QUACKS Exercises

Lecture 3

- **1.** It is common practice to take the Karoubi envelope of an additive category before taking its split Grothendieck group. In traditional settings this makes perfect sense because a category is Morita-equivalent to its Karoubi envelope, but this need not hold in the dg or p-dg setting! This exercise explores the problem. Throughout all categories are assumed to be k-linear for some field k.
 - a) (Warmup) A left module over a k-linear category $\mathcal C$ is just a covariant fucntor $\mathcal C \to \operatorname{Vect}_k$, and these form an abelian category (like modules over a ring). A *principal* left module over a k-linear category $\mathcal C$ is a representable functor $\operatorname{Hom}(X,-)\colon \mathcal C \to \operatorname{Vect}_k$, and a *projective* module is a direct summand of a principal module. If $e \in \operatorname{End}(X)$ is an idempotent, show that $\operatorname{Hom}(X,-)\circ e$ is a projective module.
 - b) Using the formalism of Karoubi envelopes, we may add the image of e formally as a new object in our category. This object (X,e) satisfies $\operatorname{Hom}((X,e),Y) := \operatorname{Hom}(X,Y) \circ e$, and $\operatorname{Hom}(Y,(X,e)) := e \circ \operatorname{Hom}(Y,X)$. What should $\operatorname{End}((X,e))$ be? If \mathcal{C}' is the extension of \mathcal{C} by (X,e), prove that the category of projective modules over \mathcal{C}' is equivalent to the category of projective modules over \mathcal{C} (the only difference is that one non-principal projective module is now principal).
 - c) Now suppose that $\mathcal C$ is equipped with a p-dg structure. As we have seen, there is no need for $\operatorname{Hom}(X,-)\circ e$ to be preserved by the differential d. However, $\operatorname{Hom}(X,-)\circ e$ may appear as a subquotient in a filtration of $\operatorname{Hom}(X,-)$ by p-dg modules which are additive summands, as discussed in Lecture II. When this happens, prove that the induced differential on $\operatorname{Hom}(X,-)\circ e$ is $\bar d(\varphi e)=d(\varphi e)\circ e$. (Hint: Do the case of a submodule and a quotient module separately.)
 - d) Suppose that \mathcal{C} has one object X and $\operatorname{End}(X) = \operatorname{Mat}_n(\mathbb{k})$. Choosing an indecomposable idempotent and extending, we get a category \mathcal{C}' with two objects. What are all the Hom spaces in \mathcal{C}' ? Supposing $n \leq p$ and $\operatorname{Mat}_n(\mathbb{k})$ is equipped with the p-dg structure coming from a regular nilpotent Jordan block J, what is the induced differential on \mathcal{C}' ?
 - e) When n=p deduce that \mathcal{C} is quasi-isomorphic to zero (all Hom spaces are contractible) but \mathcal{C}' is not quasi-isomorphic to zero! The moral of the story is: when you take the Karoubi envelope, you force modules to be principal/projective which might not have been (e.g. they were contractible), and this enlarges the Grothendieck group.
- **2.** If *A* and *B* are rings that satisfy the double centralizer property, prove that their centers are isomorphic.

- **3.** Let us focus on the cyclotomic quotient ring $NH^2 = \bigoplus_{i=0}^{\infty} NH_i^2$, where NH_i^2 is the quotient of NH_i by x_1^2 . (For a warmup you can try l = 0, 1, but there is not much to do.)
 - a) Prove that $NH_i^2 = 0$ for i > 2. Prove that $NH_2^2 \cong Mat_2(\mathbb{k})$.
 - b) Find the categorical \mathfrak{sl}_2 representation on the basic algebra of NH which is Morita equivalent to the categorical \mathfrak{sl}_2 representation on NH. It is pictured below (find the functors and the natural transformations explicitly).

$$\Bbbk\text{-mod} \xrightarrow[\mathcal{E}]{\mathcal{F}} \Bbbk[x]/(x^2)\text{-mod} \xrightarrow[\mathcal{E}]{\mathcal{F}} \Bbbk\text{-mod}$$

- c) Compute the p-DG structure on $\mathrm{NH^2}$ and its basic algebra. When p=2 show that the categorical representation on $\mathrm{NH^2}$ is not p-dg Morita equivalent to the categorical representation on the basic algebra.
- **4.** Continuing the exploration of NH^2 .
 - a) Describe the Soergel functors for each weight space, and their adjoints.
 - b) Determine the extended categorical action which categorifies $V_1 \otimes V_1$.
- **5.** The polynomial ring $R = \mathbb{k}[x_1, \dots, x_n]$ is a free module of rank n! over its subalgebra R^{S_n} of symmetric polynomials. A basis can be given by $\{x_1^{a_1}x_2^{a_2}\cdots x_n^{a_n}\}$ where $0 \le a_i \le n-i$. (These are monomials fitting under a staircase.) Let V be the \mathbb{k} -span of this basis.
 - a) Is *V* closed under the usual *p*-dg structure on *R*?
 - b) Now consider a rank 1 R-module M with generator z, satisfying $d(z) = \sum_i (i-n)x_i \cdot z$. Check that $V \cdot z \subset M$ is closed under the differential.
 - c) Verify that V is isomorphic to a tensor product, over $1 \le i \le n$, of an i-dimensional p-complex (as stated in lecture).
 - d) If $n \ge p$ prove that M is contractible.