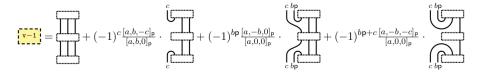
On categories of tilting modules

Or: Mind your poles

Daniel Tubbenhauer



Joint with Paul Wedrich

August 2020

Folklore, Lucas ~1878. Let $q \in \mathbb{K}^*$, $q \operatorname{char}(\mathbb{K}) = p$, $a = mp + a_0$ and $b = np + b_0$ (a_0, b_0 zeroth digit of the *p*-adic expansion). Then

$$\begin{bmatrix} \mathsf{a} \\ \mathsf{b} \end{bmatrix}_q = \begin{pmatrix} \mathsf{m} \\ \mathsf{n} \end{pmatrix} \begin{bmatrix} \mathsf{a}_0 \\ \mathsf{b}_0 \end{bmatrix}_q$$

Folklore, Lucas ~1878. Let $q \in \mathbb{K}^*$, $qchar(\mathbb{K}) = p$, $a = mp + a_0$ and $b = np + b_0$ (a_0, b_0 zeroth digit of the *p*-adic expansion). Then

$$\begin{bmatrix} \mathsf{a} \\ \mathsf{b} \end{bmatrix}_{q} = \binom{m}{n} \begin{bmatrix} \mathsf{a}_{0} \\ \mathsf{b}_{0} \end{bmatrix}_{q}$$

Philosophy. Only the vanishing order of $\begin{bmatrix} v \\ w \end{bmatrix}_q$ matters for this lecture ;-).

Folklore, Lucas \sim **1878.** Let $q \in \mathbb{K}^*$, $qchar(\mathbb{K}) = p$, $a = mp + a_0$ and $b = np + b_0$ (a_0, b_0 zeroth digit of the *p*-adic expansion). Then

$$\begin{bmatrix} \mathsf{a} \\ \mathsf{b} \end{bmatrix}_{q} = \binom{m}{n} \begin{bmatrix} \mathsf{a}_{0} \\ \mathsf{b}_{0} \end{bmatrix}_{q}$$

Philosophy. Only the vanishing order of $\begin{bmatrix} v \\ w \end{bmatrix}_{q}$ matters for this lecture ;-).

Corollary. We understand finite-dimensional modules for $\mathrm{SL}_2 = \mathrm{SL}_2(\mathbb{K} = \overline{\mathbb{K}})$

- generically;
- for the quantum group over $\mathbb C$ at $q^{2\ell}=1;$
- the quantum group over \mathbb{K} , $char(\mathbb{K}) = p$ and $q^{2\ell} = 1$ (mixed case);
- in prime characteristic $char(\mathbb{K}) = p$.

Folklore, Lucas \sim **1878.** Let $q \in \mathbb{K}^*$, $qchar(\mathbb{K}) = p$, $a = mp + a_0$ and $b = np + b_0$ (a_0, b_0 zeroth digit of the *p*-adic expansion). Then

$$\begin{bmatrix} a \\ b \end{bmatrix}_{q} = \begin{pmatrix} m \\ n \end{pmatrix} \begin{bmatrix} a_{0} \\ b_{0} \end{bmatrix}_{q}$$

Philosophy. Only the vanishing order of $\begin{bmatrix} v \\ w \end{bmatrix}_a$ matters for this lecture ;-).

Corollary. We understand finite-dimensional modules for $SL_2 = SL_2(\mathbb{K} = \overline{\mathbb{K}})$

- generically;
- for the quantum group over $\mathbb C$ at $q^{2\ell}=1$;
- the quantum group over \mathbb{K} , $char(\mathbb{K}) = p$ and $q^{2\ell} = 1$ (mixed case);
- in prime characteristic $char(\mathbb{K}) = p$.

Example/Remark.

$$\begin{split} \mathbb{K} &= \overline{\mathbb{F}}_{p}, \ q = 1 \ (\text{known as characteristic } p), \\ \text{and } a &= [a_{r}, ..., a_{0}]_{p}, \ b = [b_{r}, ..., b_{0}]_{p} \ (\text{the } p\text{-adic expansions}), \ \text{then} \\ & {a = \begin{bmatrix} a_{r} \\ b \end{bmatrix}}_{q} = \begin{bmatrix} a_{r} \\ b_{r} \end{bmatrix}_{q} ... \begin{bmatrix} a_{0} \\ b_{0} \end{bmatrix}_{q} = \begin{pmatrix} a_{r} \\ b_{r} \end{pmatrix} ... \begin{pmatrix} a_{0} \\ b_{0} \end{pmatrix}. \end{split}$$

Daniel Tubbenhauer

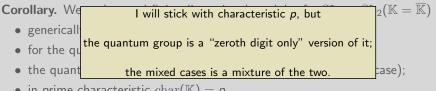
Folklore, Lucas \sim 1878. Let $q \in \mathbb{K}^*$, $q \operatorname{char}(\mathbb{K}) = p$, $a = mp + a_0$ and					
b = n	Examples for $a = 1331 = 11^{3}$ and $b = 1$.				
	If $\mathbb{K} = \mathbb{C}$, $q = 1$, then $q \operatorname{char}(\mathbb{K}) = 0$ and $a = [1331]_0$ $\Rightarrow [1331]_q = [1331]_q$ does not vanish.				
	If $\mathbb{K} = \mathbb{C}$, $q = \exp(2\pi i/11)$, then $q char(\mathbb{K}) = 11$ and $a = [11^2, 0]_{11}$				
Philos	\Rightarrow [1331] _q = 11 ² [0] _q vanishes of order one.				
	If $\mathbb{K} = \overline{\mathbb{F}}_{11}$, $q = 2$, then $q \operatorname{char}(\mathbb{K}) = 10$ and $a = [1, 3, 3, 1]_{10} = [1, 0, 0, 0]_{11}$				
Corol	$\Rightarrow [1331]_q = 00 [1]_q \text{ vanishes of order two.}$				
• g					
• fo	If $\mathbb{K} = \mathbb{F}_{11}$, $q = 1$, then $qchar(\mathbb{K}) = 11$ and $a = [1, 0, 0, 0]_{11}$ $\Rightarrow [1331]_q = 00 [0]_q$ vanishes of order three.				
• t	The quantum group over \mathbb{R} , char(\mathbb{R}) = p and $q^{-1} = 1$ (mixed case);				
• ir	prime characteristic $\operatorname{char}(\mathbb{K}) = p$.				
	Example/Remark.				
	$\mathbb{K} = \overline{\mathbb{F}}_{p}, \ q = 1 \ (\text{known as characteristic } p),$				
	and $a = [a_r,, a_0]_p$, $b = [b_r,, b_0]_p$ (the <i>p</i> -adic expansions), then				
	$\binom{a}{b} = \begin{bmatrix} a \\ b \end{bmatrix}_q = \begin{bmatrix} a_r \\ b_r \end{bmatrix}_q \dots \begin{bmatrix} a_0 \\ b_0 \end{bmatrix}_q = \binom{a_r}{b_r} \dots \binom{a_0}{b_0}.$				

