# Howe to translate Gelfand-Tsetlin 

Ben Webster<br>University of Waterloo<br>Perimeter Institute for Mathematical Physics

August 12, 2020

\(\underset{anstitut}{\substack{Perimeter<br>ins}}\)<br>INSTITUTE FOR THEORETICAL PHYSICS<br>PÉRIMÈTRE DE PHYSIQUE THÉORIQUE

## Definition

The category $\mathscr{S}_{c}$ of Soergel bimodules (for $\mathfrak{g l}_{n}$ ) is the Karoubi envelope of the monoidal subcategory of graded bimodules over $S=\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$ generated by the bimodules $B_{i}=S \otimes_{S^{s i}} S$.

Different people appreciate this category because of the multifarious ways its appears in mathematics.
1 combinatorially either as above, or in terms of Soergel calculus (which I won't describe in detail here).
2 representation theoretically in terms of translation and projective functors.
3 geometrically in terms of perverse sheaves on flag varieties.
Let me give a quick sketch of these constructions.

Basic notation for $\mathfrak{g}=\mathfrak{g l}_{n}$ :
■ A weight is given by an $n$-tuple $\left(\lambda_{1}, \ldots, \lambda_{n}\right) \in \mathbb{C}^{n}$. Dominant integral if $\lambda_{i} \in \mathbb{Z}$, and $\lambda_{1} \leq \cdots \leq \lambda_{n}$.

- The center $Z_{n}=Z(U(\mathfrak{g}))$ is isomorphic to $\mathbb{C}\left[z_{1}, \ldots, z_{n}\right]^{S_{n}}$ with $f\left(z_{1}, \ldots, z_{n}\right)$ acting by $f\left(\lambda_{1}+1, \ldots, \lambda_{n}+n\right)$ on the Verma $M(\lambda)$.
- Let $I_{0}=\{f \in Z \mid f(1, \ldots, n)=0\}$ be the annihilator of the trivial module, and $\widehat{Z}_{n}$ be the completion of $Z_{n}$ at this ideal. This is isomorphic to the completion $\widehat{S} \cong \widehat{Z}_{n}$ via the map $x_{i} \mapsto z_{i}-i$.
■ We have an inclusion $\iota_{k}: Z_{k} \hookrightarrow U\left(\mathfrak{g l}_{k}\right) \hookrightarrow U\left(\mathfrak{g l}_{n}\right)$. The subring $\Gamma$ generated $\iota_{k}\left(Z_{k}\right)$ for $k=1, \ldots, n$ is called the Gelfand-Tsetlin subalgebra.


## Definition

A module $M$ over $U\left(\mathfrak{g l}_{n}\right)$ is Gelfand-Tsetlin if it is $\Gamma$-locally finite, i.e. for any $m \in M$, we have $\operatorname{dim}(\Gamma m)<\infty$.

Finite dimensional modules are obviously Gelfand-Tsetlin, as are Verma modules for all Borels containing torus (so all objects in categories $Q$ ).

## Questions:

- What are the simple Gelfand-Tsetlin modules? (Hard; only solved in 2018 by KTWWY.)
- How does tensor product with finite dimensional modules act on GT modules? (Less hard, I'll explain today.)

For $\chi \in \operatorname{MaxSpec}\left(Z_{n}\right)$, let $\mathcal{C}_{\chi}$ be the subcategory of $U\left(\mathfrak{g l}_{n}\right)$ modules where a power of $I_{\chi}$ acts trivially, and $\mathrm{pr}_{\chi}: \mathfrak{g}-\bmod \rightarrow \mathcal{C}_{\chi}$ be functor of the largest subobject in this category.

For any finite dimensional $\mathfrak{g}$-module $U$, we, have a functor $\operatorname{pr}_{\chi^{\prime}}(U \otimes-): \mathcal{C}_{\chi} \rightarrow \mathcal{C}_{\chi^{\prime}}$. The category $\mathscr{S}_{r}\left(\chi, \chi^{\prime}\right)$ of projective functors are sums of summands of these.

## Theorem (Bernstein-Gelfand, Soergel)

There's a tensor equivalence between $\mathscr{S}_{r}=\mathscr{S}_{r}(0,0)$ of projective functors $\mathcal{C}_{0} \rightarrow \mathcal{C}_{0}$ and the category $\widehat{\mathscr{S}}_{c}$ of completed (ungraded) Soergel $\widehat{Z}_{n}-\widehat{Z}_{n}$-bimodules.

The bimodule ${ }_{S^{s i}} S_{S}$ corresponds to translation onto a wall with $x_{i}=x_{i+1}$, and ${ }_{S} S_{S^{s i}}$ to translation off.

On the other hand, we can also interpret these bimodules geometrically. Let

$$
G=G L_{n}
$$

$$
B=\left[\begin{array}{ccc}
* & & \\
0 & *^{*} \\
0 & & \\
&
\end{array}\right]
$$

Soergel bimodules are an algebraic reflection of the geometry of the double coset space $B \backslash G / B$. This space has a category $\mathscr{S}_{g}$ of sum of shifts of semi-simple perverse sheaves inside the derived eategory, which is monoidal under convolution.

