the change of basis to the Young basis.
- 4. Confirm that $V_{\lambda} \otimes \operatorname{sgn}$ and V_{λ^t} are isomorphic, via the map which sends the basis $\{e_T\}$ to the basis e_{T^t} , where T^t is the transpose tableau.

Young-Jucys-Murphy operators

- 5. Let $x = \sum (a_1 a_2 \cdots a_k n)(b_1 b_2 \cdots b_\ell) \in A_n$, where a_i and b_i are distinct numbers between 1 and n-1. Note that $x \in Z(A_{n-1}, A_n)$. Prove that x lives in the subring generated by $Z(A_{n-1})$ and Y_n . (This was part of the proof that $Z(A_{n-1}, A_n)$ is this subring, so obviously don't use that theorem).
- 6. (Optional) Show that Z(A, B) is semisimple, whenever $A \subset B$ is an inclusion of two semisimple \mathbb{C} -algebras.
- 7. Show that for any $T \in \operatorname{Spec}(n)$, if $T_i = T_j = a$, then there exist $i < k, \ell < j$ with $T_k = a + 1$ and $T_\ell = a 1$.
- 8. Recall that \equiv is the equivalence relation on standard tableau generated by swapping i and i+1 when it is permissible to do so. Show that any T of shape λ is equivalent to the row reading tableau of the same shape.
- 9. (Optional but recommended) This exercise has you redo the main calculations in chapter 4 of Okounkov-Vershik, but for the Hecke algebra. Recall that the Hecke algebra of S_n has generators H_i , $1 \le i \le n-1$, where $(H_i+v)(H_i-v^{-1})=0$, $H_iH_j=H_jH_i$ for |i-j|>2, and $H_iH_{i+1}H_i=H_{i+1}H_iH_{i+1}$.
 - (a) Compute H_i^{-1} .

 \mathfrak{sl}

(b) Define J_i as follows:

$$J_1 = 1,$$

 $J_2 = H_1 H_1,$
 $J_3 = H_2 H_1 H_1 H_2,$

 $J_{i+1} = H_i J_i H_i.$

Prove that J_{i+1} commutes with H_j for j < i.

- (c) What is $H_i J_{i+1} H_i$ equal to?
- (d) Consider the abstract algebra generated by h, j_1, j_2 , which is supposed to act on a Hecke algebra representation via $h \mapsto H_i$, $j_1 \mapsto J_i$, $j_2 \mapsto J_{i+1}$ for some i. What relations should h, j_1, j_2 satisfy? This is the affine Hecke algebra on 2 strands.
- (e) Find all the representations of the affine Hecke algebra on 2 strands for which j_1 and j_2 act diagonalizably with eigenvalues v^{a_1} and v^{a_2} for some $a_i \in \mathbb{Z}$. In particular, compute the eigenbasis of the 2-dimensional representations, and compute the action of h on this basis. (Hint: where before you saw the integer $a_1 a_2$, replace it with the quantum integer $[a_1 a_2]$, where $[n] = \frac{v^n v^{-n}}{v v^{-1}}$.)
- (f) Provide an analog of Young Seminormal Form for representations the Hecke algebra.