Daniel Tubbenhauer

Folklore, Lucas ~1878. Let $q \in \mathbb{K}^*$, $q \operatorname{char}(\mathbb{K}) = p$, $a = mp + a_0$ and $b = np + b_0$ (a_0, b_0 zeroth digit of the *p*-adic expansion). Then

$$\begin{bmatrix} a \\ b \end{bmatrix}_{q} = \begin{pmatrix} m \\ n \end{pmatrix} \begin{bmatrix} a_{0} \\ b_{0} \end{bmatrix}_{q}$$

Philosophy. Only the vanishing order of $\begin{bmatrix} v \\ w \end{bmatrix}_{a}$ matters for this lecture ;-).



• in prime characteristic $char(\mathbb{K}) = p$.

Weyl ~1923. The SL_2 (dual) Weyl modules $\nabla(\nu-1)$.

abla(1-1)	X ⁰ Y ⁰
abla(2-1)	X^0Y^1 X^1Y^0
abla(3-1)	$x^0 y^2$ $x^1 y^1$ $x^2 y^0$
abla(4-1)	$x^0\gamma^3$ $x^1\gamma^2$ $x^2\gamma^1$ $x^3\gamma^0$
abla(5-1)	$x^0 y^4 x^1 y^3 x^2 y^2 x^3 y^1 x^4 y^0$
abla(6-1)	$\chi^0\gamma^5$ $\chi^1\gamma^4$ $\chi^2\gamma^3$ $\chi^3\gamma^2$ $\chi^4\gamma^1$ $\chi^5\gamma^0$
	$x^{0}y^{6} x^{1}y^{5} x^{2}y^{4} x^{3}y^{3} x^{4}y^{2} x^{5}y^{1} x^{6}y^{0}$ columns are expansions of $(aX + cY)^{v-i}(bX + dY)^{i-1}$.

The simples

Weyl
$$\begin{array}{c} & \left(\begin{array}{c} a & b \\ c & d \end{array}\right) \text{ acts as} \left(\begin{array}{c} a^{5} & b \\ 6a^{5}c & 5a^{4}bc+a^{5}d \\ 15a^{4}c^{2} & 10a^{3}bc^{2}+5a^{4}cd \\ 15a^{4}c^{2} & 10a^{3}bc^{2}+5a^{4}cd \\ 15a^{4}c^{2} & 2ba^{3}bc^{2}+5a^{4}cd \\ 15a^{2}bc^{2}+5a^{4}cd \\ 15a^{2}bc^{2}+5a^{4}cd \\ 15a^{2}bc^{2}+5a^{4}cd \\ 15a^{2}bc^{2}+5a^{4}cd \\ 15a^{2}bc^{2}+6a^{2}bc^{2}+8a^{3}bcd+a^{4}d^{2} \\ 15a^{2}c^{4} & 5abc^{4}+10a^{2}c^{3}d \\ 15a^{2}c^{4} & 5abc^{4}+10a^{2}c^{3}d \\ 6ac^{5} & 5ac^{4}d+bc^{5} \\ c^{6} & c^{5}d \\ c^{6} & c^{6} \\ c^{6} & c^{$$

$$\nabla(4-1)$$
 $\chi^{0}\gamma^{3}$ $\chi^{1}\gamma^{2}$ $\chi^{2}\gamma^{1}$ $\chi^{3}\gamma^{0}$

$$\nabla(5-1)$$
 $\chi^{0}\gamma^{4}$ $\chi^{1}\gamma^{3}$ $\chi^{2}\gamma^{2}$ $\chi^{3}\gamma^{1}$ $\chi^{4}\gamma^{0}$

 $\nabla(6-1)$ $X^{0}Y^{5}$ $X^{1}Y^{4}$ $X^{2}Y^{3}$ $X^{3}Y^{2}$ $X^{4}Y^{1}$ $X^{5}Y^{0}$

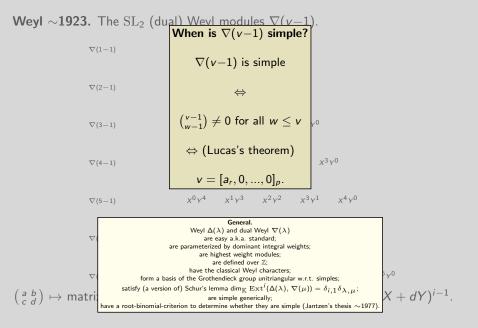
 $\begin{array}{cccc} & & & \\ \nabla^{(7-1)} & x^0 y^6 & x^1 y^5 & x^2 y^4 & x^3 y^3 & x^4 y^2 & x^5 y^1 & x^6 y^0 \\ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \mapsto \text{matrix who's columns are expansions of } (aX + cY)^{v-i} (bX + dY)^{i-1}. \end{array}$

