Part I	Break time!	Part II

Howe to translate Gelfand-Tsetlin

Ben Webster

University of Waterloo Perimeter Institute for Mathematical Physics

August 12, 2020



イロト イポト イヨト イヨト

UW/PI

Ben Webster

Part I ●00000000	Break time!	Part II 00000000
Soergel bimodules		

Definition

The category \mathscr{S}_c of **Soergel bimodules** (for \mathfrak{gl}_n) is the Karoubi envelope of the monoidal subcategory of graded bimodules over $S = \mathbb{C}[x_1, \ldots, x_n]$ generated by the bimodules $B_i = S \otimes_{S^{s_i}} S$.

Different people appreciate this category because of the multifarious ways its appears in mathematics.

- combinatorially either as above, or in terms of Soergel calculus (which I won't describe in detail here).
- 2 representation theoretically in terms of translation and projective functors.
- **3** geometrically in terms of perverse sheaves on flag varieties.

Let me give a quick sketch of these constructions.

イロト 人間 とくほ とくほ とう

Part I	Break time!	Part II
●●○○○○○○○	O	00000000
Background on gl _n		

Basic notation for $\mathfrak{g} = \mathfrak{gl}_n$:

- A weight is given by an *n*-tuple (λ₁,..., λ_n) ∈ Cⁿ. Dominant integral if λ_i ∈ Z, and λ₁ ≤ ··· ≤ λ_n.
- The center $Z_n = Z(U(\mathfrak{g}))$ is isomorphic to $\mathbb{C}[z_1, \ldots, z_n]^{S_n}$ with $f(z_1, \ldots, z_n)$ acting by $f(\lambda_1 + 1, \ldots, \lambda_n + n)$ on the Verma $M(\lambda)$.
- Let $I_0 = \{f \in Z \mid f(1, ..., n) = 0\}$ be the annihilator of the trivial module, and \widehat{Z}_n be the completion of Z_n at this ideal. This is isomorphic to the completion $\widehat{S} \cong \widehat{Z}_n$ via the map $x_i \mapsto z_i i$.
- We have an inclusion $\iota_k : Z_k \hookrightarrow U(\mathfrak{gl}_k) \hookrightarrow U(\mathfrak{gl}_n)$. The subring Γ generated $\iota_k(Z_k)$ for $k = 1, \ldots, n$ is called the **Gelfand-Tsetlin** subalgebra.

UW/PI

Part I ○○●○○○○○○	Break time!	Part II 00000000
Background on \mathfrak{gl}_n		0000000

Definition

A module M over $U(\mathfrak{gl}_n)$ is **Gelfand-Tsetlin** if it is Γ -locally finite, *i.e.* for any $m \in M$, we have dim $(\Gamma m) < \infty$.

Finite dimensional modules are obviously Gelfand-Tsetlin, as are Verma modules for all Borels containing torus (so all objects in categories \mathcal{O}).

Questions:

- What are the simple Gelfand-Tsetlin modules? (Hard; only solved in 2018 by KTWWY.)
- How does tensor product with finite dimensional modules act on GT modules? (Less hard, I'll explain today.)

Ben Webster

イロト イポト イヨト イヨト

Part I ○○○●○○○○○	Break time!	Part II 00000000
Background on \mathfrak{gl}_n		

For $\chi \in \text{MaxSpec}(Z_n)$, let \mathcal{C}_{χ} be the subcategory of $U(\mathfrak{gl}_n)$ modules where a power of I_{χ} acts trivially, and $\operatorname{pr}_{\chi} : \mathfrak{g} \operatorname{-mod} \to \mathcal{C}_{\chi}$ be functor of the largest subobject in this category.

For any finite dimensional g-module U, we, have a functor $\operatorname{pr}_{\chi'}(U \otimes -) : \mathcal{C}_{\chi} \to \mathcal{C}_{\chi'}$. The category $\mathscr{S}_r(\chi, \chi')$ of **projective functors** are sums of summands of these.

Theorem (Bernstein-Gelfand, Soergel)

There's a tensor equivalence between $\mathscr{S}_r = \mathscr{S}_r(0,0)$ of projective functors $\mathcal{C}_0 \to \mathcal{C}_0$ and the category $\widehat{\mathscr{S}}_c$ of completed (ungraded) Soergel $\widehat{Z}_n - \widehat{Z}_n$ -bimodules.

The bimodule $s_i S_S$ corresponds to translation onto a wall with $x_i = x_{i+1}$, and $s_i S_{S_i}$ to translation off.

Part I	Break time!	Part II
○○○○●○○○○	0	00000000
Geometry		

On the other hand, we can also interpret these bimodules geometrically. Let

Soergel bimodules are an algebraic reflection of the geometry of the double coset space $B \setminus G/B$. This space has a category \mathscr{S}_g of sum of shifts of semi-simple perverse sheaves inside the derived category, which is monoidal under convolution.

Theorem (Soergel)

The pushforward $B \setminus G/B \to B \setminus */B$ induces a monoidal equivalence $\mathscr{S}_g \to \mathscr{S}_c$, matching homological grading of perverse sheaves to internal grading of Soergel bimodules, sending $IC(P_i)$ to $S \otimes_{S^{s_i}} S$.