## Theorem (Soergel)

The pushforward $B \backslash G / B \rightarrow B \backslash * / B$ induces a monoidal equivalence $\mathscr{S}_{g} \rightarrow \mathscr{S}_{c}$, matching homological grading of perverse sheaves to internal grading of Soergel bimodules, sending $I C\left(P_{i}\right)$ to $S \otimes_{S_{i}} S$.

These results together are the key to the self-Koszul duality of category $\mathscr{O}$ (since simple perverse sheaves correspond to projective functors).

So we have a sequence of functors of additive categories:

$$
\mathscr{S}_{g} \rightarrow \mathscr{S}_{c} \rightarrow \mathscr{S}_{r} \text { graded lift }
$$

with the first an equivalence, and the second an equivalence after completion and forgetting gradings.

We can extend this to the singular case as well. For each
$\chi \in \operatorname{MaxSpec}_{\mathbb{Z}}\left(Z_{n}\right)$, we have a parabolic $P_{\chi}$, corresponding invariant ring $S^{W_{\chi}}$, and have equivalences:

$$
\mathscr{S}_{g}\left(\chi, \chi^{\prime}\right)=\operatorname{Perv}\left(P_{\chi} \backslash G / P_{\chi^{\prime}}\right) \rightarrow \mathscr{S}_{c}\left(\chi, \chi^{\prime}\right) \rightarrow \mathscr{S}_{r}\left(\chi, \chi^{\prime}\right)
$$

The resulting 2-category is a quotient of categorified $\mathfrak{s l}_{\infty}$.

$$
S^{\omega_{x}}=H_{P_{x}}^{*}(x)
$$

Let's compare this with Joel's talk. Let $\mathscr{O}_{\chi} \subset \mathcal{C}_{\chi}$ is the category of weight modules which are $U(\mathfrak{b})$ locally finite.

## Theorem (Joel's talk)

We have an isomorphism

In [KTWWY], we didn't just identify category $\mathscr{O}$. We found the whole category of Gelfand-Tsetlin modules $\mathcal{G} \mathcal{T}_{\chi}$.

Let $\tilde{\mathbb{T}}^{\chi}$ denote the KLRW algebra for the Dynkin diagram
$1-2-3-\cdots-(n-1)$, with $\quad z_{i}=a_{i}$

- red strands with $x$-values given by the entries of $\chi$ (when $\chi$ is singular, we get thick strands from the repeats), all labeled by the appropriate multiple of the fundamental weight $\omega_{n-1}$.
$■ k$ black strands with label $k$ for all $k=1, \ldots, n-1$.
- dots on both red and black strands


3
$\omega$ 1


## Theorem

The category $\mathcal{G} \mathcal{T}_{\chi}$ is equivalent to the category of weakly-graded finite dimensional $\tilde{\mathbb{T}}^{\chi} \chi$-modules.

Under this equivalence, the images of the obvious idempotents in $\tilde{\mathbb{T}}^{\chi}$ match with the weight spaces for elements of $\operatorname{MaxSpec}(\mathrm{T})$.

■ to get $\mathscr{O}_{\chi}$, kill idempotents corresponding to weight spaces not allowed in category $\mathscr{O} . \quad 1 \cdots=0$

- red dots = nilpotent part of $Z_{n}$ action.
- sum of black dots on strands with label $i=$ nilpotent part of $U(\mathfrak{h})$-action.

> So, we have a Soergel bimodule action on $\tilde{\mathbb{T}}^{0}$-modules, and a categorical $\mathfrak{s l}_{\infty}$ action on all $\chi$ 's together. How can we describe it in these combinatorial terms?

## The talk thus far

## $g T_{x}$ $\rightarrow$ Vect

| geometry | combinatorics | representation theory |
| :---: | :---: | :---: |
| perverse sheaves $\text { on } P_{\chi} \backslash G / P_{\chi^{\prime}}$ | $\underset{\text { Soergel bimodules }}{ } \stackrel{S^{W_{\chi}}-S^{W_{\chi^{\prime}}}}{\sim} \underset{\mathcal{C}_{\chi} \rightarrow \mathcal{C}_{\chi^{\prime}}}{ } \underset{ }{\text { projective functors }}$ |  |
| ?? | $? ?$ |  |
| ?? | $\tilde{\mathbb{T}}^{\chi} \text {-modules }$ | Gelfand-Tsetlin modules $\mathcal{G} \mathcal{T}_{\chi}$ |

Translation onto/off of the wall corresponds to "splitter bimodules" from Khovanov-Lauda-Sussan-Yonezawa.


Key observation of the proof:

$$
U\left(\mathfrak{g l}_{n}\right) \otimes \mathbb{C}^{n} \cong U\left(\mathfrak{g l}_{n}\right) E_{n} U\left(\mathfrak{g l}_{n}\right) \subset U\left(\mathfrak{g l}_{n+1}\right)
$$

## Theorem (W.)

The monoidal category $\mathscr{S}_{c}$ acts on $\tilde{\mathbb{T}}^{0}$-modules via the $K L S Y$ bimodules.