The simples

$$\begin{aligned}
\text{Neyl} \quad \left\{ \begin{array}{c} \mathbf{Example } \nabla(7-1) = \mathbb{K}X^{6}Y^{0} \oplus \dots \oplus \mathbb{K}X^{0}Y^{6}. \\ \left(\begin{smallmatrix} a & b \\ c & d \end{smallmatrix}\right) \text{ acts as} & \left(\begin{smallmatrix} a^{6} & a^{5}b & a^{4}b^{2} \\ (a^{5}b^{2} & 5a^{4}bc^{3}b^{2}c^{2}+2a^{4}bd & \dots & 6b^{5} \\ (b^{5}a^{2}c^{2}-10a^{3}bc^{2}+5a^{4}cd & 6a^{2}b^{2}c^{2}+8a^{3}bcd+a^{4}d^{2} & \dots & 2bb^{2}d^{4} \\ (a^{3}b^{2}) & a^{2}bc^{3}+10a^{3}c^{2}d & 12a^{2}bc^{2}d+4a^{3}cd^{2} & \dots & 2bb^{3}d^{3} \\ (b^{3}a^{2}c^{4}-5abc^{4}+ba^{2}c^{2}d & b^{2}c^{4}+abc^{2}d+6a^{2}c^{2}d^{2} & \dots & 1bb^{4}d^{4} \\ (a^{5}a^{5}-5ac^{4}d+bc^{5} & 2bc^{4}d+bac^{2}d+6a^{2}c^{2}d^{2} & \dots & b^{6} \\ \end{array} \right) \\
\text{The columns are expansions of } (aX + cY)^{7-i}(bX + dY)^{i-1}. \text{ Binomials!} \\
\hline \text{The columns are expansions of } (aX + cY)^{7-i}(bX + dY)^{i-1}. \text{ Binomials!} \\
\hline \nabla^{(4-1)} & \left(\begin{smallmatrix} (1 & 1 & 1 \\ 1 & 1 & 1 \\ \end{array}\right)^{\nabla(5-1)} & \text{No zeros} \Rightarrow \nabla(7-1) \text{ simple.} \\
\hline \text{Example } \nabla(7-1), \text{ characteristic 5.} \\
\hline & \nabla(6-1) & \text{Example } \nabla(7-1), \text{ characteristic 5.} \\
\hline & \nabla(7-1) & \text{(}^{1}a^{1})^{n} \text{ acts as} \begin{pmatrix} 1 & \dots & \dots & 1 \\ 0 & \dots & 0 & 0 \\ 0 & 0 & \dots & 0 \\ 0 & 0 & 0 & 0 \\ 0 & \dots & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & \dots & 1 \\ \end{array} \right) \\
\hline \text{We found a submodule.} \\
\hline \text{No zeros} = \nabla(7-1) & \text{Constant} \\
\hline \text{No zeros} = \nabla(7-1) & \text{Constant} \\
\hline \text{Region } \text{Region } 0 \\
\hline \text{Region } \text{Region } 0 \\
\hline \text{Region } 0$$

Daniel Tubbenhauer

On categories of tilting modules



The simples

Ringel, Donkin ~1991. The indecomposable SL_2 tilting modules T(v-1) are the indecomposable summands of $\Delta(1)^{\otimes i}$.

General. These facts hold in general, and the first bullet point is the general definition.

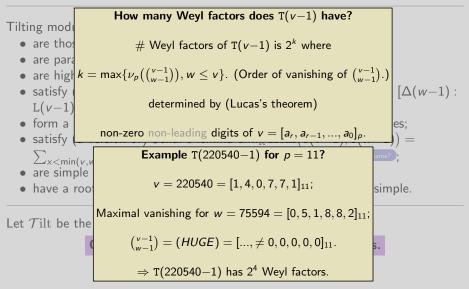
Tilting modules T(v-1)

- are those modules with a $\Delta(w-1)$ and a $\nabla(w-1)$ -filtration;
- are parameterized by dominant integral weights;
- are highest weight modules;
- satisfy reciprocity $(T(v-1) : \Delta(w-1)) = (T(v-1) : \nabla(w-1)) = [\Delta(w-1) : L(v-1)] = [\nabla(w-1) : L(v-1)];$
- form a basis of the Grothendieck group unitriangular w.r.t. simples;
- satisfy (a version of) Schur's lemma dim_K Hom $(T(v-1), T(w-1)) = \sum_{x < \min(v, w)} (T(v-1) : \Delta(x-1)) (T(w-1) : \nabla(x-1))$ (Why the name?);
- are simple generically;
- have a root-binomial-criterion to determine whether they are simple.

Let $\mathcal{T}\mathrm{ilt}$ be the category of tilting modules.

Goal. Describe $\mathcal{T}\mathrm{ilt}$ by generators and relations.

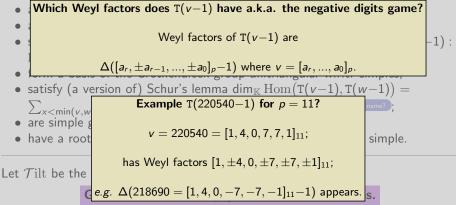
Ringel, Donkin ~1991. The indecomposable SL_2 tilting modules $T(\nu-1)$ are the indecomposable summands of $\Delta(1)^{\otimes i}$.



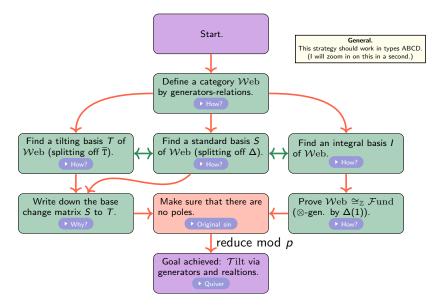
Ringel, Donkin ~1991. The indecomposable SL_2 tilting modules $T(\nu-1)$ are the indecomposable summands of $\Delta(1)^{\otimes i}$.

