Categorification of 1 and of the Alexander polynomial

Louis-Hadrien Robert

UNIVERSITÉ DE GENÈVE

Emmanuel Wagner

PARIS

DIDEROT

QUACKS

▶ The \mathfrak{gl}_1 link invariant P_1 .

$$qP_1\left(\bigodot \right) - q^{-1}P_1\left(\bigodot \right) = (q - q^{-1})P_1\left(\bigodot \right)$$

$$L \mapsto 1 \in \mathbb{Z}[q, q^{-1}]$$

▶ The Alexander polynomial Δ .

$$\Delta\left(igcirc
ight) - \Delta\left(igcirc
ight) = (q-q^{-1})\Delta\left(igcirc
ight)$$

\mathfrak{gl}_1 invariant

Link diagram $\rightsquigarrow \mathbb{Z}[q,q^{-1}]$ -lin. comb. of plane graphs

plane graph \leadsto element of $\mathbb{N}[q,q^{-1}]$ $\Gamma \leadsto \left(q+q^{-1}\right)^{\#V(\Gamma)/2} = [2]^{\#V(\Gamma)/2}.$

\mathfrak{gl}_1 -homology

Braid closure diagram → hypercube of plane graphs graphs (with shifts)

\mathfrak{gl}_1 -homology

Braid closure diagram → hypercube of plane graphs graphs (with shifts)

Planar (vinyl) graph \leadsto graded vector space dimension $[2]^{\#V(\Gamma)/2}$ \longrightarrow \leadsto graded linear map

\mathfrak{gl}_1 homology – Example

\mathfrak{gl}_1 homology — Example

Vinyl graph $\Gamma \circlearrowleft \text{index } k$.

Vinyl graph $\Gamma \circlearrowleft \text{index } k$. Dot configuration $d \bullet$.

Vinyl graph $\Gamma \circlearrowleft \text{index } k$. Dot configuration $d \bullet$.

$$D(\Gamma) = \bigoplus_{d} \mathbb{Q}$$

Vinyl graph $\Gamma \circlearrowleft \text{index } k$. Dot configuration $d \bullet$.

$$D(\Gamma) = \bigoplus_{d} \mathbb{Q}.$$

Multiplication μ on $D(\Gamma)$.

Vinyl graph $\Gamma \circlearrowleft \text{index } k$. Dot configuration $d \bullet$.

$$D(\Gamma) = \bigoplus_{d} \mathbb{Q}.$$

Vinyl graph $\Gamma \circlearrowleft \text{index } k$. Dot configuration $d \bullet$.

$$D(\Gamma) = \bigoplus_{d} \mathbb{Q}.$$

$$\tau(d,c) = \frac{\prod_{i=1}^{k} X_i^{\#\{\bullet \text{ in } C_i\}}}{\prod_{C_i C_j} (X_i - X_j)}$$

Vinyl graph $\Gamma \circlearrowleft \text{index } k$. Dot configuration $d \bullet$.

$$D(\Gamma) = \bigoplus_{d} \mathbb{Q}.$$

$$\tau(d,c) = \frac{\prod_{i=1}^{k} X_{i}^{\#\{ \bullet \text{ in } C_{i} \}}}{\prod_{c_{i}} (X_{i} - X_{j})} = \frac{-X_{1}^{2} X_{2}^{2} X_{3} X_{4}^{2}}{(X_{1} - X_{2})^{3} (X_{3} - X_{4})^{2} (X_{1} - X_{4})(X_{2} - X_{3})}$$

Vinyl graph $\Gamma \circlearrowleft \text{index } k$. Dot configuration $d \bullet$.

$$D(\Gamma) = \bigoplus_{d} \mathbb{Q}.$$

$$\tau(d,c) = \frac{\prod_{i=1}^{k} X_i^{\#\{\bullet \text{ in } C_i\}}}{\prod_{\substack{C_i \ C_j}} (X_i - X_j)}$$

$$\tau(d) = \sum_{c \in \operatorname{col}(\Gamma)} \tau(d, c)$$

Proposition (Robert-W., '17)

For any dot configuration d, $\tau(d) \in \mathbb{Q}[X_1, \ldots, X_k]^{S_k}$.

$$\mathcal{S}_1(\Gamma) = D(\Gamma)/\ker(\tau \circ \mu(\underline{\ },\underline{\ })_{X_{\bullet} \mapsto 0}).$$

Theorem (Robert–W., '18)

For any vinyl graph Γ , $\dim_q S_1(\Gamma) = [2]^{\#V(\Gamma)/2}$.

→ \sim linear map

$$\longrightarrow:\quad \mathcal{S}_1\left(\begin{array}{c} \\ \\ \\ \\ \end{array}\right) \rightarrow \left(\begin{array}{c} \\ \\ \\ \end{array}\right) \left(\begin{array}{c}$$

→ → linear map

$$\longrightarrow : \quad \mathcal{S}_1\left(\begin{array}{c} \begin{array}{c} \\ \\ \end{array}\right) \rightarrow \mathcal{S}_1\left(\begin{array}{c} \\ \end{array}\right) \left(\begin{array}{c} \\ \end{array}\right) \left$$

Theorem (Robert.-W. '18)

- 1. These maps in the flattening of the hypercube produces a chain complex. Its homology, denoted $H_{\mathfrak{gl}_1}$ is a link invariant which categorifies P_1 .
- 2. There is a spectral sequence from the triply graded homology to $H_{\mathfrak{gl}_1}$.

Examples

- 1. Trefoil: the Poincaré polynomial is $1 + q^{-4}(t + t^2)$.
- 2. Hopf link: the Poincaré polynomial is $1 + q^2(1+t)$.

Alexander polynomial

Marked (\star) braid closure $\leadsto \mathbb{Z}[q,q^{-1}]$ -lin. comb. of marked plane graphs

Marked plane graph \leadsto element of $\mathbb{N}[q,q^{-1}]$ $\Gamma \leadsto$ complicated (comes from $U_q(\mathfrak{gl}(1|1))-\mathsf{mod}$).

Alexander polynomial – Example

Alexander polynomial – Example

\mathfrak{gl}_0 homology

Same hypercube with a different functor.

\mathfrak{gl}_0 homology

Same hypercube with a different functor.

$$\mathcal{S}_0'(\Gamma_{\star}) \subseteq \mathcal{S}_1(\Gamma) = \langle \text{at least } k-1 \bullet \text{at } \star \rangle \{-k+1\}$$
 $\longrightarrow \longrightarrow \text{induced by } \mathcal{S}_1.$

\mathfrak{gl}_0 homology

Same hypercube with a different functor.

$$\mathcal{S}_0'(\Gamma_\star) \subseteq \mathcal{S}_1(\Gamma) = \langle \text{at least } k-1 \bullet \text{at } \star \rangle \{-k+1\}$$
 $\longrightarrow \leadsto \text{induced by } \mathcal{S}_1.$

Theorem (Robert-W., '19)

For any right-marked vinyl graph Γ_{\star} , $\dim_q \mathcal{S}_0'(\Gamma_{\star})$ is the expected graded dimension.

Theorem (Robert-W. '19)

- 1. The flattening of the hypercube with S_0' produces a chain complex. Its homology, denoted $H_{\mathfrak{gl}_0}$ is a knot invariant which categorifies the Alexander polynomial.
- 2. There is a spectral sequence from the reduced triply graded homology to $H_{\mathfrak{al}_0}$.