
QUACKS Exercises

Lecture 2

0. Go do exercise 4 from the first exercise sheet, if you haven’t.

1. This exercise and the next explore p-dg polynomial rings. Recall that k[x] is given a differential
with d(x) = x2, extended by the Leibniz rule d(fg) = d(f)g + fd(g).

a) Compute dk(xℓ) for all k, ℓ ≥ 0. Verify that dp = 0 on k[x] when k has characteristic p.

b) There is a characteristic zero interpretation of the fact that dp = 0 in any finite characteristic

p. Define d(k) as dk

k! , and call it the divided power differential. If d(k) is defined integrally (i.e.

on Z[x]) for all k ≥ 0 then dp = (p!) · d(p) is a multiple of p.

Compute d(k)(xℓ) for all k, ℓ ≥ 0, and verify that d(k) is defined integrally.

c) Describe the underlying p-complex of k[x], and how it splits into indecomposable p-complexes.
Prove that the inclusion k → k[x] is a quasi-isomorphism (i.e. forgetting everything but the
underlying p-complexes, k[x] is a direct sum of contractible p-complexes and the image of
k).

d) Let us now classify p-dg modules M over k[x] which are free of rank 1 as modules. For
degree reasons, if v is the generator of M , then dM (v) = ax · v for some a ∈ k. Use the
Leibniz rule for modules to compute dM (xℓv), and verify that dpM = 0 if and only if a is
in the prime field Fp. For a ∈ Fp, describe the underlying p-complex of this p-dg module
(denoted Ma). For which a is Ma contractible?

Remark 0.1. Let us emphasize a major point from the previous exercise. All the modules Ma have
the same underlying k[x]-module, but they have very different behavior. The module M0 is special
because it is cofibrant, which is a derived analog of being projective; all the other modules Ma are
projective as k[x]-modules, but are not cofibrant. Keeping track of the differential, and not just the
underlying module, is essential to understanding the Grothendieck group.

2. Let R = k[x1, . . . , xn] with d(xi) = x2i . This differential commutes with the natural action of
Sn on R, and hence descends to the subring RSn of symmetric polynomials. We let ei (resp. hi)
denote the elementary (resp. complete) symmetric polynomial of degree i.

a) Prove that the inclusion k → R is a quasi-isomorphism. (Hint: you can do this directly, and
this is worth thinking about, but getting a proof in this way is not that easy. Instead, it is
better to think about R as the n-fold tensor product of k[x]. What happens when you tensor
a contractible p-complex with an arbitrary p-complex?)

b) Verify that d(e1) = e21 − 2e2, and d(e2) = e1e2 − 3e3. Generalize this, and find a similar
formula for d(hi).
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3. Let A = Matn(k) and let J ∈ A be the nilpotent Jordan block of maximal size.

a) What does d = [J,−] do to a matrix entry?

b) When n ≤ p, verify that dp = 0 in characteristic p. When n > p, what goes wrong?

c) Normally we think that, as a left A-module, A splits as a direct sum of its columns, each of
which are isomorphic to the canonical column module. Which idempotents give this decom-
position? What is the factorization of idempotents which makes the summands isomorphic
to the column module?

d) This splitting of A into columns is not preserved by the differential (why not?) but it is still
a filtration (why?). Find the appropriate partial order on the summands, and the filtered
factorization of idempotents.

e) Here are two reasons that Matp(k) is quasi-isomorphic to zero.

i) When n = p, prove that the identity is in the image of dp−1. Now deduce that any
element in the kernel of d is also in the image of dp−1.

ii) Use part (d) to decompose Matp(k) as a direct sum of free p-complexes (a filtration by
free p-complexes must split!).

4. This exercise is about Lauda’s categorification of sl2.

a) Verify that Lauda’s decomposition of EF is a factorization of idempotents.

b) Verify that this factorization of idempotents is filtered with respect to the differential.

c) Verify that the nilHecke relations are preserved by the differential.

Advanced exercise 1. Prove that the inclusion k → RSn is a quasi-isomorphism (see exercise 2)
when n < p.

Advanced exercise 2. Classify p-dg modules over R up to isomorphism and grading shift. Which
of these are contractible?

Advanced exercise 3. Verify that the divided power differential on Lauda’s category is defined
integrally.

Advanced exercise 4. Compute the differential on Lauda’s bubbles (real or fake, clockwise or
widdershins) of degree 2k. Match this to a formula from Exercise 2.
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