Note, this shows why red-dotting was needed: projective functors don't preserve semi-simple action of the center.

Of course, this only covers very specific number of black strands, and in particular, only a few of the $\mathfrak{s l}_{2}$ cases KLSY consider.

One fix: generalize $U\left(\mathfrak{g l}_{n}\right)$ to other Coulomb branches.

- this includes finite $W$-algebras if

$$
v_{1} \leq v_{2}-v_{1} \leq \cdots \leq v_{n-1}-v_{n-2} \leq n-v_{n-1} .
$$

- other weirder stuff in other cases.

A bit tricky to write out details of, though.
Solution I prefer: get that last corner of my summary page, geometry.

Choose an $m$-tuple of integers $\left(v_{1}, \ldots, v_{m-1}, v_{m}=n\right)$. Let

$$
V=\operatorname{Hom}\left(\mathbb{C}^{v_{1}}, \mathbb{C}^{v_{2}}\right) \oplus \operatorname{Hom}\left(\mathbb{C}^{v_{2}}, \mathbb{C}^{v_{3}}\right) \oplus \cdots
$$

$\oplus \operatorname{Hom}\left(\mathbb{C}^{v_{m-2}}, \mathbb{C}^{v_{m-1}}\right) \oplus \operatorname{Hom}\left(\mathbb{C}^{v_{m-1}}, \mathbb{C}^{n}\right)$

$$
H_{0}=G L\left(v_{1}\right) \times G L\left(v_{2}\right) \times \cdots \times G L\left(v_{m-1}\right) \quad H=H_{0} \times B
$$

Almost a moduli of quiver reps, but note that $B$ instead of a $G$.

## Theorem (Guan-W.)

The H-orbits on $V$ are classified by ways of writing $\mathbf{v}$ as a sum of positive roots, with a choice of order on the roots of type $(0, \ldots, 0,1, \ldots, 1)$ appearing.

$$
\left.\begin{array}{rrrr}
\mathbb{C}-9 \mathbb{C} & 0 & \rightarrow & \mathbb{C} \\
0 \rightarrow & \mathbb{C} & -3 & \mathbb{1} \\
\mathbb{C} & \mathbb{C} & \rightarrow & \mathbb{C}
\end{array}\right]
$$

Let $V_{\mathrm{inj}} \subset V$ be the subspace where all the maps $f_{i}: \mathbb{C}^{v_{i}} \rightarrow \mathbb{C}^{v_{i+1}}$ are injective.

In the case $\mathbf{v}=(1,2, \ldots, n)$, we have a close relationship to the flag variety.

## Lemma

We have a G-equivariant isomorphism $V_{\mathrm{inj}} / H_{0} \cong B \backslash G$ by thinking of
$母 \mathbb{C}^{\cap} \supset \operatorname{im}\left(f_{n-1}\right) \supset \operatorname{im}\left(f_{n-1} f_{n-2}\right) \supset \cdots \supset \operatorname{im}\left(f_{n-1} \cdots f_{1}\right)$ as a flag.

So, we have a category of sums of shifts of semi-simple perverse sheaves $\operatorname{Perv}(V / H)$.

## Theorem

The category of $\operatorname{Perv}(V / H)$ carries an action by convolution of $\mathscr{S}_{g}=\operatorname{Perv}(B \backslash G / B)$ via convolution.

This is a general observation about spaces with a $G$-action that we restrict to the action of $B$.
If we let $H_{i}=H_{0} \times P_{i}$, then the action of $\operatorname{IC}\left(P_{i}\right)$ is pushing and pulling on the map $\mathrm{V} \mathrm{H} H \rightarrow \mathrm{~V} / \mathrm{H}_{i}$.

As usual, we can generalize to the singular case by considering $\operatorname{Perv}\left(V / H_{\chi}\right)$ for $H_{\chi}=H_{0} \times P_{\chi}$.

$$
n \text { red strands }
$$

As you might expect, this matches with the other categories with Soergel actions:

## Theorem

The category Perv $\left(V / H_{\chi}\right)$ is equivalent to the category of graded projective $\tilde{\mathbb{T}} \chi$-modules. This intertwines the Soergel action on $\tilde{\mathbb{T}}^{0}$-modules and $\mathfrak{s l}_{\infty}$-action on all $\chi$ with that by KLSY bimodules.

This is the easiest way to prove that such an action exists. Of course, you have to work algebraically if want to do $p$-DG (for now).

Restricting to $V_{\mathrm{inj}}$ has effect of passing to $\mathscr{O}$, back to Joel's talk.

$$
\text { Proof analogous to }[V V]
$$

## The whole talk

| geometry | combinatorics | representation theory |
| :---: | :---: | :---: |
| perverse sheaves on $P_{\chi} \backslash G / P_{\chi^{\prime}}$ | $S^{W_{\chi}}-S^{W_{\chi}}$ <br> Soergel bimodule | projective functors $\mathcal{C}_{\chi} \rightarrow \mathcal{C}_{\chi^{\prime}}$ |
|  | KLSY bimodule <br> $\tilde{\mathbb{T}}^{\chi}$-modules |  |

## Thanks for listening.