Tilting modules T(v-1)

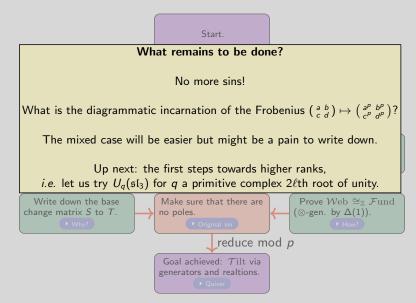
• are those modules with a $\Delta(w-1)$ - and a $\nabla(w-1)$ -filtration;



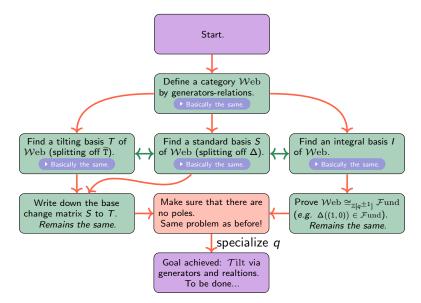
Strategical interlude.



Strategical interlude.



Strategical interlude.



Folklore, Lucas ~1878. Let $q \in \mathbb{K}^*$, $qchar(\mathbb{K}) = p$, $a = mp + a_0$ and $b = np + b_2$ (a_2 , b_3 zeroth digit of the p-adic expansion). Then

$\begin{bmatrix} a \\ b \end{bmatrix}_{a} = \binom{m}{n} \begin{bmatrix} a_{0} \\ b_{0} \end{bmatrix}$

En ampriss of thing matches

 $\Delta(\lambda) \otimes \Delta(1) \cong \Delta(\lambda+1) \oplus \Delta(\lambda-1).$

 $| \rightarrow \rightarrow \epsilon_1$, $\bigcirc \rightarrow \epsilon_{-1} \leftarrow$

Rumer-Teller-Weyl ~1933, Ellas ~2015 à la Littelmann ~1995. For any

 $\varepsilon_1(f): f \to f \to f$

Flip to obtain $u(\pi)$ and stick them together. This gives an integral basis I of Web. -

path π in the dominant Weyl chamber define $d(\pi)$ inductively by

Philosophy. Only the vanishing order of [*] matters for this lecture >).

- Corollars. We understand finite-dimensional modules for $SL_2 = SL_2(K = \overline{K})$
- · generically;

Resid Tutkenheer

- for the quantum group over C at q^{3ℓ} = 1;
- the quantum group over K. char(K) = p and p^{2c} = 1 (mixed case):
- in prime characteristic char(K) = n.

The SL₂ fusion rules for $\Delta(1) = \mathbb{C}\{\varepsilon_1, \varepsilon_{-1}\}$:

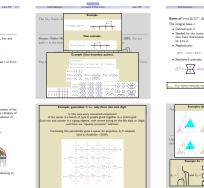
$\nabla (p-n)$	1949
$\nabla(p-z)$	100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100
$\nabla (n-n)$	2010 - 2010 - 2010
$\nabla (\mathbf{p}_{-1})$	موطو الوطو الوطو الوطو
∇p_{-1}	11 11 11 11 11 11
$\nabla (\mathbf{x}_{-1})$	

Weyl ~1923. The SL₂ (dual) Weyl modules $\nabla(\nu-1)$.

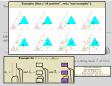
 $(\stackrel{a}{,}\stackrel{b}{,}) \mapsto$ matrix who's columns are expansions of $(aX + cY)^{r-1}(bX + dY)^{r-1}$.

the comparise of thing madeline

August 2010 \$/7



Bases of $hom(\Delta(1)^{\otimes i}, \Delta(1)^{\otimes j})$.



There is still much to do...

The result. There exists a K-algebra Z_{μ} defined as a (very explicit) quotient of the path algebra of an infinite. fractal-like quiver. Let n.Mod-Z. denote the category of finitely-generated, projective (right-)modules for Z., There is an equivalence of additive, K-linear categories

$\mathcal{F} \colon \mathcal{T}ilt \xrightarrow{\simeq} p\mathcal{M}od \cdot Z_{g},$

sending indecomposable tilting modules to indecomposable projectives.

Folklore, Lucas ~1878. Let $q \in \mathbb{K}^*$, $qchar(\mathbb{K}) = p$, $a = mp + a_0$ and $b = np + b_2$ (a_2 , b_3 zeroth digit of the p-adic expansion). Then

$\begin{bmatrix} a \\ b \end{bmatrix}_{a} = \binom{m}{n} \begin{bmatrix} a_{0} \\ b_{0} \end{bmatrix}$

En ampriss of thing matches

 $| \rightarrow \rightarrow \epsilon_1$, $\bigcirc \rightarrow \epsilon_{-1} \leftarrow$

 $\varepsilon_1(f): f \to f \to f$

-

path π in the dominant Weyl chamber define $d(\pi)$ inductively by

Philosophy. Only the vanishing order of [*] matters for this lecture >).

- Corollars. We understand finite-dimensional modules for $SL_2 = SL_2(K = \overline{K})$
- · generically;

thesist Tuthenheur

- for the quantum group over C at q^{3ℓ} = 1;
- the quantum group over K. char(K) = p and p^{2c} = 1 (mixed case):
- in prime characteristic char(K) = n.

The SL₂ fusion rules for $\Delta(1) = \mathbb{C}\{r_2, r_{-2}\}$: $\Delta(\lambda) \otimes \Delta(1) \cong \Delta(\lambda+1) \oplus \Delta(\lambda-1).$

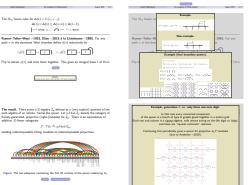
$\nabla (p-1)$	100
$\nabla (p-n)$	10.0 July
$\nabla (n-z)$	2010 Sec. 2010
$\nabla (p_{-}, t)$	2 ¹⁰ 1 ¹ 2 ¹⁰ 1 ² 2 ¹⁰ 1 ¹ 2 ¹⁰ 1 ¹
$\nabla p_{-} = 0$	11 11 11 11 11
$\nabla p_{-} = 0$	

Weyl ~1923. The SL₂ (dual) Weyl modules $\nabla(\nu-1)$.

