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» The gl; link invariant Pj.
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» The Alexander polynomial A.
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gl; invariant

Link diagram ~~ Z[q, ¢ 1]-lin. comb. of plane graphs

N ) (

plane graph ~» element of N[q, ¢!]
T s (q+ qfl)#V(F)/Z — [#VN/2,
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gl;-homology

Braid closure diagram ~~ hypercube of plane graphs graphs (with shifts)
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gl;-homology

Braid closure diagram ~~ hypercube of plane graphs graphs (with shifts)

Planar (vinyl) graph ~~graded vector space
dimension [2]7#V(1/2

— ~~graded linear map
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Vinyl graph ~~ vector space

Vinyl graph T" O index k.
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Vinyl graph ~~ vector space

Vinyl graph T" O index k.
Dot configuration d e.

DN =EPa.
d
Multiplication 1 on D(T).

Coloring ¢ = (Cy, Gy, .. ., Ck)
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Vinyl graph ~~ vector space

Vinyl graph T" O index k.
Dot configuration d e.

D(T) :@Q.
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Multiplication 1 on D(T).
Coloring ¢ = (Cy, Gy, .. ., Ck)
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Vinyl graph ~~ vector space

Vinyl graph T" O index k.
Dot configuration d e.

D(T) :@Q.
d

Multiplication 1 on D(T).
Coloring ¢ = (Cy, Gy, .. ., Ck)
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Vinyl graph ~~ vector space

Proposition (Robert-W., '17 )
For any dot configuration d, T(d) € Q[Xg, ..., Xk]%*.

S1(I) = D()/ ker(to (L, _)xum0)-

Theorem (Robert-W., '18 )
For any vinyl graph T', dimg S1(T") = [2]#V(N)/2,
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— ~> linear map

Theorem (Robert.-W. '18)

1. These maps in the flattening of the hypercube produces a
chain complex. Its homology, denoted Hy, is a link invariant
which categorifies P;.

2. There is a spectral sequence from the triply graded homology
to Hg[l.



1. Trefoil: the Poincaré polynomial is 14 g~#(t + t2).
2. Hopf link: the Poincaré polynomial is 1 + g%(1 + t).




Alexander polynomial

Marked () braid closure ~» Z[q, g 1]-lin. comb. of marked plane graphs

=)
SR

Marked plane graph ~~ element of N[q, g~ }]
I" ~» complicated (comes from Ug(gl(1]1)) — mod).
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Same hypercube with a different functor.

S(Ty) € S1(T) = (at least k — 1 @ at x){—k + 1}
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glphomology

Same hypercube with a different functor.

S§(T) € S1(T) = (at least k — 1 @ at »){—k + 1}

— ~~ induced by &7.

Theorem (Robert-W., '19)

For any right-marked vinyl graph T, dimq S§(T'.) is the expected
graded dimension.



Theorem (Robert-W. '19)

1. The flattening of the hypercube with S§ produces a chain
complex. Its homology, denoted Hy is a knot invariant which

categorifies the Alexander polynomial.
2. There is a spectral sequence from the reduced triply graded
homology to Hyy, .