These results together are the key to the self-Koszul duality of category \mathcal{O} (since simple perverse sheaves correspond to projective functors).

Part I	Break time!	Part II
000000000		
The bridge		

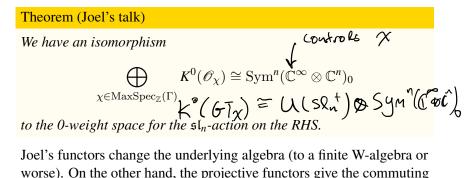
So we have a sequence of functors of additive categories: $\mathscr{G}_g \to \mathscr{G}_c \to \mathscr{G}_r$ graded lift

with the first an equivalence, and the second an equivalence after completion and forgetting gradings.

We can extend this to the singular case as well. For each $\chi \in \operatorname{MaxSpec}_{\mathbb{Z}}(Z_n)$, we have a parabolic P_{χ} , corresponding invariant ring $S^{W_{\chi}}$, and have equivalences: $\mathscr{S}_g(\chi, \chi') = \operatorname{Perv}(P_{\chi} \setminus G/P_{\chi'}) \rightarrow \mathscr{S}_c(\chi, \chi') \rightarrow \mathscr{S}_r(\chi, \chi')$ The resulting 2-category is a quotient of categorified \mathfrak{sl}_{∞} . $S^{\mathcal{W}_{\chi}} = \underset{P_{\chi}}{\overset{\mathbb{W}_{\chi}}{(\chi)}}$

Part I	Break time!	Part II
000000000		
The bridge		

Let's compare this with Joel's talk. Let $\mathscr{O}_{\gamma} \subset \mathscr{C}_{\gamma}$ is the category of weight modules which are U(b) locally finite.



worse). On the other hand, the projective functors give the commuting Howe dual action of \mathfrak{sl}_{∞} . So, my talk is the Howe dual of Joel's.

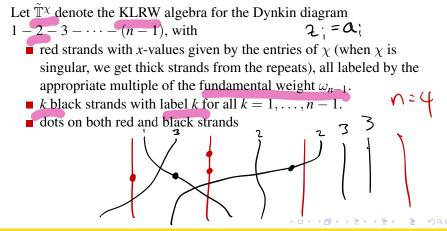
イロト 不得 とくほ とくほとう ほ

UW/PI

$$\mathcal{U}(\mathfrak{Sl}_n^{+}) \not\in (\mathbb{C}^n)^{\mathfrak{G}}$$

Part I	Break time!	Part II
00000000		
Gelfand-Tsetlin modules		

In [KTWWY], we didn't just identify category \mathcal{O} . We found the whole category of Gelfand-Tsetlin modules \mathcal{GT}_{χ} .



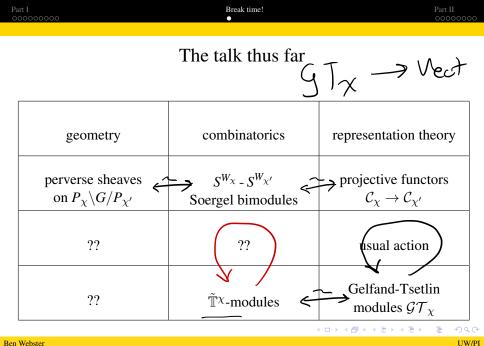
Part I	000 0 ●	Break time! 0	Part II 00000000
Gelfand	-Tsetlin modules		
	Theorem The category \mathcal{GT}_{χ} is equivalen finite dimensional $\tilde{\mathbb{T}}^{\chi}$ -modules.	t to the category of weakly-graded	

Under this equivalence, the images of the obvious idempotents in \mathbb{T}^{χ} match with the weight spaces for elements of MaxSpec(Γ).

- to get \mathcal{O}_{χ} , kill idempotents corresponding to weight spaces not allowed in category \mathcal{O} .
- red dots = nilpotent part of Z_n action.

sum of black dots on strands with label i = nilpotent part of $U(\mathfrak{h})$ -action.

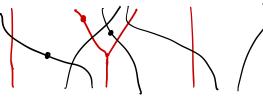
So, we have a Soergel bimodule action on $\tilde{\mathbb{T}}^0$ -modules, and a categorical \mathfrak{sl}_{∞} action on all χ 's together. How can we describe it in these combinatorial terms?



Ben Webster

Part I	Break time!	Part II
		0000000
Connection to KLSY		

Translation onto/off of the wall corresponds to "splitter bimodules" from Khovanov-Lauda-Sussan-Yonezawa.



Key observation of the proof:

$$U(\mathfrak{gl}_n)\otimes\mathbb{C}^n\cong U(\mathfrak{gl}_n)E_nU(\mathfrak{gl}_n)\subset U(\mathfrak{gl}_{n+1})$$

Theorem (W.)

The monoidal category \mathscr{S}_c acts on $\tilde{\mathbb{T}}^0$ -modules via the KLSY bimodules.