 $(\stackrel{a}{,}\stackrel{b}{,}) \mapsto$ matrix who's columns are expansions of $(aX + cY)^{r-1}(bX + dY)^{r-1}$.

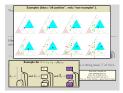
the comparise of thing madeline

August 2010 \$/7



Bases of $hom(\Delta(1)^{\otimes i}, \Delta(1)^{\otimes j})$. The integral basis I. The standard basis S. The tilting basis T. · Defined over Z.

Wald Tabletaar

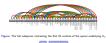


Thanks for your attention!

The result. There exists a K-algebra Z_{μ} defined as a (very explicit) quotient of the path algebra of an infinite. fractal-like quiver. Let n.Mod-Z. denote the category of finitely-penerated, projective (right-)modules for Z., There is an equivalence of additive, K-linear categories

$\mathcal{F} \colon \mathcal{T}ilt \xrightarrow{\simeq} p\mathcal{M}od \cdot Z_{g},$

sending indecomposable tilting modules to indecomposable projectives.



Weyl ~1923. The SL₂ simples L(v-1) in $\nabla(v-1)$ for p = 5.

$$\nabla(1-1)$$
 $x^0 y^0$
 $L(1-1)$
 $\nabla(2-1)$
 $x^0 y^1$
 $x^1 y^0$
 $L(2-1)$
 $\nabla(3-1)$
 $x^0 y^2$
 $x^1 y^1$
 $x^2 y^0$
 $L(3-1)$
 $\nabla(4-1)$
 $x^0 y^3$
 $x^1 y^2$
 $x^2 y^1$
 $x^3 y^0$
 $L(4-1)$
 $\nabla(5-1)$
 $x^0 y^4$
 $x^1 y^3$
 $x^2 y^2$
 $x^3 y^1$
 $x^4 y^0$
 $L(5-1)$
 $\nabla(6-1)$
 $x^0 y^5$
 $x^1 y^4$
 $x^2 y^3$
 $x^3 y^2$
 $x^4 y^1$
 $x^5 y^0$
 $L(6-1)$
 $\nabla(7-1)$
 $x^0 y^6$
 $x^1 y^5$
 $x^2 y^4$
 $x^3 y^3$
 $x^4 y^2$
 $x^5 y^1$
 $x^6 y^0$
 $L(7-1)$

 $\nabla(7-1)$ has L(7-1) and L(3-1). Note $7 = [1,2]_5$ and $3 = [3,-2]_5$.

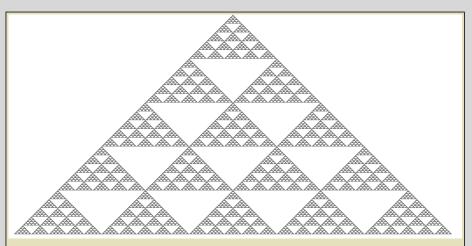
🖪 Bac

Weyl ~1923. The SL₂ simples L(v-1) in $\nabla(v-1)$ for p = 5.

 $\nabla(1 - 1)$

$$X^{0}Y^{0}$$

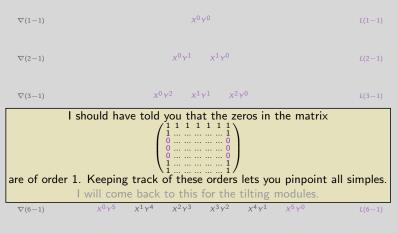
L(1-1)



Pascals triangle modulo p = 5 picks out the simples, e.g. an unbroken east-west line is a Weyl module which is simple.

Picture from https://commons.wikimedia.org/wiki/File:Pascal_triangle_modulo_5.png

Weyl ~1923. The SL₂ simples L(v-1) in $\nabla(v-1)$ for p = 5.



Bac

"Schur's tilting lemma a.k.a. Weyl clustering".

In the Grothendieck group: $[T(\lambda)] = [\Delta(\lambda)] + \sum_{\mu < \lambda} (T(\lambda) : \Delta(\mu))[\Delta(\mu)].$

Let $\overline{T}(\lambda) = \Delta(\lambda) \oplus \bigoplus_{\mu < \lambda} (T(\lambda) : \Delta(\mu)) \Delta(\mu)$, seen generically.

Philosophy. Never ever go to characteristic p – its too complicated. Work with $\overline{T}(\lambda)$ instead, "the characteristic 0 cousin of $T(\lambda)$ ".

Then

$$\mathsf{dim}_{\mathbb{K}}\operatorname{End}ig(\mathtt{T}(\lambda)ig)=\mathsf{dim}_{gen}\operatorname{End}ig(\overline{\mathtt{T}}(\lambda)ig)=1+\sum_{\mu<\lambda}ig(\mathtt{T}(\lambda):\Delta(\mu)ig)^2,$$

by Schur's lemma. (Similarly for hom-spaces, of course.)

▲ Back

"Schur's tilting lemma a.k.a. Weyl clustering".

In the Grothendie	Weyl clustering algorithm.	$\lambda):\Delta(\mu))[\Delta(\mu)].$
Let $\overline{\mathtt{T}}(\lambda) = \Delta(\lambda) \oplus 0$	$\Delta(1)^k$ has the following tilting summands.	lly.
Philosophy. Never $\overline{T}(\lambda)$ instead, "the ch	Take the highest appearing weight $v - 1$; set $\overline{T}(v-1) = \bigoplus_{w \in NDG} \Delta(w-1)$; repeat.	licated. Work with

Then

$$\dim_{\mathbb{K}} \operatorname{End}(\mathtt{T}(\lambda)) = \dim_{gen} \operatorname{End}(\overline{\mathtt{T}}(\lambda)) = 1 + \sum_{\mu < \lambda} (\mathtt{T}(\lambda) : \Delta(\mu))^2,$$

by Schur's lemma. (Similarly for hom-spaces, of course.)

▲ Back

"Schur's tilting lemma a.k.a. Weyl clustering".

In the Grothendi	Weyl clustering algorithm.	$(\lambda): \Delta(\mu))[\Delta(\mu)].$
Let $\overline{\mathtt{T}}(\lambda) = \Delta(\lambda) \oplus \mathfrak{C}$	$\Delta(1)^k$ has the following tilting summands.	lly.
Philosophy. Never $\overline{T}(\lambda)$ instead, "the ch	Take the highest appearing weight $v - 1$; set $\overline{T}(v-1) = \bigoplus_{w \in \text{NDG}} \Delta(w-1)$; repeat.	licated. Work with
Then $dim_{\mathbb{K}}\mathrm{End}\big(\mathtt{T}$	$T(v-1)$ vs. $\overline{T}(v-1)$. The idempotents in $End(\overline{T}(v-1))$ inducing the splitting into summands have poles,	$(\lambda):\Delta(\mu))^2,$

by Schur's lemma. and $T(\nu-1)$ does not split into Weyl factors.

. ◀ Back Rumer–Teller–Weyl \sim 1932, Temperley–Lieb \sim 1971, Kauffman \sim 1987. The category Web is the monoidal \mathbb{Z} -linear category monoidally generated by

object generators : •, morphism generators : \bigcirc : $\mathbb{1} \to \bullet^{\otimes 2}, \bigcirc$: $\bullet^{\otimes 2} \to \mathbb{1}$, relations : $\bigcirc = -2$, $\bigcirc = = = \bigcirc$.

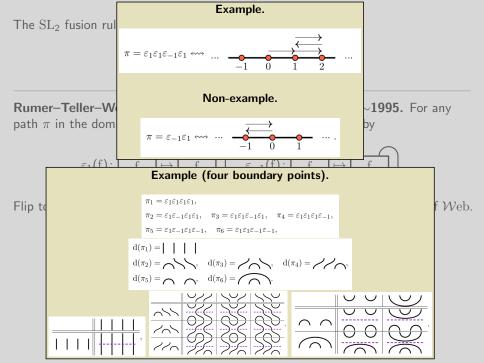
Figure: Conventions and examples. The crossing is from "G. Rumer, E. Teller, H. Weyl. Eine für die Valenztheorie geeignete Basis der binären Vektorinvarianten. Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse (1932), Volume: 1932, pages 499–504.".

General. For type A we have webs à la Kuperberg ~1997, Cautis-Kamnitzer-Morrison ~2012. For types BCD there are some partial results, e.g. Brauer ~1937, Kuperberg ~1997, Sartori ~2017, Rose-Tatham ~2020. Outside of these types I do not even expect our approach to work anyway. The SL₂ fusion rules for $\Delta(1) = \mathbb{C}\{\varepsilon_1, \varepsilon_{-1}\}$: $\Delta(\lambda) \otimes \Delta(1) \cong \Delta(\lambda+1) \oplus \Delta(\lambda-1),$ $\downarrow \longleftrightarrow \varepsilon_1, \quad \frown \longleftrightarrow \varepsilon_{-1} \longleftarrow \ldots$.

Rumer-Teller-Weyl ~1933, Elias ~2015 à la Littelmann ~1995. For any path π in the dominant Weyl chamber define $d(\pi)$ inductively by

$$\varepsilon_1(f)$$
: $f \mapsto f$ $|, \quad \varepsilon_{-1}(f)$: $f \mapsto f$.

Flip to obtain $u(\pi)$ and stick them together. This gives an integral basis I of Web.

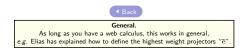


The SL₂ fusion rules for $\Delta(1) = \mathbb{C}\{\varepsilon_1, \varepsilon_{-1}\}$: $\Delta(\lambda) \otimes \Delta(1) \cong \Delta(\lambda+1) \oplus \Delta(\lambda-1),$ $\downarrow \longleftrightarrow \varepsilon_1, \quad \frown \longleftrightarrow \varepsilon_{-1} \longleftarrow \ldots$

Jones ~1985, Wenzl ~1989, Cooper–Hogancamp ~2012. For any path π in the dominant Weyl chamber define $\tilde{d}(\pi)$ inductively by

$$\tilde{\varepsilon}_1(\mathbf{f}) \colon \mathbf{f} \mapsto \mathbf{f}, \quad \tilde{\varepsilon}_{-1}(\mathbf{f}) \colon \mathbf{f} \mapsto \mathbf{f}$$

Flip to obtain $\tilde{u}(\pi)$ and stick them together. This gives a standard basis S of Web.





Flip to obtain $\tilde{u}(\pi)$ and stick them together. This gives a standard basis S of Web.

▲ Back

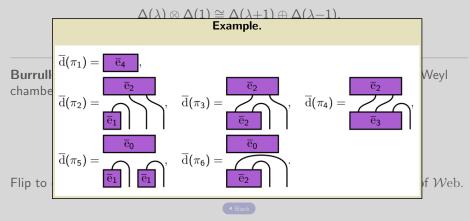
The SL₂ fusion rules for $\Delta(1) = \mathbb{C}\{\varepsilon_1, \varepsilon_{-1}\}$: $\Delta(\lambda) \otimes \Delta(1) \cong \Delta(\lambda+1) \oplus \Delta(\lambda-1),$ $\downarrow \longleftrightarrow \varepsilon_1, \quad \frown \longleftrightarrow \varepsilon_{-1} \longleftarrow.$

Burrull–Libedinsky–Sentinelli ~2019. For any path π in the dominant Weyl chamber define $\overline{d}(\pi)$ inductively by

$$\overline{\varepsilon}_1(\mathbf{f}) \colon \underbrace{\mathbf{f}}_{\mathbf{f}} \mapsto \underbrace{\overline{\overline{e}_i}}_{\mathbf{f}}, \quad \overline{\varepsilon}_{-1}(\mathbf{f}) \colon \underbrace{\mathbf{f}}_{\mathbf{f}} \mapsto \underbrace{\overline{\overline{e}_{i-2}}}_{\mathbf{f}}$$

Flip to obtain $\overline{u}(\pi)$ and stick them together. This gives a tilting basis T of Web.