Note, this shows why red-dotting was needed: projective functors don't preserve semi-simple action of the center. $\langle \Box \rangle = \langle \Box \rangle = \langle \Box \rangle = \langle \Box \rangle$

Part I	Break time!	Part II
00000000	O	○●○○○○○○
Connection to KLSY		

Of course, this only covers very specific number of black strands, and in particular, only a few of the \mathfrak{sl}_2 cases KLSY consider.

One fix: generalize $U(\mathfrak{gl}_n)$ to other Coulomb branches.

this includes finite W-algebras if

$$v_1 \leq v_2 - v_1 \leq \cdots \leq v_{n-1} - v_{n-2} \leq n - v_{n-1}.$$

• other weirder stuff in other cases.

A bit tricky to write out details of, though.

Solution I prefer: get that last corner of my summary page, geometry.

Part I		Part II ○○●○○○○○
Connection	Choose an <i>m</i> -tuple of integers $(v_1, \ldots, v_{m-1}, v_m = n)$. Let	C
	$V = \operatorname{Hom}(\mathbb{C}^{\nu_1}, \mathbb{C}^{\nu_2}) \oplus \operatorname{Hom}(\mathbb{C}^{\nu_2}, \mathbb{C}^{\nu_3}) \oplus \cdots \oplus \operatorname{Hom}(\mathbb{C}^{\nu_{m-2}}, \mathbb{C}^{\nu_{m-1}}) \oplus \operatorname{Hom}(\mathbb{C}^{\nu_{m-1}}, \mathbb{C}^{m-1})$ $H_0 = GL(\nu_1) \times GL(\nu_2) \times \cdots \times GL(\nu_{m-1}) \qquad H = H_0 \times B$	
A	Almost a moduli of quiver reps, but note that <i>B</i> instead of a <i>G</i> .	-
ר	heorem (Guan-W.)	
P	The H-orbits on V are classified by ways of writing v as a sum of ositive roots, with a choice of order on the roots of type $0, \ldots, 0, 1, \ldots, 1$) appearing.	order Xbg
	0-30-34 (-36-0	
	< ロ > < 置 > < 直 > < 直 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □	E 990

Part I	Break time!	Part II
00000000	o	○○○●○○○○
Connection to quivers		

Let $V_{inj} \subset V$ be the subspace where all the maps $f_i \colon \mathbb{C}^{v_i} \to \mathbb{C}^{v_{i+1}}$ are injective.

In the case $\mathbf{v} = (1, 2, ..., n)$, we have a close relationship to the flag variety.

Lemma

We have a *G*-equivariant isomorphism $V_{\text{inj}}/H_0 \cong B \setminus G$ by thinking of $f \subseteq f \subseteq f \subseteq G$ im $(f_{n-1}) \supset \text{im}(f_{n-1}f_{n-2}) \supset \cdots \supset \text{im}(f_{n-1}\cdots f_1)$ as a flag.

イロト 不得 とくほ とくほ とうほ

UW/PI

Ben Webster

Part I	Break time!	Part II
00000000	O	○○○○●○○○
Connection to quivers		

So, we have a category of sums of shifts of semi-simple perverse sheaves Perv(V/H).

Theorem

The category of Perv(V/H) carries an action by convolution of $\mathscr{S}_g = \text{Perv}(B \setminus G/B)$ via convolution.

This is a general observation about spaces with a *G*-action that we restrict to the action of *B*.

If we let $H_i = H_0 \times P_i$, then the action of $IC(P_i)$ is pushing and pulling on the map $V/H \rightarrow V/H_i$.

As usual, we can generalize to the singular case by considering $\text{Perv}(V/H_{\chi})$ for $H_{\chi} = H_0 \times P_{\chi}$.

イロト イポト イヨト イヨト 二日

UW/PI

Part I	Break time!	Part II
		00000000
Connection to quivers		

n red strands

As you might expect, this matches with the other categories with Soergel actions: $\bigvee_i \quad \text{black Strongs label}$

Theorem

The category $\operatorname{Perv}(V/H_{\chi})$ is equivalent to the category of graded projective $\tilde{\mathbb{T}}^{\chi}$ -modules. This intertwines the Soergel action on $\tilde{\mathbb{T}}^{0}$ -modules and \mathfrak{sl}_{∞} -action on all χ with that by KLSY bimodules.

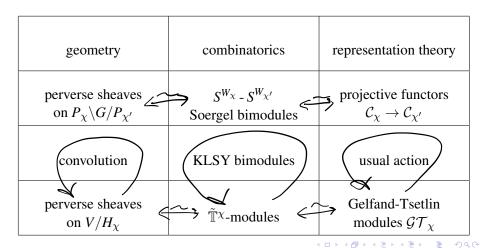
This is the easiest way to prove that such an action exists. Of course, you have to work algebraically if want to do *p*-DG (for now).

Restricting to V_{inj} has effect of passing to \mathcal{O} , back to Joel's talk.

anabogous Proof

Connection to guivers		
00000000		00000000
Part I	Break time!	Part II

The whole talk



UW/PI

Ben Webster

Part I	Break time!	Part II
		0000000
Thanks		

Thanks for listening.

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ 三臣

UW/PI

Ben Webster