The SL₂ fusion rules for $\Delta(1) = \mathbb{C}\{\varepsilon_1, \varepsilon_{-1}\}$:



In order to prove $\mathcal{W}\mathrm{eb}\cong\mathcal{F}\mathrm{und}$ we need

- a functor $\Gamma\colon \mathcal{W}\mathrm{eb}\to \mathcal{F}\mathrm{und}$ defined integrally;
- an integral basis I of $\mathcal{W}eb$;
- that $\Delta(1)$ is tilting regardless of \mathbb{K} (by a very general argument, which I learned from Andersen–Stroppel ~2015, this implies that hom-spaces in \mathcal{F} und are flat);
- to prove fully faithfulness Γ generically.

◀ Back

 General.

 The first, second and last bullet points are known in type A and should work more generally. The third bullet point works verbatim for tensor products of any minuscule modules. Example. Exterior powers of $\Delta(\omega_1)$ in type A

 \Rightarrow the Cautis–Kamnitzer–Morrison exterior web calculus works verbatim in characteristic p (as observed by Elias ~2015). Non-example. Symmetric powers of $\Delta(\omega_1)$ in type A

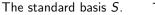
 \Rightarrow the Rose (Vaz–Wedrich) symmetric web calculus in characteristic p is still to be found.
 Bases of hom $(\Delta(1)^{\otimes i}, \Delta(1)^{\otimes j})$.

The integral basis 1.

- Defined over Z
- Needed for the transition from characteristic 0 to p.
- Algebraically:

 $\Delta(1)^{\otimes i} \twoheadrightarrow \mathsf{wt}(\lambda) \hookrightarrow \Delta(1)^{\otimes j}$.

Bottleneck principle:



- Defined generically, having poles.
- Artin–Wedderburn basis \Rightarrow trivial relations.
- Algebraically:

 $\Delta(1)^{\otimes i} \twoheadrightarrow \Delta(\lambda) \hookrightarrow \Delta(1)^{\otimes j}$.

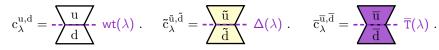
Bottleneck principle:

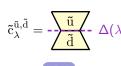
The tilting basis T.

- Defined generically, but without poles.
- The one we want for \mathcal{T} ilt.
- Algebraically:

 $\Delta(1)^{\otimes i} \twoheadrightarrow \overline{T}(\lambda) \hookrightarrow \Delta(1)^{\otimes j}$.

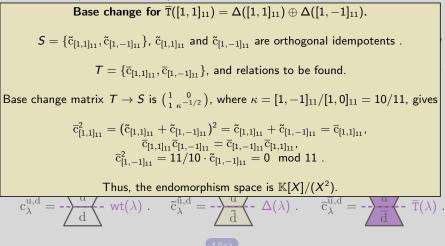
Bottleneck principle:





General.

This is a well-known strategy which works in guite some generality, e.g. for cellular categories à la Graham-Lehrer, Westbury, Elias-Lauda. Modern examples. Light leaves à la Libedinsky, light ladders à la Elias, bases of End(tilting) à la Andersen-Stroppel, KLR-type-bases à la Hu-Mathas, more. Bases of hom $(\Delta(1)^{\otimes i}, \Delta(1)^{\otimes j})$.



Original sin. In order to get $\overline{T}(\lambda)$ I need to know the tilting characters.

So I cannot use the presentation of ${\cal T}{\rm ilt}$ to say anything new about the objects, a.k.a. tilting modules.

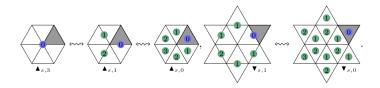


Figure: The quantum tilting characters for SL_3 , due to Soergel and Stroppel ~1997.

Not much more is known in general, but there are some notable exceptions *e.g.* Jensen \sim 2000, Parker \sim 2008, Lusztig–Williamson \sim 2017.

◀ Back

The result. There exists a \mathbb{K} -algebra Z_p defined as a (very explicit) quotient of the path algebra of an infinite, fractal-like quiver. Let $p\mathcal{M}od$ - Z_p denote the category of finitely-generated, projective (right-)modules for Z_p . There is an equivalence of additive, \mathbb{K} -linear categories

$$\mathcal{F}\colon \mathcal{T}\mathrm{ilt} \xrightarrow{\cong} \mathrm{p}\mathcal{M}\mathrm{od}\text{-}\mathrm{Z}_{\rho},$$

sending indecomposable tilting modules to indecomposable projectives.

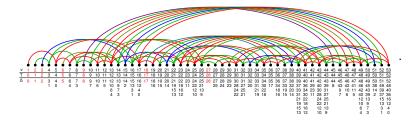


Figure: The full subquiver containing the first 53 vertices of the quiver underlying Z_3 .

The result. There exists a \mathbb{K} -algebra \mathbb{Z}_p defined as a (very explicit) quotient of the path algebra of an infinite, fractal-like quiver. Let $p\mathcal{M}od$ - \mathbb{Z}_p denote the category of finitely-generated, projective (right-)modules for \mathbb{Z}_p . There is an equivalence of

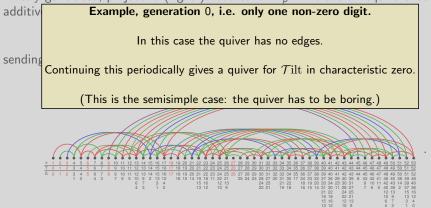


Figure: The full subquiver containing the first 53 vertices of the quiver underlying Z_3 .

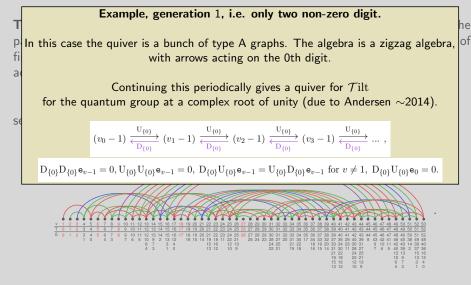
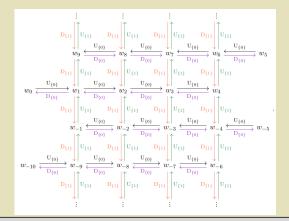


Figure: The full subquiver containing the first 53 vertices of the quiver underlying Z₃.

Example, generation 2, i.e. only three non-zero digit.

In this case every connected component of the quiver is a bunch of type A graphs glued together in a matrix-grid. Each row and column is a zigzag algebra, with arrows acting on the 0th digit or 1digit, and there are "squares commute" relations.

Continuing this periodically gives a quiver for projective G_2T -modules (due to Andersen \sim 2019).



The result. There exists a \mathbb{K} -algebra Z_p defined as a (very explicit) quotient of the path algebra of an infinite, fractal-like quiver. Let $p\mathcal{M}od$ - Z_p denote the category of finitely-generated, projective (right-)modules for Z_p . There is an equivalence of additive, \mathbb{K} -linear categories

$$\mathcal{F}\colon \mathcal{T}\mathrm{ilt} \xrightarrow{\cong} \mathrm{p}\mathcal{M}\mathrm{od}\text{-}\mathrm{Z}_{p},$$

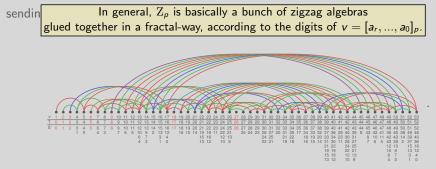
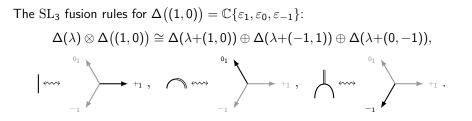


Figure: The full subquiver containing the first 53 vertices of the quiver underlying Z_3 .



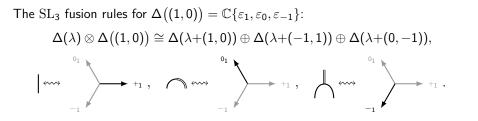
Elias ~2015 à la Littelmann ~1995. For any path π in the dominant Weyl chamber define $d(\pi)$ inductively by

$$\varepsilon_{+1}(f) \colon \underbrace{f} \mapsto \underbrace{f} \mid, \quad \varepsilon_{0_1}(f) \colon \underbrace{f} \mapsto \underbrace{f} \mid, \quad \varepsilon_{-1}(f) \colon \underbrace{f} \mapsto \underbrace{f} \mid.$$

Flip to obtain $u(\pi)$ and stick them together. This gives an integral basis I of Web.

🖣 Back

There is of course the dual picture for the second fundamental module – it is omitted to make this slide less cumbersome.

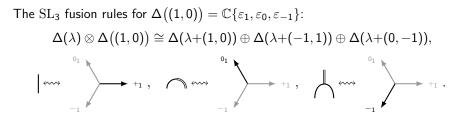


Kuperberg ~1995, Kim ~2006, Elias ~2015. For any path π in the dominant Weyl chamber define $\tilde{d}(\pi)$ inductively by

$$\varepsilon_{+1}(f) \colon \underbrace{f} \mapsto \underbrace{f} \mid, \quad \varepsilon_{0_1}(f) \colon \underbrace{f} \mapsto \underbrace{f} \mid, \quad \varepsilon_{-1}(f) \colon \underbrace{f} \mapsto \underbrace{f} \mid.$$

Flip to obtain $\tilde{u}(\pi)$ and stick them together. This gives a standard basis S of Web.

Back

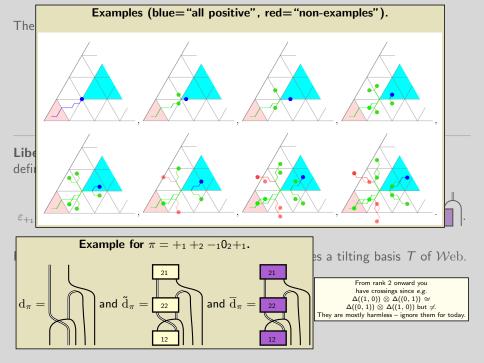


Libedinsky–Patimo ~2020. For any path π in the dominant Weyl chamber define $\overline{d}(\pi)$ inductively by

$$\varepsilon_{+1}(f) \colon \underbrace{\mathbf{f}} \mapsto \underbrace{\mathbf{f}} \mid, \quad \varepsilon_{0_1}(f) \colon \underbrace{\mathbf{f}} \mapsto \underbrace{\mathbf{f}} \mid, \quad \varepsilon_{-1}(f) \colon \underbrace{\mathbf{f}} \mapsto \underbrace{\mathbf{f}} \mid$$

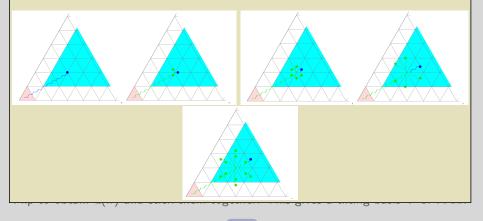
Flip to obtain $\overline{u}(\pi)$ and stick them together. This gives a tilting basis T of Web.

Back



The tilting characters, and thus the tilting projectors, are given by path folding.

Examples (blue="leading summand", green="other summands").



Back